memcontrol.c 77.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/rbtree.h>
33
#include <linux/slab.h>
34 35 36
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
37
#include <linux/seq_file.h>
38
#include <linux/vmalloc.h>
39
#include <linux/mm_inline.h>
40
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include "internal.h"
B
Balbir Singh 已提交
42

43 44
#include <asm/uaccess.h>

45 46
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
47
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
48

49
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
50
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 52 53 54 55 56
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

57
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
58
#define SOFTLIMIT_EVENTS_THRESH (1000)
59

60 61 62 63 64 65 66 67
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68 69
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70 71
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73 74 75 76 77 78 79 80 81

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
82
	struct mem_cgroup_stat_cpu cpustat[0];
83 84
};

85 86 87 88 89 90 91 92 93 94 95 96 97 98
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

99 100 101
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
102
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
103 104
		enum mem_cgroup_stat_index idx, int val)
{
105
	stat->count[idx] += val;
106 107 108 109 110 111 112 113 114 115 116 117
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
118 119 120 121 122 123 124 125 126
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

127 128 129 130
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
131 132 133
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
134 135
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
136 137

	struct zone_reclaim_stat reclaim_stat;
138 139 140 141
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
142 143
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
144 145 146 147 148 149 150 151 152 153 154 155
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
176 177 178 179 180 181 182
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
183 184 185
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
186 187 188 189 190 191 192
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
193 194 195 196
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
197 198 199 200
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
201
	struct mem_cgroup_lru_info info;
202

K
KOSAKI Motohiro 已提交
203 204 205 206 207
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

208
	int	prev_priority;	/* for recording reclaim priority */
209 210 211

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
212
	 * reclaimed from.
213
	 */
K
KAMEZAWA Hiroyuki 已提交
214
	int last_scanned_child;
215 216 217 218
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
219
	unsigned long	last_oom_jiffies;
220
	atomic_t	refcnt;
221

K
KOSAKI Motohiro 已提交
222 223
	unsigned int	swappiness;

224 225 226
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

227
	/*
228
	 * statistics. This must be placed at the end of memcg.
229 230
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
231 232
};

233 234 235 236 237 238 239
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

240 241 242
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
243
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
244
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
245
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
246
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
247 248 249
	NR_CHARGE_TYPE,
};

250 251 252 253
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
254 255
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
256

257 258 259 260 261 262 263
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

264 265 266 267 268 269 270
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
271 272
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
273

274 275
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
276
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
313
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_insert_exceeded(mem, mz, mctz);
361 362 363 364 365 366 367 368 369
	spin_unlock(&mctz->lock);
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
370
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
	unsigned long long prev_usage_in_excess, new_usage_in_excess;
	bool updated_tree = false;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	mz = mem_cgroup_zoneinfo(mem, page_to_nid(page), page_zonenum(page));
	mctz = soft_limit_tree_from_page(page);

	/*
	 * We do updates in lazy mode, mem's are removed
	 * lazily from the per-zone, per-node rb tree
	 */
	prev_usage_in_excess = mz->usage_in_excess;

	new_usage_in_excess = res_counter_soft_limit_excess(&mem->res);
	if (prev_usage_in_excess) {
		mem_cgroup_remove_exceeded(mem, mz, mctz);
		updated_tree = true;
	}
	if (!new_usage_in_excess)
		goto done;
	mem_cgroup_insert_exceeded(mem, mz, mctz);

done:
	if (updated_tree) {
		spin_lock(&mctz->lock);
		mz->usage_in_excess = new_usage_in_excess;
		spin_unlock(&mctz->lock);
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz = NULL;

retry:
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

481 482 483
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
484 485 486
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
487
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
488
	int cpu = get_cpu();
489

K
KAMEZAWA Hiroyuki 已提交
490
	cpustat = &stat->cpustat[cpu];
491
	if (PageCgroupCache(pc))
492
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
493
	else
494
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
495 496

	if (charge)
497
		__mem_cgroup_stat_add_safe(cpustat,
498 499
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
500
		__mem_cgroup_stat_add_safe(cpustat,
501
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
502
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
503
	put_cpu();
504 505
}

