nn.py 357.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
sneaxiy 已提交
182
    'py_func',
183
    'psroi_pool',
H
heqiaozhi 已提交
184
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
185
    'huber_loss',
Z
zhaozhehao 已提交
186
    'tree_conv',
Y
Yu Yang 已提交
187 188
]

J
jerrywgz 已提交
189 190
kIgnoreIndex = -100

Y
Yu Yang 已提交
191 192 193 194 195 196 197

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
198
       is_test=False,
199
       name=None):
Y
Yu Yang 已提交
200
    """
201
    **Fully Connected Layer**
Y
Yu Yang 已提交
202

203 204 205 206 207 208 209 210
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
211
    to the output as well.
C
caoying03 已提交
212

C
caoying03 已提交
213
    This process can be formulated as follows:
214 215 216

    .. math::

217
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
218 219 220

    In the above equation:

C
caoying03 已提交
221 222 223 224
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
225
    * :math:`Act`: The activation function.
C
caoying03 已提交
226
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
227 228

    Args:
R
ranqiu 已提交
229 230 231 232 233 234 235 236 237 238
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
239
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
240 241 242 243
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
244 245
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
246
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
247
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
248
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
249

250
    Returns:
F
fengjiayi 已提交
251
        Variable: The transformation result.
252 253

    Raises:
C
caoying03 已提交
254
        ValueError: If rank of the input tensor is less than 2.
255 256 257 258

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
259
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
260
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
261
    """
C
caoying03 已提交
262

C
caoying03 已提交
263
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
264 265 266 267

    dtype = helper.input_dtype()

    mul_results = []
268 269
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
270 271 272
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
273

Y
Yu Yang 已提交
274
        w = helper.create_parameter(
275
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
276
        tmp = helper.create_variable_for_type_inference(dtype)
277
        helper.append_op(
278 279 280
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
281
            outputs={"Out": tmp},
M
mozga-intel 已提交
282 283
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
284 285 286 287
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
288
    else:
X
Xin Pan 已提交
289
        pre_bias = helper.create_variable_for_type_inference(dtype)
290
        helper.append_op(
291 292 293
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
294
            attrs={"use_mkldnn": False})
295 296 297 298
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
299 300


301 302 303
def embedding(input,
              size,
              is_sparse=False,
304
              is_distributed=False,
305 306 307
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
308
    """
309 310
    **Embedding Layer**

311
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
312 313
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
314 315 316

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
317 318

    Args:
319 320 321 322 323
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
324
        is_distributed(bool): Whether to run lookup table from remote parameter server.
325 326
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
327
            with zeros whenever lookup encounters it in :attr:`input`. If
328
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
329 330
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
331
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
332

333 334 335
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
336

337 338
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
339

C
chengduoZH 已提交
340
          dict_size = len(dataset.ids)
341
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
342
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
343 344 345
    """

    helper = LayerHelper('embedding', **locals())
346
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
347 348
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
349 350
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
351
    tmp = helper.create_variable_for_type_inference(dtype)
352 353
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
354 355 356 357 358
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
359 360 361
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
362
            'remote_prefetch': remote_prefetch,
363 364
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
365 366 367
    return tmp


W
wopeizl 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
384

W
wopeizl 已提交
385 386 387 388 389 390 391 392 393 394 395
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
396

W
wopeizl 已提交
397 398 399 400
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
401

W
wopeizl 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
488 489


P
phlrain 已提交
490 491 492 493 494 495
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
496
         dropout_prob=0.0,
P
phlrain 已提交
497 498 499 500 501
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
502
    """
P
phlrain 已提交
503
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
504 505

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
506
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
507 508
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
509
    .. math::
M
minqiyang 已提交
510 511 512 513 514 515 516

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
517
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
518 519 520 521

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
522 523

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
524 525 526 527 528 529
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
530 531 532
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
533
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
534

M
minqiyang 已提交
535
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
536 537 538 539 540
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
541
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
542 543 544 545 546
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
547
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
548 549
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
550 551
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
552 553 554 555 556 557
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
558
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
559

L
liuhongyu 已提交
560 561

    Returns:
M
minqiyang 已提交
562 563
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
564
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
565

H
haowang101779990 已提交
566 567 568 569
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
570
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
571 572
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
573
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
589
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
590 591 592 593 594 595
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
596 597 598
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
658 659 660 661 662 663 664 665 666 667 668
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
669 670
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
671 672 673
    """
    **Dynamic LSTMP Layer**

674 675 676 677 678 679
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
680 681 682 683 684

    The formula is as follows:

    .. math::

685
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
686

687
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
688

689
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
690

691
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
692

693
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
694

695
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
696

697
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
698

Y
Yibing Liu 已提交
699 700 701 702 703 704
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
705
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
706
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
707
          bias vector).
Y
Yibing Liu 已提交
708 709 710
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
711
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
712
    * :math:`h`: The hidden state.
713
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
714 715
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
716
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
717
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
718
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
719 720
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
721 722 723 724

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
725

Y
Yibing Liu 已提交
726 727 728 729 730 731 732 733 734 735 736 737
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
738
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
739 740
                               hidden-hidden weight and projection weight.

741 742
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
743 744
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
745 746
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
747
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
748 749 750 751 752

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
753
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
754 755 756 757 758 759
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
760
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
761 762 763
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
764
                                - The shape is (1 x 7D).
C
chengduo 已提交
765 766 767 768 769

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
770 771 772 773 774 775 776 777 778
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
779
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
780 781
                              default "tanh".
        proj_activation(str): The activation for projection output.
782
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
783 784
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
785 786
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
787 788

    Returns:
789 790 791 792
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
793 794

    Examples:
795

Y
Yibing Liu 已提交
796 797
        .. code-block:: python

798 799 800 801
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
802
            hidden_dim, proj_dim = 512, 256
803
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
804
                                     act=None, bias_attr=None)
805 806 807
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
808 809 810 811
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
812
    """
813

C
chengduo 已提交
814
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
815
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
816
    size = size // 4
Y
Yibing Liu 已提交
817 818 819 820 821 822 823 824 825 826
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
827 828 829 830 831 832
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
861 862 863 864 865 866 867
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
868 869
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
870
    """
871
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
872

873 874 875
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
876

G
guosheng 已提交
877 878 879 880 881 882 883 884 885
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
886

G
guosheng 已提交
887
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
888

Q
Qiao Longfei 已提交
889 890 891

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
892 893 894 895 896 897 898 899 900 901 902 903
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
904
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
905 906
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
907 908 909 910
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
911
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
912 913

    Args:
914 915
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
916
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
917
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
918 919
            is the hidden size.
        size(int): The dimension of the gru cell.
920
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
921 922
            hidden-hidden weight matrix. Note:

923
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
924
              :math:`D` is the hidden size.
925
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
926
              The first part are weights of the update gate and reset gate with
927
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
928
              candidate hidden state with shape :math:`(D \\times D)`.
929 930 931 932 933

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
934
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
935
            the bias in the update gate, reset gate and candidate calculations.
936 937 938
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
939 940
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
941
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
942 943 944
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
945
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
946
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
947 948 949 950
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
951 952

    Returns:
G
guosheng 已提交
953
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
954
            and sequence length is the same with the input.
955

G
guosheng 已提交
956
    Examples:
957

G
guosheng 已提交
958 959
        .. code-block:: python

960 961 962 963
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
964
            hidden_dim = 512
965
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
966
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
967 968 969 970 971 972 973 974 975
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
976
    batch_size = input.shape[0]
G
guosheng 已提交
977
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
978
    if h_0:
G
guosheng 已提交
979
        assert h_0.shape == (
Y
Yancey 已提交
980 981 982
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
983

X
Xin Pan 已提交
984 985 986 987
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1001 1002
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1003 1004 1005 1006
        })
    return hidden


Y
Yu Yang 已提交
1007 1008 1009
def gru_unit(input,
             hidden,
             size,
1010 1011
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1012
             activation='tanh',
Q
Qiao Longfei 已提交
1013 1014
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1015
    """
1016 1017 1018
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1019
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1020
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1021

1022 1023
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1024

1025
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1026

1027
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1044 1045

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1046 1047 1048
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1049 1050
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1051 1052
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1053 1054 1055
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1056 1057 1058

    Args:
        input (Variable): The fc transformed input value of current step.
1059
        hidden (Variable): The hidden value of gru unit from previous step.
1060
        size (integer): The input dimension value.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1075
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1076
            the bias in the update gate, reset gate and candidate calculations.
1077 1078 1079
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1080 1081
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1082 1083 1084 1085
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1086

1087 1088 1089 1090 1091 1092
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1093

1094
             # assuming we have x_t_data and prev_hidden of size=10
1095
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1096 1097
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1110
    size = size // 3
Y
Yu Yang 已提交
1111 1112

    # create weight
1113 1114
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1115

X
Xin Pan 已提交
1116 1117 1118
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1119
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1120
    # create bias
1121
    if helper.bias_attr:
Y
Yu Yang 已提交
1122 1123 1124
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1125
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1126 1127 1128

    helper.append_op(
        type='gru_unit',
1129
        inputs=inputs,
Y
Yu Yang 已提交
1130 1131 1132 1133 1134 1135
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1136 1137
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1138 1139 1140 1141 1142
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1143
@templatedoc()
1144
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1145 1146 1147 1148 1149 1150 1151
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1152
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1153 1154 1155 1156
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1157 1158 1159
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1160 1161

    """
Y
Yu Yang 已提交
1162 1163 1164 1165 1166 1167
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1168 1169 1170 1171 1172 1173 1174 1175
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1191 1192 1193 1194
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1195

W
wopeizl 已提交
1196 1197
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1198

W
wopeizl 已提交
1199
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1200

W
wopeizl 已提交
1201
        label(${label_type}): ${label_comment}
1202

W
wopeizl 已提交
1203 1204
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1205

W
wopeizl 已提交
1206 1207
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1208

W
wopeizl 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1219
                "Transition": transition,
W
wopeizl 已提交
1220 1221
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1222

W
wopeizl 已提交
1223
    return viterbi_path
Y
Yu Yang 已提交
1224 1225


Y
yi.wu 已提交
1226
@templatedoc()
F
fengjiayi 已提交
1227
def cos_sim(X, Y):
Y
Yu Yang 已提交
1228
    """
Y
yi.wu 已提交
1229 1230 1231
    ${comment}

    Args:
1232 1233
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1234

Y
yi.wu 已提交
1235
    Returns:
1236
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1237
    """
F
fengjiayi 已提交
1238
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1239 1240 1241
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1252 1253 1254 1255 1256
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1257
            dropout_implementation="downgrade_in_infer"):
1258 1259 1260 1261 1262
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1263
    training. The dropout operator randomly sets (according to the given dropout
1264 1265 1266
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1267 1268
    dropout op can be removed from the program to make the program more efficient.