K
KAMEZAWA Hiroyuki 已提交
506
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
507
					enum lru_list idx)
508 509 510 511 512 513 514 515 516 517 518
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
519 520
}

521
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
522 523 524 525 526 527
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

528
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
529
{
530 531 532 533 534 535 536 537
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

538 539 540 541
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

542 543 544
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
545 546 547

	if (!mm)
		return NULL;
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

598 599 600 601 602
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
616

K
KAMEZAWA Hiroyuki 已提交
617 618 619 620
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
621

622
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
623 624 625
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
626
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
627
		return;
628
	VM_BUG_ON(!pc->mem_cgroup);
629 630 631 632
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
633
	mz = page_cgroup_zoneinfo(pc);
634
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
635 636 637
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
638 639
	list_del_init(&pc->lru);
	return;
640 641
}

K
KAMEZAWA Hiroyuki 已提交
642
void mem_cgroup_del_lru(struct page *page)
643
{
K
KAMEZAWA Hiroyuki 已提交
644 645
	mem_cgroup_del_lru_list(page, page_lru(page));
}
646

K
KAMEZAWA Hiroyuki 已提交
647 648 649 650
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
651

652
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
653
		return;
654

K
KAMEZAWA Hiroyuki 已提交
655
	pc = lookup_page_cgroup(page);
656 657 658 659
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
660
	smp_rmb();
661 662
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
663 664 665
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
666 667
}

K
KAMEZAWA Hiroyuki 已提交
668
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
669
{
K
KAMEZAWA Hiroyuki 已提交
670 671
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
672

673
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
674 675
		return;
	pc = lookup_page_cgroup(page);
676
	VM_BUG_ON(PageCgroupAcctLRU(pc));
677 678 679 680
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
681 682
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
683
		return;
684

K
KAMEZAWA Hiroyuki 已提交
685
	mz = page_cgroup_zoneinfo(pc);
686
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
687 688 689
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
690 691
	list_add(&pc->lru, &mz->lists[lru]);
}
692

K
KAMEZAWA Hiroyuki 已提交
693
/*
694 695 696 697 698
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
699
 */
700
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
701
{
702 703 704 705 706 707 708 709 710 711 712 713
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
714 715
}

716 717 718 719 720 721 722 723
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
724
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
725 726 727 728 729
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
730 731 732
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
733
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
734 735 736
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
737 738
}

739 740 741
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
742
	struct mem_cgroup *curr = NULL;
743 744

	task_lock(task);
745 746 747
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
748
	task_unlock(task);
749 750 751 752 753 754 755
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
756 757 758
	return ret;
}

759 760 761 762 763
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
764 765 766 767 768 769 770
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
771 772 773 774
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
775
	spin_lock(&mem->reclaim_param_lock);
776 777
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
778
	spin_unlock(&mem->reclaim_param_lock);
779 780 781 782
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
783
	spin_lock(&mem->reclaim_param_lock);
784
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
785
	spin_unlock(&mem->reclaim_param_lock);
786 787
}

788
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
789 790 791
{
	unsigned long active;
	unsigned long inactive;
792 793
	unsigned long gb;
	unsigned long inactive_ratio;
794

K
KAMEZAWA Hiroyuki 已提交
795 796
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
797

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
825 826 827 828 829
		return 1;

	return 0;
}

830 831 832 833 834 835 836 837 838 839 840
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

841 842 843 844 845 846 847 848 849 850 851
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
872 873 874 875 876 877 878 879
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
880 881 882 883 884 885 886
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

887 888 889 890 891
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
892
					int active, int file)
893 894 895 896 897 898
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
899
	struct page_cgroup *pc, *tmp;
900 901 902
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
903
	int lru = LRU_FILE * file + active;
904
	int ret;
905

906
	BUG_ON(!mem_cont);
907
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
908
	src = &mz->lists[lru];
909

910 911
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
912
		if (scan >= nr_to_scan)
913
			break;
K
KAMEZAWA Hiroyuki 已提交
914 915

		page = pc->page;
916 917
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
918
		if (unlikely(!PageLRU(page)))
919 920
			continue;

H
Hugh Dickins 已提交
921
		scan++;
922 923 924
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
925
			list_move(&page->lru, dst);
926
			mem_cgroup_del_lru(page);
927
			nr_taken++;
928 929 930 931 932 933 934
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
935 936 937 938 939 940 941
		}
	}

	*scanned = scan;
	return nr_taken;
}

942 943 944
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

945 946 947 948 949 950 951 952 953 954 955 956
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

973 974 975 976 977 978
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

	if (!memcg)
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1058
/*
K
KAMEZAWA Hiroyuki 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1101 1102
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1103 1104 1105
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1106 1107
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1108 1109
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1110
						struct zone *zone,
1111 1112
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1113
{
K
KAMEZAWA Hiroyuki 已提交
1114 1115 1116
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1117 1118
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1119 1120
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1121

1122 1123 1124 1125
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1126
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1127
		victim = mem_cgroup_select_victim(root_mem);
1128
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1129
			loop++;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1153 1154 1155
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1156 1157
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1158
		/* we use swappiness of local cgroup */
1159 1160 1161 1162 1163 1164 1165
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1166
		css_put(&victim->css);
1167 1168 1169 1170 1171 1172 1173
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1174
		total += ret;
1175 1176 1177 1178
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1179
			return 1 + total;
1180
	}
K
KAMEZAWA Hiroyuki 已提交
1181
	return total;
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	if (!page_is_file_cache(page))
		return;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
done:
	unlock_page_cgroup(pc);
}
1250

1251 1252 1253
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1254
 */
1255
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1256
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1257
			bool oom, struct page *page)
1258
{
1259
	struct mem_cgroup *mem, *mem_over_limit, *mem_over_soft_limit;
1260
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1261
	struct res_counter *fail_res, *soft_fail_res = NULL;
1262 1263 1264 1265 1266 1267 1268

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1269
	/*
1270 1271
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1272 1273 1274
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1275 1276 1277
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1278
		*memcg = mem;
1279
	} else {
1280
		css_get(&mem->css);
1281
	}
1282 1283 1284
	if (unlikely(!mem))
		return 0;

1285
	VM_BUG_ON(css_is_removed(&mem->css));
1286

1287 1288
	while (1) {
		int ret;
1289
		unsigned long flags = 0;
1290

1291 1292
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res,
						&soft_fail_res);
1293 1294 1295
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1296
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1297
							&fail_res, NULL);
1298 1299 1300
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1301
			res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1302
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1303 1304 1305 1306 1307 1308 1309
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1310
		if (!(gfp_mask & __GFP_WAIT))
1311
			goto nomem;
1312

1313 1314
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1315 1316
		if (ret)
			continue;
1317 1318

		/*
1319 1320 1321 1322 1323
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1324
		 *
1325
		 */
1326 1327
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1328 1329

		if (!nr_retries--) {
1330
			if (oom) {
1331
				mutex_lock(&memcg_tasklist);
1332
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1333
				mutex_unlock(&memcg_tasklist);
1334
				record_last_oom(mem_over_limit);
1335
			}
1336
			goto nomem;
1337
		}
1338
	}
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	/*
	 * Insert just the ancestor, we should trickle down to the correct
	 * cgroup for reclaim, since the other nodes will be below their
	 * soft limit
	 */
	if (soft_fail_res) {
		mem_over_soft_limit =
			mem_cgroup_from_res_counter(soft_fail_res, res);
		if (mem_cgroup_soft_limit_check(mem_over_soft_limit))
			mem_cgroup_update_tree(mem_over_soft_limit, page);
	}
1350 1351 1352 1353 1354
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1375 1376 1377
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
1378
	struct page_cgroup *pc;
1379
	unsigned short id;
1380 1381
	swp_entry_t ent;

1382 1383
	VM_BUG_ON(!PageLocked(page));

1384 1385 1386
	if (!PageSwapCache(page))
		return NULL;

1387
	pc = lookup_page_cgroup(page);
1388
	lock_page_cgroup(pc);
1389
	if (PageCgroupUsed(pc)) {
1390
		mem = pc->mem_cgroup;
1391 1392 1393
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
	} else {
1394
		ent.val = page_private(page);
1395 1396 1397 1398 1399 1400
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1401
	}
1402
	unlock_page_cgroup(pc);
1403 1404 1405
	return mem;
}