1269
    Args:
1270 1271
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1272 1273 1274 1275 1276 1277 1278
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1279 1280
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1281
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1282 1283 1284 1285 1286 1287

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1288
                                        2. upscale_in_train, upscale the outcome at training time
1289

H
haowang101779990 已提交
1290 1291
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1292

H
haowang101779990 已提交
1293 1294
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1295

M
minqiyang 已提交
1296

1297
    Returns:
1298
        Variable: A tensor variable is the shape with `x`.
1299 1300

    Examples:
1301

1302 1303
        .. code-block:: python

1304 1305
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1306 1307
    """

F
fengjiayi 已提交
1308
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1309 1310 1311
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1312 1313 1314 1315

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1316 1317 1318 1319 1320
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1321 1322 1323 1324
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1325 1326
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1327
        })
1328 1329 1330
    return out


J
jerrywgz 已提交
1331
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1332
    """
Y
Yibing Liu 已提交
1333 1334
    **Cross Entropy Layer**

1335 1336 1337
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1338 1339

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1340
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1341

Y
Yibing Liu 已提交
1342
        .. math::
Y
yangyaming 已提交
1343

Y
Yibing Liu 已提交
1344 1345 1346
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1347 1348
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1349 1350 1351 1352 1353

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1354
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1355 1356 1357
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1358 1359
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1360
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1361

Y
Yibing Liu 已提交
1362
    Args:
Y
yangyaming 已提交
1363
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1364 1365 1366 1367
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1368
        label (Variable|list): the ground truth which is a 2-D tensor. When
1369 1370 1371 1372
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1373
        soft_label (bool): a flag indicating whether to
1374
                                           interpretate the given labels as soft
1375
                                           labels. Default: `False`.
M
minqiyang 已提交
1376 1377
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1378
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1379 1380 1381 1382 1383

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1384 1385 1386
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1387

H
haowang101779990 已提交
1388 1389
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1390

H
haowang101779990 已提交
1391 1392
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1393 1394 1395 1396 1397 1398

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1399
    """
F
fengjiayi 已提交
1400
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1401
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1402 1403 1404 1405 1406
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1407 1408
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1409 1410 1411
    return out


F
frankwhzhang 已提交
1412
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1413 1414 1415
    """
    Bayesian Personalized Ranking Loss Operator.

1416
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1417 1418 1419 1420 1421 1422
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1423 1424 1425 1426 1427 1428
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1429 1430
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1431 1432 1433
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1434 1435 1436
    Examples:
        .. code-block:: python

1437
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1438
    """
1439 1440 1441 1442 1443 1444

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1445
                'Label': [label]},
1446 1447 1448 1449
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1450
def square_error_cost(input, label):
Y
Yu Yang 已提交
1451
    """
1452 1453
    **Square error cost layer**

1454 1455
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1470 1471
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1472 1473

    Returns:
G
guosheng 已提交
1474
        Variable: The tensor variable storing the element-wise squared error \
1475
                  difference of input and label.
1476 1477 1478 1479 1480 1481 1482 1483

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1484
    """
F
fengjiayi 已提交
1485
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1486
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1487 1488 1489 1490 1491 1492
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1493
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1494
    helper.append_op(
F
fengjiayi 已提交
1495 1496
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1497 1498 1499
    return square_out


Y
yi.wu 已提交
1500
@templatedoc()
Y
Yu Yang 已提交
1501 1502 1503 1504
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1505
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1506
    """
Y
yi.wu 已提交
1507
    **Chunk Evaluator**
Y
yi.wu 已提交
1508

Y
yangyaming 已提交
1509
    This function computes and outputs the precision, recall and
1510
    F1-score of chunk detection.
Y
yi.wu 已提交
1511

M
minqiyang 已提交
1512
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1513
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1514 1515 1516 1517 1518 1519

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1520

Y
yi.wu 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1546

Y
yi.wu 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1571
    Args:
1572 1573 1574 1575 1576
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1577

Y
yi.wu 已提交
1578
    Returns:
Y
update  
yi.wu 已提交
1579 1580 1581
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1582

Y
yi.wu 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1595
    """
F
fengjiayi 已提交
1596
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1597 1598

    # prepare output
X
Xin Pan 已提交
1599 1600 1601 1602 1603 1604 1605
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1606 1607 1608 1609 1610 1611 1612 1613

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1614 1615 1616 1617
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1618 1619 1620
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1621 1622
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1623
        })
1624 1625
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1626 1627


1628
@templatedoc()
Y
Yu Yang 已提交
1629 1630 1631 1632 1633 1634 1635
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1636 1637
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1638 1639 1640 1641
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1642 1643 1644 1645 1646 1647 1648

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1662

1663 1664
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1665 1666 1667 1668 1669 1670 1671
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1672
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1683
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1684 1685 1686 1687 1688 1689
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1690
def sequence_softmax(input, use_cudnn=False, name=None):
1691 1692 1693
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1694
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1711 1712 1713
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1726 1727
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1728
    softmax_out = helper.create_variable_for_type_inference(dtype)
1729 1730 1731 1732 1733 1734 1735 1736
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1737
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1738
    """
1739
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1740
    has the same shape as the input.
Q
qiaolongfei 已提交
1741

1742 1743 1744 1745 1746 1747
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1748
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1749 1750 1751 1752 1753 1754 1755

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1756
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1757 1758 1759 1760 1761 1762 1763 1764

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1765 1766 1767
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1780 1781
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1782
    softmax_out = helper.create_variable_for_type_inference(dtype)
1783 1784 1785 1786 1787 1788 1789 1790
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1791 1792 1793
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1794 1795
           stride=1,
           padding=0,
1796
           dilation=1,
Y
Yu Yang 已提交
1797 1798 1799
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1800
           use_cudnn=True,
1801 1802
           act=None,
           name=None):
Y
Yu Yang 已提交
1803
    """
C
chengduoZH 已提交
1804
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1805 1806
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1807
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1808 1809 1810 1811 1812 1813 1814
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1815 1816 1817
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1818

1819
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1820

C
chengduoZH 已提交
1821 1822
    .. math::

C
refine  
chengduoZH 已提交
1823
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1824

T
tensor-tang 已提交
1825
    Where:
C
chengduoZH 已提交
1826

1827 1828 1829 1830 1831
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1832
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1833 1834 1835

    Example:

1836 1837
        - Input:

W
weixing02 已提交
1838
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1839

W
weixing02 已提交
1840
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1841

1842
        - Output:
T
tensor-tang 已提交
1843

W
weixing02 已提交
1844
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1845

C
chengduoZH 已提交
1846
        Where
1847 1848

        .. math::
C
chengduoZH 已提交
1849

W
weixing02 已提交
1850 1851
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1852 1853

    Args:
1854
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1855
        num_filters(int): The number of filter. It is as same as the output
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1873 1874 1875 1876 1877
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1878
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1879 1880 1881 1882 1883
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1884 1885
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1886 1887
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1888
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1889
            will be named automatically. Default: None
C
chengduoZH 已提交
1890 1891

    Returns:
G
guosheng 已提交
1892
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1893 1894
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1895
    Raises:
1896 1897
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1898

C
chengduoZH 已提交
1899 1900 1901
    Examples:
        .. code-block:: python

1902 1903
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1904 1905 1906
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1907
    assert param_attr is not False, "param_attr should not be False here."
1908
    l_type = 'conv2d'
X
xzl 已提交
1909 1910
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1911
        l_type = 'depthwise_conv2d'
1912 1913 1914 1915

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1916 1917 1918 1919 1920
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1921
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1922

C
chengduoZH 已提交
1923 1924 1925
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1926
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1927

C
chengduoZH 已提交
1928 1929
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1930 1931

    input_shape = input.shape
M
minqiyang 已提交
1932
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1933 1934

    def _get_default_param_initializer():
C
chengduo 已提交
1935 1936
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1937 1938 1939 1940 1941 1942 1943 1944
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1945
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1961
    helper.append_op(
1962
        type=l_type,
Y
Yu Yang 已提交
1963 1964 1965 1966 1967
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1968 1969 1970
        attrs={
            'strides': stride,
            'paddings': padding,
1971
            'dilations': dilation,
C
chengduoZH 已提交
1972
            'groups': groups,
1973
            'use_cudnn': use_cudnn,
1974
            'use_mkldnn': False,
C
chengduoZH 已提交
1975
        })
Y
Yu Yang 已提交
1976 1977 1978 1979 1980 1981

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1999 2000 2001 2002 2003 2004
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2014 2015
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2016 2017 2018
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2019
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2045
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2046 2047
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2048
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2049 2050
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2051
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2052 2053
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2054
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2055 2056 2057 2058 2059 2060
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2071 2072
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2073 2074
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2075
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2076
            will be named automatically. Default: None.
C
chengduoZH 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2089 2090
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2091 2092 2093
    """

    l_type = 'conv3d'
C
chengduo 已提交
2094
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2105
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2119 2120 2121
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2122 2123 2124 2125 2126 2127 2128 2129
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2130
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2145
            'use_mkldnn': False
C
chengduoZH 已提交
2146 2147
        })

2148
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2149 2150 2151 2152

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2153
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2154
    """
Y
yangyaming 已提交
2155 2156 2157
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2169
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2170 2171 2172 2173 2174
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2175
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2176 2177 2178 2179 2180 2181 2182

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2183 2184
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2185

L
Luo Tao 已提交
2186 2187
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2188
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2189
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2190
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2191 2192 2193 2194 2195 2196 2197

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2198

Y
yangyaming 已提交
2199
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2200 2201 2202 2203 2204
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2205 2206
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2207
    """
F
fengjiayi 已提交
2208
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2209
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2210 2211
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2212 2213 2214 2215 2216 2217

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2218 2219
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2220

Y
yangyaming 已提交
2221 2222 2223 2224 2225
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2226 2227 2228
    return pool_out


C
add doc  
chengduoZH 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2248
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2249 2250 2251 2252 2253
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2254
def sequence_first_step(input):
L
Luo Tao 已提交
2255
    """
L
Luo Tao 已提交
2256
    This function gets the first step of sequence.
L
Luo Tao 已提交
2257 2258 2259 2260

    .. code-block:: text

       x is a 1-level LoDTensor:
2261
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2262 2263 2264 2265 2266
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2267
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2268
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2269

L
Luo Tao 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2279

Y
yangyaming 已提交
2280
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2281 2282 2283
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2284 2285 2286
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2287
def sequence_last_step(input):
L
Luo Tao 已提交
2288
    """
L
Luo Tao 已提交
2289
    This function gets the last step of sequence.
L
Luo Tao 已提交
2290 2291 2292 2293

    .. code-block:: text

       x is a 1-level LoDTensor:
2294
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2295 2296 2297 2298 2299
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2300
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2301
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2302

L
Luo Tao 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2312

Y
yangyaming 已提交
2313
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2314 2315 2316
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2317 2318 2319
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2320 2321 2322 2323
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2324
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2325 2326 2327 2328 2329
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2330

H
haowang101779990 已提交
2331
              - Case:
Y
Yibing Liu 已提交
2332

2333
            Given the input Variable **input**:
2334

2335 2336 2337
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2338

2339
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2340

2341
            the output Variable will be
2342

2343 2344 2345
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2346

M
minqiyang 已提交
2347
    Note:
H
haowang101779990 已提交
2348
          The first dimension size of **input**, **offset** and **length**
2349
          should be equal. The **offset** should start from 0.
2350

Y
Yibing Liu 已提交
2351
    Args:
2352
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2353
                         sequences.
Y
Yibing Liu 已提交
2354 2355 2356 2357 2358 2359
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2360
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2371
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2372 2373 2374 2375
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2376
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2391
@templatedoc()
Y
Yu Yang 已提交
2392
def pool2d(input,
C
chengduoZH 已提交
2393 2394
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2395 2396
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2397
           global_pooling=False,
C
chengduoZH 已提交
2398
           use_cudnn=True,
2399
           ceil_mode=False,
2400 2401
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2402
    """
F
fengjiayi 已提交
2403
    ${comment}
2404 2405

    Args:
2406 2407 2408
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2409
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2410
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2411 2412
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2413
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2414 2415 2416 2417 2418 2419
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2420 2421 2422
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2423
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2424
                        layer will be named automatically.
2425
        exclusive (bool): Whether to exclude padding points in average pooling
2426
                          mode, default is true
F
fengjiayi 已提交
2427

2428
    Returns:
F
fengjiayi 已提交
2429
        Variable: The pooling result.
F
fengjiayi 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2443 2444 2445 2446
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2447
                            global_pooling=False)
Y
Yu Yang 已提交
2448 2449 2450 2451 2452
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2453

C
chengduoZH 已提交
2454 2455 2456 2457 2458
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2459 2460 2461 2462
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2463 2464
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2465