1406
/*
1407
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1418 1419 1420 1421

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1422
		res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1423
		if (do_swap_account)
1424
			res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1425
		css_put(&mem->css);
1426
		return;
1427
	}
1428

1429
	pc->mem_cgroup = mem;
1430 1431 1432 1433 1434 1435 1436
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1437
	smp_wmb();
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1451

K
KAMEZAWA Hiroyuki 已提交
1452
	mem_cgroup_charge_statistics(mem, pc, true);
1453 1454

	unlock_page_cgroup(pc);
1455
}
1456

1457 1458 1459 1460 1461 1462 1463
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1464
 * - page is not on LRU (isolate_page() is useful.)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;
1479 1480 1481 1482
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1483 1484

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1485
	VM_BUG_ON(PageLRU(pc->page));
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

1501
	res_counter_uncharge(&from->res, PAGE_SIZE, NULL);
K
KAMEZAWA Hiroyuki 已提交
1502
	mem_cgroup_charge_statistics(from, pc, false);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	page = pc->page;
	if (page_is_file_cache(page) && page_mapped(page)) {
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						1);
	}

K
KAMEZAWA Hiroyuki 已提交
1520
	if (do_swap_account)
1521
		res_counter_uncharge(&from->memsw, PAGE_SIZE, NULL);
1522 1523 1524
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1525 1526 1527
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1528 1529
out:
	unlock_page_cgroup(pc);
1530 1531 1532 1533 1534 1535
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
	 * this function is just force_empty() and it's garanteed that
	 * "to" is never removed. So, we don't check rmdir status here.
	 */
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1547
	struct page *page = pc->page;
1548 1549 1550 1551 1552 1553 1554 1555 1556
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1557

1558 1559
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1560

1561
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1562
	if (ret || !parent)
1563 1564
		return ret;

1565 1566 1567 1568
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1569 1570 1571 1572 1573

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1574 1575 1576

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1577 1578 1579
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1580 1581
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1582
		return 0;
1583
	}
1584

K
KAMEZAWA Hiroyuki 已提交
1585
cancel:
1586 1587 1588 1589 1590
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
1591
	res_counter_uncharge(&parent->res, PAGE_SIZE, NULL);
K
KAMEZAWA Hiroyuki 已提交
1592
	if (do_swap_account)
1593
		res_counter_uncharge(&parent->memsw, PAGE_SIZE, NULL);
1594 1595 1596
	return ret;
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1618
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1619
	if (ret || !mem)
1620 1621 1622
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1623 1624 1625
	return 0;
}

1626 1627
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1628
{
1629
	if (mem_cgroup_disabled())
1630
		return 0;
1631 1632
	if (PageCompound(page))
		return 0;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1644
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1645
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1646 1647
}

D
Daisuke Nishimura 已提交
1648 1649 1650 1651
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1652 1653
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1654
{
1655 1656 1657
	struct mem_cgroup *mem = NULL;
	int ret;

1658
	if (mem_cgroup_disabled())
1659
		return 0;
1660 1661
	if (PageCompound(page))
		return 0;
1662 1663 1664 1665 1666 1667 1668 1669
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1670 1671
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1672 1673 1674 1675
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1676 1677 1678 1679 1680 1681 1682

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1683 1684
			return 0;
		}
1685
		unlock_page_cgroup(pc);
1686 1687
	}

1688
	if (unlikely(!mm && !mem))
1689
		mm = &init_mm;
1690

1691 1692
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1693
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1694

D
Daisuke Nishimura 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1704 1705

	return ret;
1706 1707
}

1708 1709 1710 1711 1712 1713
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1714 1715 1716 1717 1718
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1719
	int ret;
1720

1721
	if (mem_cgroup_disabled())
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1733
	mem = try_get_mem_cgroup_from_swapcache(page);
1734 1735
	if (!mem)
		goto charge_cur_mm;
1736
	*ptr = mem;
1737
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1738 1739 1740
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1741 1742 1743
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1744
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1745 1746
}

D
Daisuke Nishimura 已提交
1747 1748 1749
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1750 1751 1752
{
	struct page_cgroup *pc;

1753
	if (mem_cgroup_disabled())
1754 1755 1756
		return;
	if (!ptr)
		return;
1757
	cgroup_exclude_rmdir(&ptr->css);
1758
	pc = lookup_page_cgroup(page);
1759
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1760
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1761
	mem_cgroup_lru_add_after_commit_swapcache(page);
1762 1763 1764
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1765 1766 1767
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1768
	 */
1769
	if (do_swap_account && PageSwapCache(page)) {
1770
		swp_entry_t ent = {.val = page_private(page)};
1771
		unsigned short id;
1772
		struct mem_cgroup *memcg;
1773 1774 1775 1776

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1777
		if (memcg) {
1778 1779 1780 1781
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1782
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1783 1784
			mem_cgroup_put(memcg);
		}
1785
		rcu_read_unlock();
1786
	}
1787 1788 1789 1790 1791 1792
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1793 1794
}

D
Daisuke Nishimura 已提交
1795 1796 1797 1798 1799 1800
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1801 1802
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1803
	if (mem_cgroup_disabled())
1804 1805 1806
		return;
	if (!mem)
		return;
1807
	res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1808
	if (do_swap_account)
1809
		res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1810 1811 1812 1813
	css_put(&mem->css);
}


1814
/*
1815
 * uncharge if !page_mapped(page)
1816
 */
1817
static struct mem_cgroup *
1818
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1819
{
H
Hugh Dickins 已提交
1820
	struct page_cgroup *pc;
1821
	struct mem_cgroup *mem = NULL;
1822
	struct mem_cgroup_per_zone *mz;
1823
	bool soft_limit_excess = false;
1824

1825
	if (mem_cgroup_disabled())
1826
		return NULL;
1827

K
KAMEZAWA Hiroyuki 已提交
1828
	if (PageSwapCache(page))
1829
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1830

1831
	/*
1832
	 * Check if our page_cgroup is valid
1833
	 */
1834 1835
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1836
		return NULL;
1837

1838
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1839

1840 1841
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1842 1843 1844 1845 1846
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
1847
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1860
	}
K
KAMEZAWA Hiroyuki 已提交
1861

1862
	res_counter_uncharge(&mem->res, PAGE_SIZE, &soft_limit_excess);
1863
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1864
		res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
K
KAMEZAWA Hiroyuki 已提交
1865
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1866

1867
	ClearPageCgroupUsed(pc);
1868 1869 1870 1871 1872 1873
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1874

1875
	mz = page_cgroup_zoneinfo(pc);
1876
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1877

1878 1879
	if (soft_limit_excess && mem_cgroup_soft_limit_check(mem))
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
1880 1881 1882
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1883

1884
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1885 1886 1887

unlock_out:
	unlock_page_cgroup(pc);
1888
	return NULL;
1889 1890
}

1891 1892
void mem_cgroup_uncharge_page(struct page *page)
{
1893 1894 1895 1896 1897
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1898 1899 1900 1901 1902 1903
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1904
	VM_BUG_ON(page->mapping);
1905 1906 1907
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1908
#ifdef CONFIG_SWAP
1909
/*
1910
 * called after __delete_from_swap_cache() and drop "page" account.
1911 1912
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
1913 1914
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1915 1916
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1917 1918 1919 1920 1921 1922
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
1923 1924

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
1925
	if (do_swap_account && swapout && memcg) {
1926
		swap_cgroup_record(ent, css_id(&memcg->css));
1927 1928
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1929
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
1930
		css_put(&memcg->css);
1931
}
1932
#endif
1933 1934 1935 1936 1937 1938 1939

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1940
{
1941
	struct mem_cgroup *memcg;
1942
	unsigned short id;
1943 1944 1945 1946

	if (!do_swap_account)
		return;

1947 1948 1949
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
1950
	if (memcg) {
1951 1952 1953 1954
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
1955
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1956 1957
		mem_cgroup_put(memcg);
	}
1958
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
1959
}
1960
#endif
K
KAMEZAWA Hiroyuki 已提交
1961