C
Add doc  
chengduoZH 已提交
2466
    l_type = 'pool2d'
2467 2468

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2469
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2470
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2471 2472

    helper.append_op(
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2484 2485
            "use_mkldnn": False,
            "exclusive": exclusive,
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2499 2500
           name=None,
           exclusive=True):
2501 2502
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2503
    pooling configurations mentioned in input parameters.
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2516
        exclusive (bool): Whether to exclude padding points in average pooling
2517
                          mode, default is true
2518

2519
    Returns:
2520
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2521 2522 2523 2524 2525
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2526

C
chengduoZH 已提交
2527 2528 2529 2530 2531
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2532 2533 2534
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2535

C
chengduoZH 已提交
2536 2537
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2538

2539 2540
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2541
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2542
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2543 2544

    helper.append_op(
2545
        type=l_type,
Y
Yu Yang 已提交
2546 2547 2548 2549 2550 2551 2552
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2553
            "paddings": pool_padding,
2554
            "use_cudnn": use_cudnn,
2555
            "ceil_mode": ceil_mode,
2556 2557
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2558 2559 2560 2561 2562
        })

    return pool_out


2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2596
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2597
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2598
          # of input data into m * n grids averagely and performs poolings in each
2599 2600
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2601
          #
2602 2603 2604 2605 2606 2607 2608 2609
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2610 2611
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2612
          pool_out = fluid.layers.adaptive_pool2d(
2613 2614
                            input=data,
                            pool_size=[3, 3],
2615
                            pool_type='avg')
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2626
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2652
    return (pool_out, mask) if require_index else pool_out
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2688 2689
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2690
          # of input data into l * m * n grids averagely and performs poolings in each
2691 2692
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2693
          #
2694 2695 2696 2697 2698 2699 2700 2701 2702
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2703
          #                 output[:, :, i, j, k] =
2704 2705
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2706 2707
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2708
          pool_out, mask = fluid.layers.adaptive_pool3d(
2709 2710
                            input=data,
                            pool_size=[3, 3],
2711
                            pool_type='avg')
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2722
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2748
    return (pool_out, mask) if require_index else pool_out
2749 2750


Y
Yu Yang 已提交
2751 2752 2753 2754 2755 2756 2757
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2758
               data_layout='NCHW',
Y
Yang Yang 已提交
2759
               in_place=False,
2760 2761
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2762
               moving_variance_name=None,
2763
               do_model_average_for_mean_and_var=False,
2764 2765
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2766
    """
Q
qiaolongfei 已提交
2767 2768 2769 2770
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2771

Q
qiaolongfei 已提交
2772
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2773

Q
qiaolongfei 已提交
2774 2775
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2776 2777 2778
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2791

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2805
    Args:
Q
qiaolongfei 已提交
2806
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2807 2808 2809 2810
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2811 2812 2813 2814 2815 2816 2817 2818
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2819
        data_layout(string, default NCHW): NCHW|NHWC
2820
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2821 2822 2823 2824
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2825
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2826
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2827 2828 2829 2830 2831
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2832 2833

    Returns:
Q
qiaolongfei 已提交
2834
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2835 2836 2837 2838 2839 2840 2841

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2842
    """
C
chengduo 已提交
2843
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2844 2845 2846
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2847 2848 2849 2850
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2868 2869 2870
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2871 2872

    bias = helper.create_parameter(
2873
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2874 2875 2876
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2877

2878 2879
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2880 2881 2882
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2883
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2884
        shape=param_shape,
W
Wu Yi 已提交
2885
        dtype=dtype)
2886 2887 2888 2889 2890 2891
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2892
            trainable=False,
W
wanghaoshuang 已提交
2893
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2894
        shape=param_shape,
W
Wu Yi 已提交
2895
        dtype=dtype)
2896
    variance.stop_gradient = True
Y
Yu Yang 已提交
2897 2898 2899 2900 2901 2902

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2903 2904 2905 2906
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2907

X
Xin Pan 已提交
2908 2909
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2927 2928 2929 2930
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2931
            "use_mkldnn": False,
2932 2933
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2934
        })
Y
Yu Yang 已提交
2935 2936 2937 2938

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3066
@templatedoc()
G
guosheng 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3077
    ${comment}
G
guosheng 已提交
3078 3079 3080

    The formula is as follows:

Y
yuyang18 已提交
3081
    ..  math::
G
guosheng 已提交
3082 3083 3084 3085 3086 3087 3088

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3089 3090 3091 3092 3093 3094 3095 3096
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3097

G
guosheng 已提交
3098 3099
    Args:
        input(Variable): The input tensor variable.
3100
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3101
            normalization. Default True.
3102
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3103 3104
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3105
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3106
            Default 1.
3107
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3108
            division by zero. Default 1e-05.
G
guosheng 已提交
3109
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3110 3111
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3112 3113
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3114
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3115 3116
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3117
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3118
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3119
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3120 3121 3122
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3123 3124

    Returns:
Y
yuyang18 已提交
3125
        ${y_comment}
G
guosheng 已提交
3126 3127 3128

    Examples:

Y
yuyang18 已提交
3129 3130 3131
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3147
    if shift:
G
guosheng 已提交
3148 3149 3150 3151 3152 3153
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3154 3155 3156 3157 3158
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3186
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3234 3235 3236
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype)
D
Dun 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3252 3253 3254 3255
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3256 3257 3258
                     padding=0,
                     stride=1,
                     dilation=1,
3259
                     groups=None,
C
caoying03 已提交
3260
                     param_attr=None,
3261
                     bias_attr=None,
C
chengduoZH 已提交
3262
                     use_cudnn=True,
3263
                     act=None,
C
caoying03 已提交
3264
                     name=None):
Y
Yu Yang 已提交
3265
    """
3266 3267 3268 3269 3270 3271 3272 3273
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3274 3275
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3276 3277 3278
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3279 3280 3281 3282 3283

    For each input :math:`X`, the equation is:

    .. math::

3284
        Out = \sigma (W \\ast X + b)
3285

3286
    Where:
3287 3288 3289

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3290 3291 3292 3293
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3294

3295 3296 3297 3298
    Example:

        - Input:

3299
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3300

3301
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3302 3303 3304

        - Output:

3305
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3306 3307

        Where
Y
Yu Yang 已提交
3308

3309 3310
        .. math::

3311 3312
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3313 3314
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3315 3316

    Args:
3317 3318 3319 3320
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3321 3322 3323 3324
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3353
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3354 3355 3356
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3357
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3358
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3359 3360

    Returns:
3361
        Variable: The tensor variable storing the convolution transpose result.
3362 3363

    Raises:
3364 3365
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3366 3367 3368 3369

    Examples:
       .. code-block:: python

3370 3371
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3372
    """
C
chengduo 已提交
3373
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3374 3375 3376 3377 3378 3379 3380 3381
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3382 3383 3384
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3385 3386 3387
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3388

C
chengduoZH 已提交
3389 3390
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3391

Y
Yu Yang 已提交
3392 3393 3394 3395 3396
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3397

Y
Yu Yang 已提交
3398 3399
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3400

C
chengduoZH 已提交
3401
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3402
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3403
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3404
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3405
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3406 3407 3408
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3409

3410 3411 3412 3413 3414 3415 3416
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3417
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3418
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3419

Y
Yu Yang 已提交
3420 3421 3422
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3423
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3424
    helper.append_op(
3425
        type=op_type,
Y
Yu Yang 已提交
3426 3427
        inputs={'Input': [input],
                'Filter': [img_filter]},
3428
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3429
        attrs={
3430
            'output_size': output_size,
3431 3432 3433 3434 3435
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3436 3437
        })

3438 3439 3440
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3441 3442


3443
def conv3d_transpose(input,
Y
Yu Yang 已提交
3444 3445 3446
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3447 3448 3449
                     padding=0,
                     stride=1,
                     dilation=1,
3450
                     groups=None,
C
caoying03 已提交
3451
                     param_attr=None,
3452
                     bias_attr=None,
C
chengduoZH 已提交
3453
                     use_cudnn=True,
3454
                     act=None,
C
caoying03 已提交
3455
                     name=None):
Y
Yu Yang 已提交
3456
    """
3457
    **Convlution3D transpose layer**
3458

3459
    The convolution3D transpose layer calculates the output based on the input,
3460
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3461 3462 3463 3464 3465 3466
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3467 3468 3469
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3470 3471 3472 3473 3474

    For each input :math:`X`, the equation is:

    .. math::

3475
        Out = \sigma (W \\ast X + b)
3476 3477 3478

    In the above equation:

3479 3480
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3481 3482 3483 3484
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3485

3486 3487 3488 3489
    Example:

        - Input:

3490
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3491

3492
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3493 3494 3495

        - Output:

3496
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3497 3498

        Where
Y
Yu Yang 已提交
3499

3500 3501
        .. math::

3502 3503 3504
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3505 3506

    Args:
3507
        input(Variable): The input image with [N, C, D, H, W] format.
3508 3509 3510
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3511
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3512 3513
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3514
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3515 3516 3517
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3518 3519
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3520
        stride(int|tuple): The stride size. If stride is a tuple, it must
3521 3522
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3523
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3524 3525 3526
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3527 3528 3529 3530 3531
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3541 3542
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3543 3544
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3545 3546
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3547 3548

    Returns:
3549
        Variable: The tensor variable storing the convolution transpose result.
3550 3551

    Raises:
3552 3553
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3554 3555 3556 3557

    Examples:
       .. code-block:: python

3558 3559
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3560
    """
C
chengduo 已提交
3561
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3562 3563
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3564
    if not isinstance(input, Variable):
3565
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3566 3567
    input_channel = input.shape[1]

3568 3569 3570
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3571

C
chengduoZH 已提交
3572 3573 3574
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3575 3576 3577 3578 3579 3580
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3581 3582 3583
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3584

3585
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3586
                         padding[0] - 1) // dilation[0] + 1
3587
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3588
                         padding[1] - 1) // dilation[1] + 1
3589
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3590
                         padding[2] - 1) // dilation[2] + 1
3591
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3592
    else:
3593 3594
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3595

3596
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3597
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3598 3599 3600
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3601
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3602
    helper.append_op(
3603
        type=l_type,
Y
Yu Yang 已提交
3604 3605
        inputs={'Input': [input],
                'Filter': [img_filter]},
3606
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3607 3608 3609 3610
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3611
            'groups': groups,
C
chengduoZH 已提交
3612 3613
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3614

3615 3616
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3617
    return out
Y
yangyaming 已提交
3618 3619


Y
yangyaming 已提交
3620
def sequence_expand(x, y, ref_level=-1, name=None):
3621
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3622 3623 3624 3625
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3626 3627 3628 3629 3630

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3631
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3632
                x.data = [[a], [b], [c], [d]]
3633 3634 3635
                x.dims = [4, 1]

            y is a LoDTensor:
3636 3637
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3638

Y
yangyaming 已提交
3639
            ref_level: 0
3640

Y
yangyaming 已提交
3641
            then output is a 1-level LoDTensor:
3642
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3643
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3644 3645 3646 3647
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3648
                x.data = [[a], [b], [c]]
3649 3650 3651
                x.dims = [3, 1]

            y is a LoDTensor:
3652
                y.lod = [[2, 0, 3]]
3653

Y
yangyaming 已提交
3654
            ref_level: -1
3655

Y
yangyaming 已提交
3656 3657 3658
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3659 3660 3661
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3662 3663
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3664
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3665
                        will be named automatically.
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3676
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3677
    """
Y
yangyaming 已提交
3678
    helper = LayerHelper('sequence_expand', input=x, **locals())
3679
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3680
    tmp = helper.create_variable_for_type_inference(dtype)
3681
    helper.append_op(
Y
yangyaming 已提交
3682 3683 3684 3685 3686
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3687
    return tmp
3688 3689


C
chengduo 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3746
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3747 3748 3749 3750 3751 3752 3753 3754
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3755
@templatedoc()
3756
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3757 3758 3759 3760 3761
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3762 3763 3764
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3765
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3766 3767 3768 3769
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3770 3771 3772
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3773

F
fengjiayi 已提交
3774
    Returns:
M
minqiyang 已提交
3775
        Variable: The padded sequence batch and the original lengths before
3776
                  padding. All sequences has the same length.
M
minqiyang 已提交
3777

F
fengjiayi 已提交
3778 3779 3780 3781 3782 3783 3784
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3785
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3786
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3787 3788 3789 3790 3791
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3792 3793
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3794 3795 3796 3797

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3798 3799 3800 3801 3802 3803
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3804 3805
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3806
        attrs={'padded_length': maxlen})
3807
    return out, length
F
fengjiayi 已提交
3808 3809


3810
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3811
    """
3812
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3813

3814 3815
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3825 3826 3827
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3828
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3829 3830 3831 3832 3833 3834

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3835
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3836 3837 3838 3839 3840 3841

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3842 3843
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3858
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3870 3871 3872 3873 3874 3875 3876 3877 3878
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3879 3880
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3881 3882 3883

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3884 3885

    This layer does the search in beams for one time step. Specifically, it
3886 3887 3888 3889 3890 3891
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3892

3893 3894 3895 3896 3897 3898 3899 3900
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3901

3902
    Args:
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3928

3929
    Returns:
3930 3931
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3932 3933 3934 3935

    Examples:
        .. code-block:: python

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3953 3954 3955 3956
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3957 3958 3959
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3960 3961 3962 3963 3964

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3965
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3983 3984 3985 3986 3987 3988 3989
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3990

3991 3992 3993 3994 3995 3996 3997 3998 3999
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4000

4001 4002 4003 4004 4005 4006
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4007

4008 4009
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4010

4011 4012 4013 4014 4015 4016
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4017 4018
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4034 4035 4036 4037
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4038
              param_attr=None,
C
caoying03 已提交
4039 4040
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4041 4042 4043 4044
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4045
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4046

4047
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4048

4049
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4050

4051
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4052 4053 4054

            h_t & = o_t tanh(c_t)

4055 4056 4057 4058 4059 4060
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4061 4062 4063

        .. math::

4064
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4065 4066 4067 4068 4069 4070 4071 4072

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4073
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4074 4075

    Args:
Y
yangyaming 已提交
4076 4077 4078 4079 4080 4081
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4082
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4095 4096
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4097 4098

    Returns:
Y
yangyaming 已提交
4099
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4100 4101

    Raises:
4102 4103 4104 4105
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4106 4107 4108 4109 4110 4111

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4112
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4113
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4114
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4131
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4132 4133 4134 4135
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4136 4137
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4138 4139 4140
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4141
    size = cell_t_prev.shape[1]
4142
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4143 4144
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4145
                param_attr=param_attr,
4146
                bias_attr=bias_attr)
Y
yangyaming 已提交
4147
    dtype = x_t.dtype
X
Xin Pan 已提交
4148 4149
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4159
    return h, c
G
guosheng 已提交
4160 4161


C
caoying03 已提交
4162
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4163
    """
Y
yangyaming 已提交
4164
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4165 4166 4167

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4168
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4169 4170
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4171 4172
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4173
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4174
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4175
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4176 4177
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4178 4179 4180

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4181

G
guosheng 已提交
4182 4183 4184 4185 4186 4187
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4188
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4189 4190 4191 4192
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4193 4194 4195 4196

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4197
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4198 4199 4200
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4201 4202
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4203
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4204 4205
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4206 4207 4208 4209 4210
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4211
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4212 4213 4214 4215
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4216 4217


C
caoying03 已提交
4218
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4219
    """
Y
Yibing Liu 已提交
4220
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4221 4222 4223

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4224 4225 4226
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4227
            must be in the range :math:`[-rank(input), rank(input))`. If
4228
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4229
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4230 4231
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4232
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4233
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4234
                       will be named automatically.
G
guosheng 已提交
4235 4236

    Returns:
Y
Yibing Liu 已提交
4237
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4238

G
guosheng 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4249 4250
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4251 4252 4253 4254 4255 4256 4257

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4258 4259
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4260
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4261 4262
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4263 4264 4265 4266 4267
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4268
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4269 4270 4271 4272
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4273 4274


C
caoying03 已提交
4275
def reduce_max(input, dim=None, keep_dim=False, name=None):
4276
    """
Y
yangyaming 已提交
4277
    Computes the maximum of tensor elements over the given dimension.
4278 4279 4280

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4281
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4282 4283 4284
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4285
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4286 4287
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4288
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4289 4290
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4291 4292 4293

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4294

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4306 4307 4308 4309 4310 4311 4312

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4313 4314
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4315
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4316 4317
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4318 4319 4320 4321 4322
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4323
            'dim': dim if dim != None else [0],
4324 4325 4326 4327 4328 4329
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4330
def reduce_min(input, dim=None, keep_dim=False, name=None):
4331
    """
Y
yangyaming 已提交
4332
    Computes the minimum of tensor elements over the given dimension.
4333 4334 4335

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4336
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4337 4338 4339
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4340
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4341 4342
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4343
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4344 4345
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4346 4347 4348

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4361 4362 4363 4364 4365 4366 4367

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4368 4369
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4370
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4371 4372
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4373 4374 4375 4376 4377
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4378
            'dim': dim if dim != None else [0],
4379 4380 4381 4382
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4383 4384


4385 4386 4387 4388 4389 4390
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4391
        dim (list|int|None): The dimensions along which the product is performed. If
4392 4393
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4394 4395
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4396 4397 4398
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4399
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4400
            layer will be named automatically.
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4415
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4416
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4417 4418 4419 4420 4421 4422 4423

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4424 4425
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4426
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4427 4428
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4429 4430 4431 4432 4433
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4434
            'dim': dim if dim != None else [0],
4435 4436 4437 4438 4439 4440
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4441
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4442
    """
C
caoying03 已提交
4443
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4444 4445 4446

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4447 4448 4449 4450 4451
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4452
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4453
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4454
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4455 4456
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4457 4458

    Returns:
D
dzhwinter 已提交
4459
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4469 4470
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4486
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4509
    .. math::
4510 4511

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4512 4513 4514 4515 4516

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4517
        x(Variable|list): The input tensor to l2_normalize layer.
4518
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4519 4520
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4521
        epsilon(float): The epsilon value is used to avoid division by zero, \
4522
            the defalut value is 1e-10.
4523
        name(str|None): A name for this layer(optional). If set None, the layer \
4524
            will be named automatically.
C
caoying03 已提交
4525 4526

    Returns:
4527
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4528 4529

    Examples:
4530

C
caoying03 已提交
4531 4532
        .. code-block:: python

4533 4534 4535 4536
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4537 4538
    """

F
fengjiayi 已提交
4539 4540
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4541 4542
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4543 4544
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4545
    helper.append_op(
4546 4547 4548 4549
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4550
        attrs={
4551 4552
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4553 4554
        })
    return out
4555 4556


S
sneaxiy 已提交
4557
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4558
    """
Y
ying 已提交
4559 4560 4561 4562
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4563

C
chengduoZH 已提交
4564
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4565
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4566

4567 4568 4569 4570 4571
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4572
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4573

C
chengduoZH 已提交
4574
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4575
      performs in the following way.
G
guosheng 已提交
4576

4577
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4578
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4579
        last two dimensions and a batched matrix multiply supporting broadcast
4580
        applies on the two tensors.
G
guosheng 已提交
4581

Y
ying 已提交
4582 4583
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4584
    removed after matrix multiplication.
G
guosheng 已提交
4585 4586 4587

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4588 4589 4590
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4591
        alpha (float): The scale of output. Default 1.0.
4592
        name(str|None): A name for this layer(optional). If set None, the layer
4593
            will be named automatically.
G
guosheng 已提交
4594 4595

    Returns:
4596
        Variable: The product Tensor variable.
G
guosheng 已提交
4597

G
guosheng 已提交
4598 4599 4600
    Examples:
        .. code-block:: python

4601
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4602 4603
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4604

4605 4606
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4607

4608 4609
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4610

4611 4612
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4613 4614 4615 4616

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4617 4618
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4619

Y
ying 已提交
4620
            # x: [M], y: [N]
4621
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4622
    """
Y
ying 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4635
            y_shape = y_shape + [1]
Y
ying 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4652
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4653
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4654
    helper.append_op(
4655 4656 4657 4658
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4659 4660 4661
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4662
            'alpha': float(alpha),
S
sneaxiy 已提交
4663
        })
4664
    return out
4665 4666


4667
def topk(input, k, name=None):
Q
qingqing01 已提交
4668 4669 4670 4671
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4672
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4673 4674 4675 4676 4677 4678
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4700 4701 4702
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4703
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4704
                 of input.
4705
        name(str|None): A name for this layer(optional). If set None, the layer
4706
                       will be named automatically.
F
fengjiayi 已提交
4707
                       Default: None
Q
qingqing01 已提交
4708 4709

    Returns:
4710 4711 4712
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4713
        within the last dimension of input.
Q
qingqing01 已提交
4714

F
fengjiayi 已提交
4715 4716
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4717 4718 4719 4720 4721 4722 4723

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4724 4725
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4726 4727 4728 4729 4730 4731
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4732 4733
    helper.append_op(
        type="top_k",
W
whs 已提交
4734
        inputs=inputs,
Q
qingqing01 已提交
4735 4736
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4737
        attrs=attrs)
Q
qingqing01 已提交
4738 4739 4740 4741 4742
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4743
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4744
    """
Y
ying 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4754

Y
ying 已提交
4755
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4756

4757
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4758 4759
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4760
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4761

4762
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4763 4764
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4765

4766 4767 4768
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4769
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4770
                          the length of reference string.
4771
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4772
                                     calculating edit distance.
4773
        name (str): The name of this layer. It is optional.
4774

W
wanghaoshuang 已提交
4775
    Returns:
W
wanghaoshuang 已提交
4776
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4777 4778 4779 4780

    Examples:
        .. code-block:: python

T
tink2123 已提交
4781 4782
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4783
            cost = fluid.layers.edit_distance(input=x,label=y)
4784
    """
4785
    helper = LayerHelper("edit_distance", **locals())
4786

4787
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4788
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4789 4790
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4791 4792 4793 4794 4795

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4796
            attrs={"tokens": ignored_tokens})
4797 4798 4799 4800 4801
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4802
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4803
            attrs={"tokens": ignored_tokens})
4804 4805
        label = erased_label

4806
    # edit distance op
X
Xin Pan 已提交
4807 4808
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4809 4810 4811 4812
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4813 4814
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4815 4816
        attrs={"normalized": normalized})

4817
    return edit_distance_out, sequence_num
4818 4819 4820 4821 4822


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4823

Y
ying 已提交
4824 4825 4826 4827
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4845
        input.lod = [[4, 4]]
M
minqiyang 已提交
4846

W
whs 已提交
4847
        Computation:
4848

W
whs 已提交
4849 4850 4851 4852 4853 4854
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4855 4856 4857 4858 4859

        output.data = [[2],
                       [1],
                       [3]]

4860
        output.lod = [[2, 1]]
4861

W
whs 已提交
4862

4863 4864
    Args:

Y
ying 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4874
        name (str): The name of this layer. It is optional.
4875 4876

    Returns:
H
haowang101779990 已提交
4877 4878 4879
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4880
                  LoD [[]] and dims [1, 1].
4881 4882 4883 4884 4885

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4886

4887
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4888
    """
4889
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4890
    _, topk_indices = topk(input, k=1)
4891 4892

    # ctc align op
X
Xin Pan 已提交
4893
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4894 4895 4896
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4897
        outputs={"Output": [ctc_out]},
4898 4899
        attrs={"merge_repeated": True,
               "blank": blank})
4900
    return ctc_out
4901 4902


W
Wu Yi 已提交
4903
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4904
    """
4905 4906
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4907
    to compute Connectionist Temporal Classification (CTC) loss.
4908 4909
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4910 4911 4912
    input tensor.

    Args:
4913
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4914 4915 4916 4917
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4918
       label (Variable): The ground truth of variable-length sequence,
4919 4920 4921
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4922 4923
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4924 4925 4926
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4927
         follewed by a mean_op.
W
Wu Yi 已提交
4928
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4929 4930

    Returns:
4931 4932
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4933 4934

    Examples:
4935

W
wanghaoshuang 已提交
4936
        .. code-block:: python
4937

4938 4939 4940
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4941 4942

    """
F
fengjiayi 已提交
4943
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4944 4945
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4946 4947 4948 4949 4950 4951
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4952 4953 4954 4955 4956
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4957
    return loss_out
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4973 4974 4975
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4976 4977 4978 4979 4980
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4981

4982
            out.lod  = [[0, 1, 3]]
4983 4984 4985 4986

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4987 4988 4989 4990 4991 4992 4993
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4994 4995 4996

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4997 4998

    Returns:
4999

5000 5001 5002 5003 5004
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5005
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5006
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5007 5008
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5009
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5010 5011 5012 5013 5014 5015
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5016 5017


5018 5019 5020 5021
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5022 5023 5024 5025 5026 5027
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5028
        num_neg_samples=None,
5029 5030 5031
        name=None,
        sampler="uniform",
        custom_dist=None,
5032 5033
        seed=0,
        is_sparse=False):
5034 5035 5036 5037 5038 5039 5040
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5041 5042
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5043
            sample is 1.0.
C
chengduo 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5053
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5054 5055
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5056 5057 5058
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5059
        custom_dist (float[]): A float[] with size=num_total_classes.
5060 5061 5062 5063
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5064
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5065

5066
    Returns:
Y
Yibing Liu 已提交
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5094 5095 5096 5097 5098 5099 5100 5101 5102

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5103

5104
    """
Y
Yang Yu 已提交
5105 5106 5107
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5108 5109

    dim = input.shape[1]
Y
Yang Yu 已提交
5110 5111 5112 5113 5114 5115
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5116
    inputs = {}
C
chengduo 已提交
5117 5118 5119 5120 5121 5122 5123
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5124 5125 5126
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5127

5128 5129 5130 5131
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5132 5133 5134 5135 5136 5137 5138

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5191 5192 5193 5194
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5195 5196 5197 5198 5199
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5200 5201 5202 5203
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5204

Y
Yang Yu 已提交
5205 5206
    attrs = {
        'num_total_classes': int(num_total_classes),
5207 5208
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5209
        'sampler': sampler,
5210 5211
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5212
    }
Y
Yang Yu 已提交
5213 5214 5215

    helper.append_op(
        type='nce',
C
chengduo 已提交
5216
        inputs=inputs,
Y
Yang Yu 已提交
5217 5218 5219 5220 5221 5222
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5223
    return cost / (num_neg_samples + 1)
5224 5225


C
chengduo 已提交
5226 5227
def hsigmoid(input,
             label,
5228
             num_classes,
C
chengduo 已提交
5229 5230
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5231
             name=None,
5232 5233 5234
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5235
             is_sparse=False):
W
weixing02 已提交
5236 5237
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5238
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5239
    complete binary tree, or you can use is_custom to pass your own tree to
5240
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5241 5242 5243 5244 5245 5246
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5247
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5248
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5249

5250 5251
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5252 5253 5254 5255
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5256
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5257
       related to the same batch of inputs.
5258

W
weixing02 已提交
5259
    Args:
M
minqiyang 已提交
5260
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5261 5262 5263 5264
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5265 5266
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5267
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5279
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5280
            it should be in leaf -> root order
M
minqiyang 已提交
5281 5282 5283
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5284
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5285
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5286
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5287
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5288
             of W and input will be sparse.
W
weixing02 已提交
5289 5290

    Returns:
J
JiabinYang 已提交
5291
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5292 5293 5294 5295 5296

    Examples:

        .. code-block:: python

G
guosheng 已提交
5297 5298 5299
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5300 5301 5302 5303
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5304 5305
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5306
    dim = input.shape[1]
5307
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5308 5309 5310
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5311 5312 5313 5314
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5315 5316
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5317 5318 5319
    else:
        pass

J
JiabinYang 已提交
5320
    weights = None
5321 5322 5323 5324
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5325
    if not is_custom:
J
JiabinYang 已提交
5326 5327 5328 5329 5330 5331 5332 5333
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5334
            shape=[num_classes, dim],
J
JiabinYang 已提交
5335 5336
            is_bias=False,
            dtype=input.dtype)
5337 5338 5339
    inputs = {
        "X": input,
        "W": weights,
5340
        "PathTable": path_table,
5341
        "PathCode": path_code,
5342 5343
        "Label": label
    }
W
weixing02 已提交
5344
    if helper.bias_attr:
5345
        if not is_custom:
J
JiabinYang 已提交
5346 5347
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5348
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5349 5350 5351 5352 5353 5354
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5355
                shape=[num_classes, 1],
J
JiabinYang 已提交
5356 5357 5358
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5359 5360
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5361
        inputs=inputs,
W
weixing02 已提交
5362
        outputs={"Out": out,
5363 5364 5365 5366 5367 5368 5369
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5370 5371 5372
    return out


Y
fix ci.  
ying 已提交
5373
def transpose(x, perm, name=None):
Y
ying 已提交
5374 5375 5376 5377 5378 5379 5380
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5381 5382 5383
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5384 5385 5386 5387 5388 5389 5390

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5391
            # use append_batch_size=False to avoid prepending extra
5392
            # batch size in shape
5393
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5394
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5395
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5396 5397
    """

Y
fix ci.  
ying 已提交
5398
    if len(perm) != len(x.shape):
Y
ying 已提交
5399 5400 5401
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5402 5403 5404 5405 5406 5407
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5408 5409

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5410 5411
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5412
    helper.append_op(
5413
        type='transpose2',
Y
fix ci.  
ying 已提交
5414
        inputs={'X': [x]},
5415 5416
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5417 5418
        attrs={'axis': perm})
    return out
5419 5420


5421 5422 5423 5424 5425 5426 5427
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5428
    """
5429 5430 5431 5432 5433 5434 5435
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5464 5465 5466 5467 5468 5469 5470 5471 5472
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5473 5474 5475
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5476 5477 5478 5479 5480
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5508 5509 5510
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5523
            output.dims = {8, 8}
5524

5525
            output.lod = [[4, 4]]
5526

T
Tink_Y 已提交
5527
    Examples:
5528 5529 5530

        .. code-block:: python

5531 5532
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5533 5534

    """
W
wanghaoshuang 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5545 5546 5547 5548 5549 5550 5551
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5552
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5553
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5554
    helper.append_op(
5555
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5556
    return out
5557 5558


Y
yuyang18 已提交
5559
@templatedoc()
5560
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5561 5562
    """
    ${comment}
5563 5564

    Args:
Y
yuyang18 已提交
5565
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5566 5567
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5568 5569 5570 5571 5572
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5573
        ${out_comment}.
5574 5575

    Examples:
Y
yuyang18 已提交
5576 5577 5578 5579
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5580 5581 5582 5583 5584 5585
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5586
    out = helper.create_variable_for_type_inference(dtype)
5587 5588 5589 5590 5591
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5592
    return helper.append_activation(out)
5593 5594


Y
yuyang18 已提交
5595
@templatedoc()
5596 5597
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5598 5599 5600 5601 5602 5603 5604
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5605 5606

    Args:
Y
yuyang18 已提交
5607 5608
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5609 5610

    Returns:
Y
yuyang18 已提交
5611
        ${out_comment}.
5612 5613
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5614 5615 5616 5617 5618

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5619
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5620 5621 5622 5623 5624 5625
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5626 5627


5628 5629 5630
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5631
                               ignore_index=kIgnoreIndex,
5632 5633
                               numeric_stable_mode=False,
                               return_softmax=False):
5634 5635
    """
    **Softmax With Cross Entropy Operator.**
5636

5637 5638 5639 5640
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5641

5642 5643 5644
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5645

5646 5647 5648
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5649

5650
    The equation is as follows:
5651

5652
    1) Hard label (one-hot label, so every sample has exactly one class)
5653

5654 5655 5656 5657
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5658

5659 5660 5661
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5662

5663 5664 5665 5666
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5667 5668 5669
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5670

H
haowang101779990 已提交
5671
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5672

H
haowang101779990 已提交
5673
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5674

H
haowang101779990 已提交
5675
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5676 5677 5678

    and then cross entropy loss is calculated by softmax and label.

5679 5680 5681 5682 5683 5684 5685 5686
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5687 5688
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5689
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5690 5691 5692
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5693 5694 5695
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5696
                                    stable algorithm. Default: False
5697
        return_softmax (bool): A flag indicating whether to return the softmax
5698
                               along with the cross entropy loss. Default: False
5699

5700
    Returns:
H
haowang101779990 已提交
5701 5702 5703 5704 5705
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5706 5707 5708 5709 5710 5711 5712

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5713 5714
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5715 5716
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5717 5718
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5719 5720 5721 5722 5723 5724
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5725 5726 5727 5728 5729
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5730 5731 5732 5733

    if return_softmax:
        return loss, softmax

5734 5735 5736 5737 5738
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5739 5740
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5741
    For each instance, it computes the smooth L1 loss element by element first
5742
    and then sums all the losses. So the shape of ouput Variable is
5743
    [batch_size, 1].
5744

5745 5746
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5747
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5748
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5749
            L1 loss op with same shape as :attr:`x`.
5750
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5751 5752
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5753
            by this tensor element by element.
5754
        outside_weight (Variable|None): A tensor with rank at least 2. This
5755 5756
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5757
            element by element.
5758
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5759 5760
           scalar with default value 1.0.

5761
    Returns:
5762
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5763 5764 5765 5766 5767

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5768 5769
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5770
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5771
            out = fluid.layers.smooth_l1(x=fc, y=label)
5772
    """
5773

5774
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5775 5776
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5789 5790 5791 5792


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5793
    This layer creates the one-hot representations for input indices.
5794 5795

    Args:
Y
Yibing Liu 已提交
5796 5797
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5798 5799

    Returns:
Y
Yibing Liu 已提交
5800
        Variable: The one-hot representations of input.
5801 5802

    Examples:
C
caoying03 已提交
5803
        .. code-block:: python
5804

Y
Yibing Liu 已提交
5805 5806
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5807 5808
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5809
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5810 5811 5812 5813 5814 5815
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5816 5817


Y
Yu Yang 已提交
5818
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5819
    """
Y
yi.wu 已提交
5820 5821 5822
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5823 5824 5825 5826 5827 5828

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5829 5830
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5831 5832 5833 5834 5835 5836

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5837 5838
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5839 5840
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5841 5842 5843 5844 5845
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5846
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5847
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5848 5849
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5850 5851
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5852 5853 5854
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5855 5856


5857
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5858
    """
C
caoying03 已提交
5859 5860
    Gives a new shape to the input Tensor without changing its data.

5861 5862 5863 5864 5865
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5866

5867
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5868

5869 5870 5871 5872
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5873
    2. 0 means the actual dimension value is going to be copied from the
5874 5875 5876 5877
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5878 5879

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5880
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5881
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5882

5883
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5884 5885
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5886 5887
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5888
    dimensions.
C
caoying03 已提交
5889

5890
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5891 5892 5893 5894
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5895 5896

    Args:
5897
        x(variable): The input tensor.
C
caoying03 已提交
5898 5899
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5900 5901 5902 5903 5904
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5905 5906
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5907 5908 5909 5910 5911 5912 5913
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5914
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5915

5916
    Returns:
G
guosheng 已提交
5917 5918 5919 5920
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5921

X
Xin Pan 已提交
5922 5923 5924
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5925 5926
    Examples:
        .. code-block:: python
G
guosheng 已提交
5927

5928
            data = fluid.layers.data(
5929
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5930
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5931
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5932 5933 5934
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5935
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5936 5937 5938 5939 5940
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5941

5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5957
    helper = LayerHelper("reshape2", **locals())
5958 5959
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5960
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5961
    helper.append_op(
5962
        type="reshape2",
X
Xin Pan 已提交
5963
        inputs=inputs,
D
dzhwinter 已提交
5964
        attrs={"shape": shape},
5965 5966
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5967

D
dzhwinter 已提交
5968
    return helper.append_activation(out)
5969

5970

5971
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5972
    """
M
minqiyang 已提交
5973 5974 5975
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5976
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5977

H
haowang101779990 已提交
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
5999

Y
Yibing Liu 已提交
6000
    Args:
6001
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6002
        axes (list): List of integers, indicating the dimensions to be squeezed.
6003
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6004 6005 6006 6007 6008 6009 6010 6011

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6012
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6013 6014
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6015 6016
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6017
    helper.append_op(
6018
        type="squeeze2",
6019
        inputs={"X": input},
Y
Yibing Liu 已提交
6020
        attrs={"axes": axes},
6021 6022
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6023

6024 6025 6026
    return out


6027
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6028
    """
M
minqiyang 已提交
6029 6030 6031
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6032

M
minqiyang 已提交
6033
    For example:
H
haowang101779990 已提交
6034 6035 6036

    .. code-block:: text

M
minqiyang 已提交
6037
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6038
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6039

Y
Yibing Liu 已提交
6040
    Args:
6041
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6042
        axes (list): List of integers, indicating the dimensions to be inserted.
6043
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6044 6045 6046 6047 6048 6049 6050 6051

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6052
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6053 6054
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6055 6056
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6057
    helper.append_op(
6058
        type="unsqueeze2",
6059
        inputs={"X": input},
Y
Yibing Liu 已提交
6060
        attrs={"axes": axes},
6061 6062
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6063

6064 6065
    return out

6066

Y
yangyaming 已提交
6067
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6068
    """
Y
Yibing Liu 已提交
6069
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6070 6071 6072 6073
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6074
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6075 6076 6077 6078 6079 6080

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6081
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6082 6083 6084
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6085
            target_lod: [4, 2]
Y
yangyaming 已提交
6086 6087

            then we get a 1-level LoDTensor:
6088
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6089 6090 6091 6092 6093 6094
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6095
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6096 6097 6098 6099
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6100
                y.data = [[2, 4]]
Y
yangyaming 已提交
6101 6102 6103
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6104
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6105 6106 6107 6108 6109 6110
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6111
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6112 6113 6114 6115
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6116
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6117 6118 6119 6120
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6121
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6122 6123 6124 6125 6126
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6127
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6128
                           from :attr:`y`.
Y
yangyaming 已提交
6129
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6130
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6131 6132

    Returns:
Y
Yibing Liu 已提交
6133
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6134 6135

    Raises:
Y
Yibing Liu 已提交
6136
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6137 6138 6139 6140 6141 6142 6143 6144 6145

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6146
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6172
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6201 6202
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6215 6216 6217
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6231 6232 6233 6234


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6235
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6236
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6237

G
guosheng 已提交
6238 6239 6240 6241
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6264
                         The length of :attr:paddings must be
G
guosheng 已提交
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6275

G
guosheng 已提交
6276 6277 6278 6279 6280 6281
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6282
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6283 6284 6285 6286 6287 6288 6289
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6290 6291


C
chengduo 已提交
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6323 6324
		And
            pad_value = -1,
C
chengduo 已提交
6325

T
Tink_Y 已提交
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6361
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6362 6363 6364 6365 6366 6367 6368 6369 6370
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6371 6372 6373 6374 6375 6376 6377
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6378 6379
    called label-smoothing regularization (LSR).

6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6403
                              be :math:`(1, class\_num)`.
6404 6405
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6406
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6426
    smooth_label = helper.create_variable_for_type_inference(dtype)
6427 6428 6429 6430 6431 6432 6433
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6434 6435


W
wopeizl 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6472 6473


J
jerrywgz 已提交
6474 6475 6476 6477 6478 6479
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6480 6481
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6498 6499 6500
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6501 6502 6503 6504 6505 6506
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6507
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6548 6549
        .. code-block:: python

W
whs 已提交
6550 6551 6552 6553
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6554
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6555 6556 6557 6558 6559 6560
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6561 6562


6563 6564 6565 6566
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6567 6568
                 resample='BILINEAR',
                 actual_shape=None):
6569
    """
Q
qiaolongfei 已提交
6570
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6571

6572
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6573 6574 6575
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6576

6577
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6578

6579
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6580

6581
    Args:
6582
        input (Variable): The input tensor of image resize layer,
6583 6584
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6585
        out_shape(list|tuple|Variable|None): Output shape of image resize
6586 6587
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6588
        scale(float|None): The multiplier for the input height or width.
6589 6590 6591
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6592 6593
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6594
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6595
                       currently.
6596
                       Default: 'BILINEAR'
6597 6598 6599
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6600
                                :attr:`out_shape` and :attr:`scale` specifying
6601 6602 6603 6604 6605 6606 6607
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6608 6609
                                constructing stage.
                                Default: None
6610 6611

    Returns:
Q
update  
qiaolongfei 已提交
6612 6613
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6614

6615 6616 6617
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6618
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6619 6620 6621 6622
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6623 6624 6625
    Examples:
        .. code-block:: python

6626
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6627
    """
6628 6629 6630 6631
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6632 6633
    if resample not in resample_methods:
        raise ValueError(
6634
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6635
        )
6636
    resample_type = resample_methods[resample]
6637
    if out_shape is None and scale is None:
6638
        raise ValueError("One of out_shape and scale must not be None.")
6639
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6640
    dtype = helper.input_dtype()
6641 6642 6643 6644

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6645 6646 6647
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6648
    if out_shape is not None:
6649 6650 6651 6652
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6653
            inputs['OutSize'] = out_shape
6654 6655 6656 6657 6658 6659 6660 6661
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6662 6663 6664 6665
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6666 6667 6668 6669 6670
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6671
    out = helper.create_variable_for_type_inference(dtype)
6672
    helper.append_op(
6673
        type='{}_interp'.format(resample_type),
6674
        inputs=inputs,
6675
        outputs={"Out": out},
6676 6677 6678
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6679
    return out
F
stash  
fengjiayi 已提交
6680 6681


6682
@templatedoc(op_type="bilinear_interp")
6683 6684 6685 6686 6687
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6688
    """
6689 6690
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6691 6692
    in priority order.

6693 6694 6695 6696
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6697 6698
    again in the other direction.

6699
    For details of bilinear interpolation, please refer to Wikipedia:
6700
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6701 6702 6703 6704 6705

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6706

Y
yuyang18 已提交
6707 6708 6709 6710 6711
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6712 6713 6714
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6715
                                :attr:`out_shape` and :attr:`scale` specifying
6716 6717 6718 6719 6720 6721 6722
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6723 6724
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6725 6726 6727

    Returns:
        ${out_comment}.
6728 6729 6730 6731 6732

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6733 6734
    """

6735
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6736 6737


6738
@templatedoc(op_type="nearest_interp")
6739 6740 6741 6742 6743
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6744
    """
6745
    Resize input by performing nearest neighbor interpolation in both the
6746 6747
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6748 6749
    out_shape and scale in priority order.

6750
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6751
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6752 6753 6754 6755 6756

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6757

Y
yuyang18 已提交
6758 6759 6760 6761 6762
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6763 6764 6765
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6766
                                :attr:`out_shape` and :attr:`scale` specifying
6767 6768 6769 6770 6771 6772 6773
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6774 6775
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6776 6777 6778

    Returns:
        ${out_comment}.
6779 6780 6781 6782 6783

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6784 6785
    """

6786
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6787 6788 6789 6790


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6791 6792 6793
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6794 6795 6796 6797 6798 6799 6800
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6801
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6802

6803
    Returns:
Q
update  
qiaolongfei 已提交
6804
        Variable: The output is a 4-D tensor of the shape
6805
        (num_batches, channls, out_h, out_w).
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6816 6817 6818
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6819 6820 6821
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6822 6823
def gather(input, index):
    """
Q
qiaolongfei 已提交
6824 6825
    **Gather Layer**

6826
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6827 6828 6829 6830
    of X indexed by `index` and concatenate them together.

    .. math::

6831
        Out = X[Index]
W
whs 已提交
6832 6833 6834 6835 6836 6837 6838


    .. code-block:: text


                Given:

6839 6840
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6851
        input (Variable): The source input with rank>=1.
W
whs 已提交
6852 6853 6854 6855 6856 6857
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6858

W
whs 已提交
6859 6860 6861 6862 6863 6864
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6865
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6866 6867 6868 6869 6870 6871 6872 6873
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6905
    out = helper.create_variable_for_type_inference(dtype)
6906 6907 6908 6909 6910 6911 6912 6913 6914
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6915 6916 6917 6918 6919 6920 6921 6922 6923
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
6924

Q
Qingsheng Li 已提交
6925
    Given the following input:
H
haowang101779990 已提交
6926

Q
Qingsheng Li 已提交
6927
    .. code-block:: text
H
haowang101779990 已提交
6928

Q
Qingsheng Li 已提交
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
6941

Q
Qingsheng Li 已提交
6942
    .. code-block:: text
H
haowang101779990 已提交
6943

Q
Qingsheng Li 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
6959
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6970
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6993

6994 6995 6996
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6997
    """
F
stash  
fengjiayi 已提交
6998
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6999
    dtype = x.dtype
X
Xin Pan 已提交
7000
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7001
    if seed is None:
7002
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7003
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7004
    if isinstance(seed, int):
F
fengjiayi 已提交
7005 7006 7007 7008 7009
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7010 7011 7012 7013
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7014
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7015 7016
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7017 7018
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7019
    return out
W
whs 已提交
7020 7021


7022
def log(x, name=None):
W
wanghaoshuang 已提交
7023 7024 7025 7026 7027
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7028
        Out = \\ln(x)
W
wanghaoshuang 已提交
7029 7030

    Args:
7031
        x (Variable): Input tensor.
7032 7033
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7034 7035 7036 7037 7038 7039 7040 7041

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7042
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7043 7044
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7045
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7046
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7047
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7048 7049 7050
    return out


7051
def relu(x, name=None):
W
wanghaoshuang 已提交
7052 7053
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7054
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7055 7056 7057 7058
    the tensor elementwise.

    .. math::

7059
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7060 7061

    Args:
7062
        x (Variable): The input tensor.
7063 7064
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7065 7066 7067 7068 7069 7070 7071 7072

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7073
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7074 7075
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7076
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7077
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7078 7079
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7080
    return out
7081 7082


C
chengduo 已提交
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7124 7125 7126
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7127 7128 7129 7130
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7131
    .. math::
7132

H
haowang101779990 已提交
7133
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7134

7135
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7136 7137 7138 7139 7140
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7141
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7142
                           Its shape should be the same as input.
7143
        num_classes (int): The possible number of labels.
W
whs 已提交
7144 7145

    Returns:
M
minqiyang 已提交
7146 7147
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7148
                     Three variables:
M
minqiyang 已提交
7149

H
haowang101779990 已提交
7150 7151 7152
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7153 7154 7155 7156

    Examples:

        .. code-block:: python
7157

W
whs 已提交
7158 7159 7160 7161
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7162 7163 7164
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7165 7166
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7167 7168
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7169
        outputs={
W
whs 已提交
7170 7171 7172
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7173 7174 7175
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7244
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7245 7246 7247 7248 7249

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7250
            isinstance(shape, Variable)):
7251 7252 7253 7254 7255
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7256
    out = helper.create_variable_for_type_inference(x.dtype)
7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7274 7275


W
whs 已提交
7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7293

W
whs 已提交
7294
              out_shape = [2, 3, 5, 5]
7295

W
whs 已提交
7296
          Step 1:
7297

W
whs 已提交
7298 7299 7300
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7301

W
whs 已提交
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7347
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7348
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7361

W
whs 已提交
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7373
            isinstance(out_shape, Variable)):
W
whs 已提交
7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7395 7396
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7397

7398 7399
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7400
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7401 7402 7403
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7404

7405 7406
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7407

H
haowang101779990 已提交
7408 7409
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7410 7411
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7412

H
haowang101779990 已提交
7413 7414 7415 7416 7417 7418 7419 7420
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7421 7422 7423

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7458
    out = helper.create_variable_for_type_inference("float32")
7459 7460 7461 7462 7463 7464 7465 7466

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7467 7468


M
minqiyang 已提交
7469 7470
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7471
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7472
    which compares left score and right score passed in.
M
minqiyang 已提交
7473
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7474 7475 7476

    .. math::

H
haowang101779990 已提交
7477
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7478 7479

    Args:
M
minqiyang 已提交
7480
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7481 7482
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7483
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7484 7485
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7486

M
minqiyang 已提交
7487
    Returns:
M
minqiyang 已提交
7488
       Variable: The ranking loss.
H
haowang101779990 已提交
7489

M
minqiyang 已提交
7490
    Raises:
M
minqiyang 已提交
7491
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7492

M
minqiyang 已提交
7493
    Examples:
H
haowang101779990 已提交
7494

M
minqiyang 已提交
7495
        .. code-block:: python
H
haowang101779990 已提交
7496

M
minqiyang 已提交
7497 7498 7499 7500 7501
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7502
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7503 7504 7505 7506 7507 7508
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7509 7510
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7534
        .. code-block:: text
W
whs 已提交
7535

T
Tink_Y 已提交
7536
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7537

T
Tink_Y 已提交
7538 7539
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7540

T
Tink_Y 已提交
7541
	      Case 0:
M
minqiyang 已提交
7542

T
Tink_Y 已提交
7543 7544 7545
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7546

T
Tink_Y 已提交
7547 7548 7549
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7550

T
Tink_Y 已提交
7551
	      Case 1:
M
minqiyang 已提交
7552

T
Tink_Y 已提交
7553 7554
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7555

T
Tink_Y 已提交
7556 7557 7558
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7559

T
Tink_Y 已提交
7560
	      Case 2:
M
minqiyang 已提交
7561

T
Tink_Y 已提交
7562 7563
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7564

T
Tink_Y 已提交
7565 7566 7567
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7568 7569


W
whs 已提交
7570 7571
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7572
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7596
    out = helper.create_variable_for_type_inference(dtype)
7597 7598 7599 7600 7601 7602 7603 7604 7605
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7606
    helper.append_op(
7607
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7608 7609 7610 7611

    return out


7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7624 7625 7626 7627 7628

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7629 7630
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7631 7632
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7633
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7654 7655 7656 7657 7658

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7659 7660
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7661 7662
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7663
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7684 7685 7686 7687 7688

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7689 7690
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7691 7692
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7693
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7715 7716 7717 7718 7719

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7720
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7721
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7722 7723
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7724
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7747 7748 7749 7750 7751

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7752 7753
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7754 7755
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7756
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7778 7779 7780 7781 7782

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7783 7784
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7785 7786
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7787
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7788 7789 7790 7791 7792 7793 7794 7795
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7796 7797 7798 7799
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
7800 7801
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
7802 7803 7804

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7805
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7806
          weight (alpha).
J
jerrywgz 已提交
7807
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7808 7809 7810
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7811
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7812
          will be named automatically.
J
jerrywgz 已提交
7813 7814 7815 7816 7817 7818 7819 7820

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7821
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7835
        attr=helper.param_attr,
J
jerrywgz 已提交
7836 7837 7838 7839
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7840
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7850 7851 7852 7853 7854 7855 7856 7857 7858 7859
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7860
    Returns:
7861
        output(${out_type}): ${out_comment}
7862 7863 7864

    Examples:

7865
    .. code-block:: python
7866

H
haowang101779990 已提交
7867 7868
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7869 7870
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7871
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7890
    Returns:
7891
        output(${out_type}): ${out_comment}
7892 7893 7894 7895 7896

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7897 7898
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
7899 7900
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7901
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7919
    Returns:
7920
        output(${out_type}): ${out_comment}
7921 7922 7923 7924 7925

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7926 7927
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
7928 7929
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7930
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7931 7932 7933 7934 7935 7936 7937 7938
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7939 7940 7941 7942
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
7943

H
haowang101779990 已提交
7944
    For Example:
M
minqiyang 已提交
7945

H
haowang101779990 已提交
7946
    .. code-block:: text
7947

H
haowang101779990 已提交
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
7969 7970 7971

    Args:
        x (Variable): A tensor of rank >= axis.
7972 7973
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7974 7975 7976 7977 7978 7979 7980 7981
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
7982 7983 7984
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
7985 7986 7987 7988
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7989
        ValueError: If axis is not in range [0, rank(x)].
7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8006 8007
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8008
    helper.append_op(
8009
        type='flatten2',
8010
        inputs={"X": x},
8011 8012
        outputs={'Out': out,
                 'XShape': x_shape},
8013 8014
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8015 8016


C
chenweihang 已提交
8017
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8018
    """
C
chenweihang 已提交
8019
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8020
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8021 8022
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8023

H
haowang101779990 已提交
8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8041 8042

    Args:
C
chenweihang 已提交
8043 8044 8045
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8057 8058
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8059 8060 8061 8062 8063 8064
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8065
    return out
8066

8067

S
sneaxiy 已提交
8068 8069 8070 8071 8072 8073 8074 8075 8076
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8077

S
sneaxiy 已提交
8078
    .. math::
8079

S
sneaxiy 已提交
8080 8081 8082
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8083
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8084 8085 8086 8087
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8088 8089 8090
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8091 8092
    Returns:
        Variable: The output sequence mask.
8093

S
sneaxiy 已提交
8094 8095
    """

Q
qingqing01 已提交
8096
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8097
    if name is None:
X
Xin Pan 已提交
8098
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8099
    else:
X
Xin Pan 已提交
8100
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8101

Q
qingqing01 已提交
8102 8103 8104
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8105 8106
        outputs={'Y': out},
        attrs={
8107
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8108 8109 8110
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8111 8112


X
Xin Pan 已提交
8113
def stack(x, axis=0):
S
sneaxiy 已提交
8114 8115 8116 8117
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8118 8119 8120 8121 8122 8123 8124

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8125
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8126
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8127 8128

    Args:
8129
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8130
        axis (int|None): The axis along which all inputs are stacked.
8131

S
sneaxiy 已提交
8132 8133
    Returns:
        Variable: The stacked variable.
8134

S
sneaxiy 已提交
8135 8136
    """

X
Xin Pan 已提交
8137 8138 8139 8140 8141 8142
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8143
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8144
    helper.append_op(
S
sneaxiy 已提交
8145 8146
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8147

X
Xin Pan 已提交
8148
    return out
D
dzhwinter 已提交
8149 8150 8151 8152 8153 8154 8155


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8156

D
dzhwinter 已提交
8157 8158 8159
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8160
    raised.
D
dzhwinter 已提交
8161 8162

    Args:
M
minqiyang 已提交
8163
        x (Variable): Input variable.
D
dzhwinter 已提交
8164 8165
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8166

D
dzhwinter 已提交
8167 8168
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8169

D
dzhwinter 已提交
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8180
    for _ in range(num):
X
Xin Pan 已提交
8181
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8182 8183 8184 8185 8186 8187 8188 8189

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8202

W
whs 已提交
8203 8204 8205 8206
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8207

W
whs 已提交
8208
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8209

W
whs 已提交
8210
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8211

W
whs 已提交
8212 8213 8214 8215
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8216

W
whs 已提交
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8233
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8234 8235 8236 8237 8238 8239
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8240 8241


G
fix  
gongweibao 已提交
8242 8243 8244
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8245
@templatedoc()
G
fix  
gongweibao 已提交
8246 8247 8248 8249 8250 8251 8252 8253 8254
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8255
    ${comment}
G
fix  
gongweibao 已提交
8256 8257

    Args:
G
gongweibao 已提交
8258 8259 8260
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8261
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8262 8263 8264
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8265 8266
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8267
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8268

8269 8270 8271 8272 8273
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8274 8275 8276
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8277
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8294 8295


G
gongweibao 已提交
8296
@templatedoc()
X
Xin Pan 已提交
8297
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8298
    """
G
gongweibao 已提交
8299
    ${comment}
G
fix  
gongweibao 已提交
8300 8301

    Args:
G
gongweibao 已提交
8302 8303 8304 8305
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8306 8307 8308
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8309
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8310

8311 8312 8313 8314
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8315 8316 8317
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8318
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8319 8320 8321 8322 8323 8324 8325 8326 8327 8328
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8329
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8330 8331 8332 8333 8334
        })

    return out


G
gongweibao 已提交
8335
@templatedoc()
G
fix  
gongweibao 已提交
8336
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8337
    """
G
gongweibao 已提交
8338
    ${comment}
G
fix  
gongweibao 已提交
8339 8340

    Args:
G
gongweibao 已提交
8341 8342 8343 8344
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8345
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8346 8347

    Returns:
G
gongweibao 已提交
8348
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8349

8350 8351 8352 8353 8354 8355 8356 8357 8358 8359
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8360 8361 8362
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8363
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8375
@templatedoc()
G
fix  
gongweibao 已提交
8376 8377 8378 8379 8380 8381 8382 8383 8384
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8385
    ${comment}
G
fix  
gongweibao 已提交
8386 8387

    Args:
G
gongweibao 已提交
8388 8389
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8390
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8391 8392 8393 8394
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8395
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8396 8397

    Returns:
G
gongweibao 已提交
8398
        out (Variable): ${out_comment}
8399 8400 8401 8402 8403 8404 8405 8406

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8407 8408 8409
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8410
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8429
@templatedoc()
X
Xin Pan 已提交
8430
def sum(x):
G
fix  
gongweibao 已提交
8431
    """
G
gongweibao 已提交
8432
    ${comment}
G
fix  
gongweibao 已提交
8433 8434

    Args:
G
gongweibao 已提交
8435
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8436 8437

    Returns:
G
gongweibao 已提交
8438
        out (Variable): ${out_comment}
8439 8440 8441 8442 8443 8444

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8445 8446 8447
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8448 8449
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8450 8451 8452 8453
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8454
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8455 8456 8457 8458

    return out


G
gongweibao 已提交
8459
@templatedoc()
G
fix  
gongweibao 已提交
8460 8461
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8462
    ${comment}
G
fix  
gongweibao 已提交
8463 8464

    Args:
G
gongweibao 已提交
8465 8466 8467 8468
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8469 8470

    Returns:
G
gongweibao 已提交
8471
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8472

8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8484 8485 8486
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8487 8488
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8500
@templatedoc()
G
fix  
gongweibao 已提交
8501 8502
def shape(input):
    """
G
gongweibao 已提交
8503
    ${comment}
G
fix  
gongweibao 已提交
8504 8505

    Args:
G
gongweibao 已提交
8506
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8507 8508

    Returns:
G
gongweibao 已提交
8509
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8510

8511 8512 8513 8514 8515 8516
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8517 8518 8519
    """

    helper = LayerHelper('shape', **locals())
8520
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8521
    helper.append_op(
G
fix  
gongweibao 已提交
8522
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8523 8524

    return out
G
merge  
gongweibao 已提交
8525 8526


S
sneaxiy 已提交
8527 8528 8529 8530 8531 8532 8533 8534
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8535 8536
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8537
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8538 8539 8540
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8541

S
sneaxiy 已提交
8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8553
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8554 8555 8556 8557 8558 8559 8560 8561
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8562
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8563
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8564 8565 8566 8567 8568 8569

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8570
    if name is None:
X
Xin Pan 已提交
8571
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8572 8573 8574
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8575 8576 8577 8578 8579 8580 8581 8582 8583 8584

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8585
    return helper.append_activation(out)
S
sneaxiy 已提交
8586 8587


X
Xin Pan 已提交
8588
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8589 8590 8591
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8592
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8593 8594 8595
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8596
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8597 8598 8599
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8600
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8601 8602 8603
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8604
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8605 8606 8607
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8608
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8609 8610 8611
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8612
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8624 8625
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8626
        ])
M
minqiyang 已提交
8627 8628


8629
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8630 8631
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8632 8633
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8634 8635 8636

    if out is None:
        if name is None:
X
Xin Pan 已提交
8637
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8653
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8665 8666 8667 8668 8669 8670 8671 8672 8673

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8674 8675 8676 8677 8678 8679 8680
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8681
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8693 8694 8695 8696 8697 8698 8699 8700 8701

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8702 8703 8704 8705 8706 8707 8708
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8709
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8721 8722 8723 8724 8725 8726 8727 8728 8729

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8730 8731 8732 8733 8734 8735 8736
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8737
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8738 8739 8740 8741 8742 8743 8744 8745 8746 8747
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8748 8749 8750 8751 8752 8753 8754

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8755 8756 8757 8758
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8774 8775 8776 8777 8778 8779 8780

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8781 8782 8783 8784 8785
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8786 8787 8788 8789
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8813 8814 8815 8816 8817 8818 8819

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8820 8821 8822 8823 8824
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8825 8826 8827 8828
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8829 8830 8831 8832 8833 8834 8835 8836

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8855
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8908
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8909 8910 8911 8912 8913 8914 8915 8916 8917
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8918 8919
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8920 8921 8922 8923 8924 8925
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8926 8927 8928 8929
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8930 8931 8932 8933 8934 8935
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8936
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8937 8938 8939 8940 8941 8942 8943 8944 8945
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8946
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8947 8948 8949 8950 8951 8952 8953 8954
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8955
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8976
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8977 8978 8979 8980 8981 8982 8983 8984 8985 8986
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8987 8988


J
JiabinYang 已提交
8989
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8990
    """
J
JiabinYang 已提交
8991
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8992 8993 8994

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8995
    The attr blocksize indicates the input block size.
8996 8997

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8998
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8999 9000

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9001
    (but keeping all data)
J
JiabinYang 已提交
9002

J
JiabinYang 已提交
9003
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9004
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9005 9006 9007 9008 9009
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9010
    Args:
J
JiabinYang 已提交
9011
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9012
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9013 9014

    Returns:
J
JiabinYang 已提交
9015
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9016 9017

    Raises:
J
JiabinYang 已提交
9018
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9019 9020 9021 9022 9023 9024

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9025
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9026
                x=data, blocksize=2)
J
JiabinYang 已提交
9027 9028
    """

J
JiabinYang 已提交
9029
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9030

J
JiabinYang 已提交
9031 9032
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9033 9034

    if name is None:
J
JiabinYang 已提交
9035 9036
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9037 9038 9039 9040 9041
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9042
        type="space_to_depth",
J
JiabinYang 已提交
9043
        inputs={"X": x},
J
JiabinYang 已提交
9044
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9045
        outputs={"Out": out})
J
JiabinYang 已提交
9046 9047
    return out

J
JiabinYang 已提交
9048

S
sneaxiy 已提交
9049 9050
@templatedoc()
def sequence_reverse(x, name=None):
9051
    """
S
sneaxiy 已提交
9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9063
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9064 9065 9066 9067 9068 9069 9070 9071 9072 9073
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9074 9075


9076 9077 9078 9079 9080 9081
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9082

9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9102
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9115 9116


B
barrierye 已提交
9117
def similarity_focus(input, axis, indexes, name=None):
9118
    """
B
barrierye 已提交
9119
    SimilarityFocus Operator
B
barrierye 已提交
9120 9121

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9122

9123 9124 9125
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9126
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9127 9128 9129 9130 9131 9132 9133
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9134
       each index.
B
barrierye 已提交
9135 9136 9137 9138
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9188
    Args:
9189
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9190
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9191
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9192
            1, 2 or 3.
B
barrierye 已提交
9193
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9194 9195

    Returns:
H
haowang101779990 已提交
9196 9197
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9198

B
barrierye 已提交
9199 9200
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9201

B
barrierye 已提交
9202
            data = fluid.layers.data(
B
barrierye 已提交
9203 9204
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9205

B
barrierye 已提交
9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9218 9219 9220 9221 9222
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9223 9224 9225 9226 9227 9228 9229
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9230 9231


M
minqiyang 已提交
9232 9233
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9234 9235
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9236 9237
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9276
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9277
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9278 9279 9280 9281 9282 9283

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9284

M
minqiyang 已提交
9285 9286 9287
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9288 9289
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9290 9291
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9292 9293 9294 9295 9296 9297 9298
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9299 9300


D
dengkaipeng 已提交
9301
@templatedoc()
9302 9303
def grid_sampler(x, grid, name=None):
    """
9304
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9305
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9306 9307 9308 9309
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9310
    interpolation value of 4 nearest corner points.
9311

H
haowang101779990 已提交
9312
    .. code-block:: text
9313

H
haowang101779990 已提交
9314 9315
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9316

H
haowang101779990 已提交
9317 9318
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9319

H
haowang101779990 已提交
9320 9321 9322
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9323

H
haowang101779990 已提交
9324 9325 9326 9327 9328 9329 9330 9331 9332
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9333

H
haowang101779990 已提交
9334 9335 9336 9337
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9338

H
haowang101779990 已提交
9339 9340 9341 9342
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9343

H
haowang101779990 已提交
9344 9345 9346 9347
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9348

H
haowang101779990 已提交
9349 9350
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9351 9352

    Args:
9353 9354 9355
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9356 9357

    Returns:
H
haowang101779990 已提交
9358
        Variable: Output of shape [N, C, H, W] data samples input X
9359 9360
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9361 9362 9363 9364 9365 9366 9367 9368
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9369

D
dengkaipeng 已提交
9370 9371 9372 9373 9374 9375 9376 9377 9378
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9379
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9380 9381
    ipts = {'X': x, 'Grid': grid}

9382
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9383 9384 9385
    return out


G
gmcather 已提交
9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
H
heqiaozhi 已提交
9452
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound 
H
heqiaozhi 已提交
9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9474 9475 9476 9477
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9478
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9479 9480
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9481
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9482 9483

    .. math::
H
haowang101779990 已提交
9484 9485 9486
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9487 9488

    Where:
H
haowang101779990 已提交
9489 9490
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9505

G
gmcather 已提交
9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9522 9523 9524 9525 9526 9527 9528 9529 9530 9531


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9532
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9533

Q
Qiao Longfei 已提交
9534
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9535 9536 9537
    For example:

    .. math::
H
haowang101779990 已提交
9538
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9539

Q
Qiao Longfei 已提交
9540
    In this formula:
9541 9542
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9543
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9544
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9545 9546 9547
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9548 9549
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9550 9551 9552
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9553
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9554
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9555
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9556 9557 9558 9559
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9560
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9561 9562 9563 9564

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9565
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9566 9567
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9568
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9569 9570 9571 9572

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9573
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9614 9615


S
sneaxiy 已提交
9616
class PyFuncRegistry(object):
S
sneaxiy 已提交
9617 9618 9619
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9620
        if func is None or not callable(func):
S
sneaxiy 已提交
9621 9622 9623
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9624
        # find named args using reflection
S
sneaxiy 已提交
9625 9626 9627 9628 9629 9630 9631
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9632 9633 9634
        '''
        Why record self here?

M
minqiyang 已提交
9635 9636
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9637
           to find the registered function corresponding
M
minqiyang 已提交
9638
           to :code:`idx`.
S
sneaxiy 已提交
9639

M
minqiyang 已提交
9640 9641
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9642
           whose reference count is 1 would cause
M
minqiyang 已提交
9643
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9644 9645
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9646
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9661 9662 9663 9664 9665 9666 9667 9668 9669
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9670

S
sneaxiy 已提交
9671 9672
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9673 9674

        ret = []
S
sneaxiy 已提交
9675 9676 9677
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9678 9679
                continue

S
sneaxiy 已提交
9680 9681
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9682

S
sneaxiy 已提交
9683 9684 9685
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9686

S
sneaxiy 已提交
9687
        return tuple(ret)
S
sneaxiy 已提交
9688 9689


S
sneaxiy 已提交
9690 9691 9692 9693
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
9694

S
sneaxiy 已提交
9695 9696 9697 9698 9699 9700 9701 9702
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9703
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9704

S
sneaxiy 已提交
9705 9706
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9707 9708 9709 9710
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9711
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
9712
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
9713 9714
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9715 9716 9717 9718 9719
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
9720
            should create :code:`out` beforehand.
S
sneaxiy 已提交
9721
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
9722
                                       None means no backward. Default None.
S
sneaxiy 已提交
9723
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
9724
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
9725 9726
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
9727
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
9728 9729 9730

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9731 9732

    Examples:
M
minqiyang 已提交
9733

S
sneaxiy 已提交
9734 9735 9736 9737 9738
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
9739
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
9740 9741
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
9742
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
9743 9744 9745
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
9746
        >>>
S
sneaxiy 已提交
9747 9748 9749 9750 9751
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
9752
        >>>     print(x)
S
sneaxiy 已提交
9753 9754 9755 9756 9757 9758
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
9759
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
9760 9761
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
9762 9763
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
9764 9765 9766 9767 9768 9769 9770 9771
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9772
    """
S
sneaxiy 已提交
9773
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9774 9775 9776
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9777
        x = [x]
S
sneaxiy 已提交
9778 9779
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9780

S
sneaxiy 已提交
9781 9782 9783
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9784
        out_list = [out]
S
sneaxiy 已提交
9785
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9786
        out_list = out
S
sneaxiy 已提交
9787 9788 9789
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9790

S
sneaxiy 已提交
9791 9792
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9793
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9794 9795

    for each_out in out_list:
S
sneaxiy 已提交
9796 9797
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9798 9799
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9800

S
sneaxiy 已提交
9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9816 9817 9818 9819

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9820 9821
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9822 9823 9824
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9825
        })
S
sneaxiy 已提交
9826
    return out
S
sneaxiy 已提交
9827 9828 9829


# For debug usage
S
sneaxiy 已提交
9830 9831 9832 9833
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9886

M
minqiyang 已提交
9887

M
minqiyang 已提交
9888
def huber_loss(input, label, delta):
9889
    """
M
minqiyang 已提交
9890 9891 9892
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9893 9894 9895 9896

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9897
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9898 9899 9900 9901

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9902
        huber\_loss = 0.5 * (label - input) * (label - input)
9903 9904 9905 9906 9907 9908 9909


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9910
        delta (float): The parameter of huber loss, which controls
9911 9912 9913
                       the range of outliers

    Returns:
M
minqiyang 已提交
9914
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9915 9916 9917 9918 9919

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9920
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9921
    """
M
minqiyang 已提交
9922
    helper = LayerHelper('huber_loss', **locals())
9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)