1962
/*
1963 1964
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1965
 */
1966
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1967 1968
{
	struct page_cgroup *pc;
1969 1970
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1971

1972
	if (mem_cgroup_disabled())
1973 1974
		return 0;

1975 1976 1977
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1978 1979 1980
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1981
	unlock_page_cgroup(pc);
1982

1983
	if (mem) {
1984 1985
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
1986 1987
		css_put(&mem->css);
	}
1988
	*ptr = mem;
1989
	return ret;
1990
}
1991

1992
/* remove redundant charge if migration failed*/
1993 1994
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1995
{
1996 1997 1998 1999 2000 2001
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2002
	cgroup_exclude_rmdir(&mem->css);
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2020
	if (unused)
2021 2022 2023
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2024
	/*
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2039
	 */
2040 2041
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2042 2043 2044 2045 2046 2047
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2048
}
2049

2050
/*
2051 2052 2053 2054 2055 2056
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2057
 */
2058
int mem_cgroup_shmem_charge_fallback(struct page *page,
2059 2060
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2061
{
2062
	struct mem_cgroup *mem = NULL;
2063
	int ret;
2064

2065
	if (mem_cgroup_disabled())
2066
		return 0;
2067

2068 2069 2070
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2071

2072
	return ret;
2073 2074
}

2075 2076
static DEFINE_MUTEX(set_limit_mutex);

2077
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2078
				unsigned long long val)
2079
{
2080
	int retry_count;
2081
	int progress;
2082
	u64 memswlimit;
2083
	int ret = 0;
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2095

2096
	while (retry_count) {
2097 2098 2099 2100
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2111 2112
			break;
		}
2113
		ret = res_counter_set_limit(&memcg->res, val);
2114 2115 2116 2117 2118 2119
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2120 2121 2122 2123 2124
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2125 2126 2127
		progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
						GFP_KERNEL,
						MEM_CGROUP_RECLAIM_SHRINK);
2128 2129 2130 2131 2132 2133
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2134
	}
2135

2136 2137 2138
	return ret;
}

L
Li Zefan 已提交
2139 2140
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2141
{
2142
	int retry_count;
2143
	u64 memlimit, oldusage, curusage;
2144 2145
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2146

2147 2148 2149
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2168 2169 2170 2171 2172 2173
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2174 2175 2176 2177 2178
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2179
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2180 2181
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2182
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2183
		/* Usage is reduced ? */
2184
		if (curusage >= oldusage)
2185
			retry_count--;
2186 2187
		else
			oldusage = curusage;
2188 2189 2190 2191
	}
	return ret;
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		mz->usage_in_excess =
			res_counter_soft_limit_excess(&mz->mem->res);
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		if (mz->usage_in_excess)
			__mem_cgroup_insert_exceeded(mz->mem, mz, mctz);
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2283 2284 2285 2286
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2287
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2288
				int node, int zid, enum lru_list lru)
2289
{
K
KAMEZAWA Hiroyuki 已提交
2290 2291
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2292
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2293
	unsigned long flags, loop;
2294
	struct list_head *list;
2295
	int ret = 0;
2296

K
KAMEZAWA Hiroyuki 已提交
2297 2298
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2299
	list = &mz->lists[lru];
2300

2301 2302 2303 2304 2305 2306
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2307
		spin_lock_irqsave(&zone->lru_lock, flags);
2308
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2309
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2310
			break;
2311 2312 2313 2314 2315
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
2316
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2317 2318
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2319
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2320

K
KAMEZAWA Hiroyuki 已提交
2321
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2322
		if (ret == -ENOMEM)
2323
			break;
2324 2325 2326 2327 2328 2329 2330

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2331
	}
K
KAMEZAWA Hiroyuki 已提交
2332

2333 2334 2335
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2336 2337 2338 2339 2340 2341
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2342
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2343
{
2344 2345 2346
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2347
	struct cgroup *cgrp = mem->css.cgroup;
2348

2349
	css_get(&mem->css);
2350 2351

	shrink = 0;
2352 2353 2354
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2355
move_account:
2356
	while (mem->res.usage > 0) {
2357
		ret = -EBUSY;
2358 2359 2360 2361
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2362
			goto out;
2363 2364
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2365
		ret = 0;
2366
		for_each_node_state(node, N_HIGH_MEMORY) {
2367
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2368
				enum lru_list l;
2369 2370
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2371
							node, zid, l);
2372 2373 2374
					if (ret)
						break;
				}
2375
			}
2376 2377 2378 2379 2380 2381
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2382
		cond_resched();
2383 2384 2385 2386 2387
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
2388 2389

try_to_free:
2390 2391
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2392 2393 2394
		ret = -EBUSY;
		goto out;
	}
2395 2396
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2397 2398 2399 2400
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2401 2402 2403 2404 2405

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2406 2407
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2408
		if (!progress) {
2409
			nr_retries--;
2410
			/* maybe some writeback is necessary */
2411
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2412
		}
2413 2414

	}
K
KAMEZAWA Hiroyuki 已提交
2415
	lru_add_drain();
2416 2417 2418 2419 2420
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
2421 2422
}

2423 2424 2425 2426 2427 2428
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2467
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2468
{
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
L
Li Zefan 已提交
2480
		val = res_counter_read_u64(&mem->memsw, name);
2481 2482 2483 2484 2485 2486
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2487
}
2488 2489 2490 2491
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2492 2493
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2494
{
2495
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2496
	int type, name;
2497 2498 2499
	unsigned long long val;
	int ret;

2500 2501 2502
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2503
	case RES_LIMIT:
2504 2505 2506 2507
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2508 2509
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2510 2511 2512
		if (ret)
			break;
		if (type == _MEM)
2513
			ret = mem_cgroup_resize_limit(memcg, val);
2514 2515
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2516
		break;
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2531 2532 2533 2534 2535
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2536 2537
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2566
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2567 2568
{
	struct mem_cgroup *mem;
2569
	int type, name;
2570 2571

	mem = mem_cgroup_from_cont(cont);
2572 2573 2574
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2575
	case RES_MAX_USAGE:
2576 2577 2578 2579
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2580 2581
		break;
	case RES_FAILCNT:
2582 2583 2584 2585
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2586 2587
		break;
	}
2588

2589
	return 0;
2590 2591
}

K
KAMEZAWA Hiroyuki 已提交
2592 2593 2594 2595 2596

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2597
	MCS_MAPPED_FILE,
K
KAMEZAWA Hiroyuki 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	MCS_PGPGIN,
	MCS_PGPGOUT,
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2610 2611
};

K
KAMEZAWA Hiroyuki 已提交
2612 2613 2614 2615 2616 2617
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2618
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2639 2640
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2666 2667
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2668 2669
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2670
	struct mcs_total_stat mystat;
2671 2672
	int i;

K
KAMEZAWA Hiroyuki 已提交
2673 2674
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2675

K
KAMEZAWA Hiroyuki 已提交
2676 2677
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
L
Lee Schermerhorn 已提交
2678

K
KAMEZAWA Hiroyuki 已提交
2679
	/* Hierarchical information */
2680 2681 2682 2683 2684 2685 2686
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2687

K
KAMEZAWA Hiroyuki 已提交
2688 2689 2690 2691 2692 2693
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);


K
KOSAKI Motohiro 已提交
2694
#ifdef CONFIG_DEBUG_VM
2695
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2723 2724 2725
	return 0;
}

K
KOSAKI Motohiro 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2738

K
KOSAKI Motohiro 已提交
2739 2740 2741 2742 2743 2744 2745
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2746 2747 2748

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2749 2750
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2751 2752
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2753
		return -EINVAL;
2754
	}
K
KOSAKI Motohiro 已提交
2755 2756 2757 2758 2759

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2760 2761
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2762 2763 2764
	return 0;
}

2765

B
Balbir Singh 已提交
2766 2767
static struct cftype mem_cgroup_files[] = {
	{
2768
		.name = "usage_in_bytes",
2769
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2770
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2771
	},
2772 2773
	{
		.name = "max_usage_in_bytes",
2774
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2775
		.trigger = mem_cgroup_reset,
2776 2777
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2778
	{
2779
		.name = "limit_in_bytes",
2780
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2781
		.write_string = mem_cgroup_write,
2782
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2783
	},
2784 2785 2786 2787 2788 2789
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2790 2791
	{
		.name = "failcnt",
2792
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2793
		.trigger = mem_cgroup_reset,
2794
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2795
	},
2796 2797
	{
		.name = "stat",
2798
		.read_map = mem_control_stat_show,
2799
	},
2800 2801 2802 2803
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2804 2805 2806 2807 2808
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2809 2810 2811 2812 2813
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2814 2815
};

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2857 2858 2859
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2860
	struct mem_cgroup_per_zone *mz;
2861
	enum lru_list l;
2862
	int zone, tmp = node;
2863 2864 2865 2866 2867 2868 2869 2870
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2871 2872 2873
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2874 2875
	if (!pn)
		return 1;
2876

2877 2878
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2879 2880 2881

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2882 2883
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2884
		mz->usage_in_excess = 0;
2885 2886
		mz->on_tree = false;
		mz->mem = mem;
2887
	}
2888 2889 2890
	return 0;
}

2891 2892 2893 2894 2895
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2896 2897 2898 2899 2900 2901
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2902 2903 2904
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2905
	int size = mem_cgroup_size();
2906

2907 2908
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2909
	else
2910
		mem = vmalloc(size);
2911 2912

	if (mem)
2913
		memset(mem, 0, size);
2914 2915 2916
	return mem;
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2928
static void __mem_cgroup_free(struct mem_cgroup *mem)
2929
{
K
KAMEZAWA Hiroyuki 已提交
2930 2931
	int node;

2932
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
2933 2934
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
2935 2936 2937
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2938
	if (mem_cgroup_size() < PAGE_SIZE)
2939 2940 2941 2942 2943
		kfree(mem);
	else
		vfree(mem);
}

2944 2945 2946 2947 2948 2949 2950
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
2951 2952
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2953
		__mem_cgroup_free(mem);
2954 2955 2956
		if (parent)
			mem_cgroup_put(parent);
	}
2957 2958
}

2959 2960 2961 2962 2963 2964 2965 2966 2967
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
2968

2969 2970 2971
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2972
	if (!mem_cgroup_disabled() && really_do_swap_account)
2973 2974 2975 2976 2977 2978 2979 2980
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3006
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3007 3008
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3009
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3010
	long error = -ENOMEM;
3011
	int node;
B
Balbir Singh 已提交
3012

3013 3014
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3015
		return ERR_PTR(error);
3016

3017 3018 3019
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3020

3021
	/* root ? */
3022
	if (cont->parent == NULL) {
3023
		enable_swap_cgroup();
3024
		parent = NULL;
3025
		root_mem_cgroup = mem;
3026 3027 3028
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;

3029
	} else {
3030
		parent = mem_cgroup_from_cont(cont->parent);
3031 3032
		mem->use_hierarchy = parent->use_hierarchy;
	}
3033

3034 3035 3036
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3037 3038 3039 3040 3041 3042 3043
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3044 3045 3046 3047
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3048
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3049
	spin_lock_init(&mem->reclaim_param_lock);
3050

K
KOSAKI Motohiro 已提交
3051 3052
	if (parent)
		mem->swappiness = get_swappiness(parent);
3053
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
3054
	return &mem->css;
3055
free_out:
3056
	__mem_cgroup_free(mem);
3057
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3058
	return ERR_PTR(error);
B
Balbir Singh 已提交
3059 3060
}

3061
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3062 3063 3064
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3065 3066

	return mem_cgroup_force_empty(mem, false);
3067 3068
}

B
Balbir Singh 已提交
3069 3070 3071
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3072 3073 3074
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3075 3076 3077 3078 3079
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3080 3081 3082 3083 3084 3085 3086 3087
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3088 3089
}

B
Balbir Singh 已提交
3090 3091 3092
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3093 3094
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3095
{
3096
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
3097
	/*
3098 3099
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
3100
	 */
3101
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
3102 3103
}

B
Balbir Singh 已提交
3104 3105 3106 3107
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
3108
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
3109 3110
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
3111
	.attach = mem_cgroup_move_task,
3112
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
3113
	.use_id = 1,
B
Balbir Singh 已提交
3114
};
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif