nn.py 346.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60 61 62 63 64 65 66
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
67
    'sequence_unpad',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
76
    'sequence_slice',
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
94
    'group_norm',
X
Xin Pan 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
108
    'roi_align',
X
Xin Pan 已提交
109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
113
    'resize_nearest',
X
Xin Pan 已提交
114 115 116 117 118 119
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
120
    'selu',
X
Xin Pan 已提交
121 122 123
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
124
    'margin_rank_loss',
X
Xin Pan 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
168
    'space_to_depth',
W
whs 已提交
169
    'affine_grid',
S
sneaxiy 已提交
170
    'sequence_reverse',
171
    'affine_channel',
B
barrierye 已提交
172
    'similarity_focus',
M
minqiyang 已提交
173
    'hash',
D
dengkaipeng 已提交
174
    'grid_sampler',
G
gmcather 已提交
175 176
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
177
    'bilinear_tensor_product',
C
chengduo 已提交
178 179
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
180
    'lstm',
S
sneaxiy 已提交
181
    'py_func',
182
    'psroi_pool',
M
minqiyang 已提交
183
    'huber_loss',
Y
Yu Yang 已提交
184 185
]

J
jerrywgz 已提交
186 187
kIgnoreIndex = -100

Y
Yu Yang 已提交
188 189 190 191 192 193 194

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
195
       is_test=False,
196
       name=None):
Y
Yu Yang 已提交
197
    """
198
    **Fully Connected Layer**
Y
Yu Yang 已提交
199

200 201 202 203 204 205 206 207
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
208
    to the output as well.
C
caoying03 已提交
209

C
caoying03 已提交
210
    This process can be formulated as follows:
211 212 213

    .. math::

214
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
215 216 217

    In the above equation:

C
caoying03 已提交
218 219 220 221
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
222
    * :math:`Act`: The activation function.
C
caoying03 已提交
223
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
224 225

    Args:
R
ranqiu 已提交
226 227 228 229 230 231 232 233 234 235
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
236
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
237 238 239 240
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
241 242
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
243
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
244
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
245
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
246

247
    Returns:
F
fengjiayi 已提交
248
        Variable: The transformation result.
249 250

    Raises:
C
caoying03 已提交
251
        ValueError: If rank of the input tensor is less than 2.
252 253 254 255

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
256
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
257
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
258
    """
C
caoying03 已提交
259

C
caoying03 已提交
260
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
261 262 263 264

    dtype = helper.input_dtype()

    mul_results = []
265 266
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
267 268 269
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
270

Y
Yu Yang 已提交
271
        w = helper.create_parameter(
272
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
273
        tmp = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
278
            outputs={"Out": tmp},
M
mozga-intel 已提交
279 280
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
281 282 283 284
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
285
    else:
X
Xin Pan 已提交
286
        pre_bias = helper.create_variable_for_type_inference(dtype)
287
        helper.append_op(
288 289 290
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
291
            attrs={"use_mkldnn": False})
292 293 294 295
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
296 297


298 299 300
def embedding(input,
              size,
              is_sparse=False,
301
              is_distributed=False,
302 303 304
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
305
    """
306 307
    **Embedding Layer**

308
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
309 310
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
311 312 313

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
314 315

    Args:
316 317 318 319 320
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
321
        is_distributed(bool): Whether to run lookup table from remote parameter server.
322 323
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
324
            with zeros whenever lookup encounters it in :attr:`input`. If
325
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
326 327
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
328
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
329

330 331 332
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
333

334 335
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
336

C
chengduoZH 已提交
337
          dict_size = len(dataset.ids)
338
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
339
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
340 341 342
    """

    helper = LayerHelper('embedding', **locals())
343
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
344 345
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
346 347
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
348
    tmp = helper.create_variable_for_type_inference(dtype)
349 350
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
351 352 353 354 355
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
356 357 358
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
359
            'remote_prefetch': remote_prefetch,
360 361
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
362 363 364
    return tmp


W
wopeizl 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
381

W
wopeizl 已提交
382 383 384 385 386 387 388 389 390 391 392
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
393

W
wopeizl 已提交
394 395 396 397
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
398

W
wopeizl 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
485 486


P
phlrain 已提交
487 488 489 490 491 492
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
493
         dropout_prob=0.0,
P
phlrain 已提交
494 495 496 497 498
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
499
    """
P
phlrain 已提交
500
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
501 502

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
503
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
504 505
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
506
    .. math::
M
minqiyang 已提交
507 508 509 510 511 512 513

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
514
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
515 516 517 518

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
519 520

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
521 522 523 524 525 526
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
527 528 529
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
530
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
531

M
minqiyang 已提交
532
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
533 534 535 536 537
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
538
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
539 540 541 542 543
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
544
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
545 546
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
547 548
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
549 550 551 552 553 554
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
555
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
556

L
liuhongyu 已提交
557 558

    Returns:
M
minqiyang 已提交
559 560
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
561
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
562

H
haowang101779990 已提交
563 564 565 566
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
567
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
568 569
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
570
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
586
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
587 588 589 590 591 592
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
593 594 595
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
655 656 657 658 659 660 661 662 663 664 665
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
666 667
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
668 669 670
    """
    **Dynamic LSTMP Layer**

671 672 673 674 675 676
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
677 678 679 680 681

    The formula is as follows:

    .. math::

682
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
683

684
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
685

686
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
687

688
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
689

690
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
691

692
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
693

694
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
695

Y
Yibing Liu 已提交
696 697 698 699 700 701
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
702
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
703
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
704
          bias vector).
Y
Yibing Liu 已提交
705 706 707
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
708
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
709
    * :math:`h`: The hidden state.
710
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
711 712
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
713
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
714
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
715
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
716 717
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
718 719 720 721

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
722

Y
Yibing Liu 已提交
723 724 725 726 727 728 729 730 731 732 733 734
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
735
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
736 737
                               hidden-hidden weight and projection weight.

738 739
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
740 741
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
742 743
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
744
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
745 746 747 748 749

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
750
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
751 752 753 754 755 756
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
757
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
758 759 760
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
761
                                - The shape is (1 x 7D).
C
chengduo 已提交
762 763 764 765 766

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
767 768 769 770 771 772 773 774 775
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
776
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
777 778
                              default "tanh".
        proj_activation(str): The activation for projection output.
779
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
780 781
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
782 783
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
784 785

    Returns:
786 787 788 789
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
790 791

    Examples:
792

Y
Yibing Liu 已提交
793 794
        .. code-block:: python

795 796 797 798
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
799
            hidden_dim, proj_dim = 512, 256
800
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
801
                                     act=None, bias_attr=None)
802 803 804
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
805 806 807 808
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
809
    """
810

C
chengduo 已提交
811
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
812
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
813
    size = size // 4
Y
Yibing Liu 已提交
814 815 816 817 818 819 820 821 822 823
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
824 825 826 827 828 829
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
858 859 860 861 862 863 864 865 866
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
867
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
868

869
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
870
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
871

G
guosheng 已提交
872 873 874 875 876 877 878 879 880
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
881

G
guosheng 已提交
882
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
883

G
guosheng 已提交
884
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
885 886
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
887 888 889 890
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
891
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
892 893

    Args:
894 895
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
896
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
897
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
898 899
            is the hidden size.
        size(int): The dimension of the gru cell.
900
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
901 902
            hidden-hidden weight matrix. Note:

903
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
904
              :math:`D` is the hidden size.
905
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
906
              The first part are weights of the update gate and reset gate with
907
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
908
              candidate hidden state with shape :math:`(D \\times D)`.
909 910 911 912 913

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
914
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
915
            the bias in the update gate, reset gate and candidate calculations.
916 917 918
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
919 920
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
921
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
922 923 924
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
925
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
926
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
927 928 929 930
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
931 932

    Returns:
G
guosheng 已提交
933
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
934
            and sequence length is the same with the input.
935

G
guosheng 已提交
936
    Examples:
937

G
guosheng 已提交
938 939
        .. code-block:: python

940 941 942 943
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
944
            hidden_dim = 512
945
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
946
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
947 948 949 950 951 952 953 954 955
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
956
    batch_size = input.shape[0]
G
guosheng 已提交
957
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
958
    if h_0:
G
guosheng 已提交
959
        assert h_0.shape == (
Y
Yancey 已提交
960 961 962
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
963

X
Xin Pan 已提交
964 965 966 967
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
986 987 988
def gru_unit(input,
             hidden,
             size,
989 990
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
991
             activation='tanh',
992
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
993
    """
994
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
995

996 997
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
998

999
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1000

1001
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1002

1003
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
1004 1005

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1006 1007 1008
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1009 1010
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1011 1012
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1013 1014 1015
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1016 1017 1018

    Args:
        input (Variable): The fc transformed input value of current step.
1019
        hidden (Variable): The hidden value of gru unit from previous step.
1020
        size (integer): The input dimension value.
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1035
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1036
            the bias in the update gate, reset gate and candidate calculations.
1037 1038 1039
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1040 1041
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1042 1043 1044 1045
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1046

1047 1048 1049 1050 1051 1052
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1053

1054
             # assuming we have x_t_data and prev_hidden of size=10
1055
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1056 1057
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1070
    size = size // 3
Y
Yu Yang 已提交
1071 1072

    # create weight
1073 1074
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1075

X
Xin Pan 已提交
1076 1077 1078
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1079
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1080
    # create bias
1081
    if helper.bias_attr:
Y
Yu Yang 已提交
1082 1083 1084
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1085
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1086 1087 1088

    helper.append_op(
        type='gru_unit',
1089
        inputs=inputs,
Y
Yu Yang 已提交
1090 1091 1092 1093 1094 1095
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1096 1097
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1098 1099 1100 1101 1102
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1103
@templatedoc()
1104
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1105 1106 1107 1108 1109 1110 1111
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1112
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1113 1114 1115 1116
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1117 1118 1119
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1120 1121

    """
Y
Yu Yang 已提交
1122 1123 1124 1125 1126 1127
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1128 1129 1130 1131 1132 1133 1134 1135
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1151 1152 1153 1154
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1155

W
wopeizl 已提交
1156 1157
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1158

W
wopeizl 已提交
1159
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1160

W
wopeizl 已提交
1161
        label(${label_type}): ${label_comment}
1162

W
wopeizl 已提交
1163 1164
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1165

W
wopeizl 已提交
1166 1167
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1168

W
wopeizl 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1179
                "Transition": transition,
W
wopeizl 已提交
1180 1181
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1182

W
wopeizl 已提交
1183
    return viterbi_path
Y
Yu Yang 已提交
1184 1185


Y
yi.wu 已提交
1186
@templatedoc()
F
fengjiayi 已提交
1187
def cos_sim(X, Y):
Y
Yu Yang 已提交
1188
    """
Y
yi.wu 已提交
1189 1190 1191
    ${comment}

    Args:
1192 1193
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1194

Y
yi.wu 已提交
1195
    Returns:
1196
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1197
    """
F
fengjiayi 已提交
1198
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1199 1200 1201
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1212 1213 1214 1215 1216
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1217
            dropout_implementation="downgrade_in_infer"):
1218 1219 1220 1221 1222
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1223
    training. The dropout operator randomly sets (according to the given dropout
1224 1225 1226
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1227 1228
    dropout op can be removed from the program to make the program more efficient.

1229
    Args:
1230 1231
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1232 1233 1234 1235 1236 1237 1238
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1239 1240
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1241
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1242 1243 1244 1245 1246 1247

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1248
                                        2. upscale_in_train, upscale the outcome at training time
1249

H
haowang101779990 已提交
1250 1251
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1252

H
haowang101779990 已提交
1253 1254
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1255

M
minqiyang 已提交
1256

1257
    Returns:
1258
        Variable: A tensor variable is the shape with `x`.
1259 1260

    Examples:
1261

1262 1263
        .. code-block:: python

1264 1265
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1266 1267
    """

F
fengjiayi 已提交
1268
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1269 1270 1271
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1272 1273 1274 1275

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1276 1277 1278 1279 1280
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1281 1282 1283 1284
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1285 1286
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1287
        })
1288 1289 1290
    return out


J
jerrywgz 已提交
1291
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1292
    """
Y
Yibing Liu 已提交
1293 1294
    **Cross Entropy Layer**

1295 1296 1297
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1298 1299

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1300
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1301

Y
Yibing Liu 已提交
1302
        .. math::
Y
yangyaming 已提交
1303

Y
Yibing Liu 已提交
1304 1305 1306
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1307 1308
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1309 1310 1311 1312 1313

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1314
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1315 1316 1317
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1318 1319
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1320
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1321

Y
Yibing Liu 已提交
1322
    Args:
Y
yangyaming 已提交
1323
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1324 1325 1326 1327
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1328
        label (Variable|list): the ground truth which is a 2-D tensor. When
1329 1330 1331 1332
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1333
        soft_label (bool): a flag indicating whether to
1334
                                           interpretate the given labels as soft
1335
                                           labels. Default: `False`.
M
minqiyang 已提交
1336 1337
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1338
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1339 1340 1341 1342 1343

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1344 1345 1346
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1347

H
haowang101779990 已提交
1348 1349
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1350

H
haowang101779990 已提交
1351 1352
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1353 1354 1355 1356 1357 1358

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1359
    """
F
fengjiayi 已提交
1360
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1361
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1362 1363 1364 1365 1366
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1367 1368
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1369 1370 1371
    return out


F
frankwhzhang 已提交
1372
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1373 1374 1375
    """
    Bayesian Personalized Ranking Loss Operator.

1376
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1377 1378 1379 1380 1381 1382
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1383 1384 1385 1386 1387 1388
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1389 1390
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1391 1392 1393
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1394 1395 1396
    Examples:
        .. code-block:: python

1397
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1398
    """
1399 1400 1401 1402 1403 1404

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1405
                'Label': [label]},
1406 1407 1408 1409
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1410
def square_error_cost(input, label):
Y
Yu Yang 已提交
1411
    """
1412 1413
    **Square error cost layer**

1414 1415
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1430 1431
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1432 1433

    Returns:
G
guosheng 已提交
1434
        Variable: The tensor variable storing the element-wise squared error \
1435
                  difference of input and label.
1436 1437 1438 1439 1440 1441 1442 1443

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1444
    """
F
fengjiayi 已提交
1445
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1446
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1447 1448 1449 1450 1451 1452
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1453
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1454
    helper.append_op(
F
fengjiayi 已提交
1455 1456
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1457 1458 1459
    return square_out


Y
yi.wu 已提交
1460
@templatedoc()
Y
Yu Yang 已提交
1461 1462 1463 1464
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1465
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1466
    """
Y
yi.wu 已提交
1467
    **Chunk Evaluator**
Y
yi.wu 已提交
1468

Y
yangyaming 已提交
1469
    This function computes and outputs the precision, recall and
1470
    F1-score of chunk detection.
Y
yi.wu 已提交
1471

M
minqiyang 已提交
1472
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1473
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1474 1475 1476 1477 1478 1479

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1480

Y
yi.wu 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1506

Y
yi.wu 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1531
    Args:
1532 1533 1534 1535 1536
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1537

Y
yi.wu 已提交
1538
    Returns:
Y
update  
yi.wu 已提交
1539 1540 1541
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1542

Y
yi.wu 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1555
    """
F
fengjiayi 已提交
1556
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1557 1558

    # prepare output
X
Xin Pan 已提交
1559 1560 1561 1562 1563 1564 1565
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1566 1567 1568 1569 1570 1571 1572 1573

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1574 1575 1576 1577
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1578 1579 1580
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1581 1582
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1583
        })
1584 1585
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1586 1587


1588
@templatedoc()
Y
Yu Yang 已提交
1589 1590 1591 1592 1593 1594 1595
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1596 1597
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1598 1599 1600 1601
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1602 1603 1604 1605 1606 1607 1608

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1622

1623 1624
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1625 1626 1627 1628 1629 1630 1631
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1632
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1643
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1644 1645 1646 1647 1648 1649
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1650
def sequence_softmax(input, use_cudnn=False, name=None):
1651 1652 1653
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1654
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1671 1672 1673
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1686 1687
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1688
    softmax_out = helper.create_variable_for_type_inference(dtype)
1689 1690 1691 1692 1693 1694 1695 1696
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1697
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1698
    """
1699
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1700
    has the same shape as the input.
Q
qiaolongfei 已提交
1701

1702 1703 1704 1705 1706 1707
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1708
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1709 1710 1711 1712 1713 1714 1715

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1716
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1717 1718 1719 1720 1721 1722 1723 1724

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1725 1726 1727
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1740 1741
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1742
    softmax_out = helper.create_variable_for_type_inference(dtype)
1743 1744 1745 1746 1747 1748 1749 1750
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1751 1752 1753
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1754 1755
           stride=1,
           padding=0,
1756
           dilation=1,
Y
Yu Yang 已提交
1757 1758 1759
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1760
           use_cudnn=True,
1761 1762
           act=None,
           name=None):
Y
Yu Yang 已提交
1763
    """
C
chengduoZH 已提交
1764
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1765 1766
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1767
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1768 1769 1770 1771 1772 1773 1774
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1775 1776 1777
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1778

1779
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1780

C
chengduoZH 已提交
1781 1782
    .. math::

C
refine  
chengduoZH 已提交
1783
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1784

T
tensor-tang 已提交
1785
    Where:
C
chengduoZH 已提交
1786

1787 1788 1789 1790 1791
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1792
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1793 1794 1795

    Example:

1796 1797
        - Input:

W
weixing02 已提交
1798
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1799

W
weixing02 已提交
1800
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1801

1802
        - Output:
T
tensor-tang 已提交
1803

W
weixing02 已提交
1804
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1805

C
chengduoZH 已提交
1806
        Where
1807 1808

        .. math::
C
chengduoZH 已提交
1809

W
weixing02 已提交
1810 1811
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1812 1813

    Args:
1814
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1815
        num_filters(int): The number of filter. It is as same as the output
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1833 1834 1835 1836 1837
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1838
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1839 1840 1841 1842 1843
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1844 1845
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1846 1847
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1848
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1849
            will be named automatically. Default: None
C
chengduoZH 已提交
1850 1851

    Returns:
G
guosheng 已提交
1852
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1853 1854
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1855
    Raises:
1856 1857
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1858

C
chengduoZH 已提交
1859 1860 1861
    Examples:
        .. code-block:: python

1862 1863
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1864 1865 1866
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1867
    assert param_attr is not False, "param_attr should not be False here."
1868
    l_type = 'conv2d'
X
xzl 已提交
1869 1870
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1871
        l_type = 'depthwise_conv2d'
1872 1873 1874 1875

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1876 1877 1878 1879 1880
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1881
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1882

C
chengduoZH 已提交
1883 1884 1885
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1886
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1887

C
chengduoZH 已提交
1888 1889
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1890 1891

    input_shape = input.shape
M
minqiyang 已提交
1892
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1893 1894

    def _get_default_param_initializer():
C
chengduo 已提交
1895 1896
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1897 1898 1899 1900 1901 1902 1903 1904
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1905
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1906

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1921
    helper.append_op(
1922
        type=l_type,
Y
Yu Yang 已提交
1923 1924 1925 1926 1927
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1928 1929 1930
        attrs={
            'strides': stride,
            'paddings': padding,
1931
            'dilations': dilation,
C
chengduoZH 已提交
1932
            'groups': groups,
1933
            'use_cudnn': use_cudnn,
1934
            'use_mkldnn': False,
C
chengduoZH 已提交
1935
        })
Y
Yu Yang 已提交
1936 1937 1938 1939 1940 1941

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1959 1960 1961 1962 1963 1964
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1974 1975
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1976 1977 1978
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1979
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2005
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2006 2007
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2008
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2009 2010
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2011
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2012 2013
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2014
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2015 2016 2017 2018 2019 2020
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2031 2032
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2033 2034
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2035
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2036
            will be named automatically. Default: None.
C
chengduoZH 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2049 2050
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2051 2052 2053
    """

    l_type = 'conv3d'
C
chengduo 已提交
2054
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2065
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2079 2080 2081
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2082 2083 2084 2085 2086 2087 2088 2089
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2090
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2105
            'use_mkldnn': False
C
chengduoZH 已提交
2106 2107
        })

2108
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2109 2110 2111 2112

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2113
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2114
    """
Y
yangyaming 已提交
2115 2116 2117
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2129
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2130 2131 2132 2133 2134
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2135
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2136 2137 2138 2139 2140 2141 2142

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2143 2144
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2145

L
Luo Tao 已提交
2146 2147
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2148
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2149
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2150
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2151 2152 2153 2154 2155 2156 2157

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2158

Y
yangyaming 已提交
2159
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2160 2161 2162 2163 2164
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2165 2166
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2167
    """
F
fengjiayi 已提交
2168
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2169
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2170 2171
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2172 2173 2174 2175 2176 2177

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2178 2179
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2180

Y
yangyaming 已提交
2181 2182 2183 2184 2185
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2186 2187 2188
    return pool_out


C
add doc  
chengduoZH 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2208
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2209 2210 2211 2212 2213
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2214
def sequence_first_step(input):
L
Luo Tao 已提交
2215
    """
L
Luo Tao 已提交
2216
    This function gets the first step of sequence.
L
Luo Tao 已提交
2217 2218 2219 2220

    .. code-block:: text

       x is a 1-level LoDTensor:
2221
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2222 2223 2224 2225 2226
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2227
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2228
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2229

L
Luo Tao 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2239

Y
yangyaming 已提交
2240
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2241 2242 2243
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2244 2245 2246
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2247
def sequence_last_step(input):
L
Luo Tao 已提交
2248
    """
L
Luo Tao 已提交
2249
    This function gets the last step of sequence.
L
Luo Tao 已提交
2250 2251 2252 2253

    .. code-block:: text

       x is a 1-level LoDTensor:
2254
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2255 2256 2257 2258 2259
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2260
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2261
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2262

L
Luo Tao 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2272

Y
yangyaming 已提交
2273
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2274 2275 2276
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2277 2278 2279
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2280 2281 2282 2283
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2284
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2285 2286 2287 2288 2289
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2290

H
haowang101779990 已提交
2291
              - Case:
Y
Yibing Liu 已提交
2292

2293
            Given the input Variable **input**:
2294

2295 2296 2297
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2298

2299
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2300

2301
            the output Variable will be
2302

2303 2304 2305
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2306

M
minqiyang 已提交
2307
    Note:
H
haowang101779990 已提交
2308
          The first dimension size of **input**, **offset** and **length**
2309
          should be equal. The **offset** should start from 0.
2310

Y
Yibing Liu 已提交
2311
    Args:
2312
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2313
                         sequences.
Y
Yibing Liu 已提交
2314 2315 2316 2317 2318 2319
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2320
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2331
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2332 2333 2334 2335
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2336
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2351
@templatedoc()
Y
Yu Yang 已提交
2352
def pool2d(input,
C
chengduoZH 已提交
2353 2354
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2355 2356
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2357
           global_pooling=False,
C
chengduoZH 已提交
2358
           use_cudnn=True,
2359
           ceil_mode=False,
2360 2361
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2362
    """
F
fengjiayi 已提交
2363
    ${comment}
2364 2365

    Args:
2366 2367 2368
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2369
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2370
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2371 2372
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2373
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2374 2375 2376 2377 2378 2379
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2380 2381 2382
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2383
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2384
                        layer will be named automatically.
2385
        exclusive (bool): Whether to exclude padding points in average pooling
2386
                          mode, default is true
F
fengjiayi 已提交
2387

2388
    Returns:
F
fengjiayi 已提交
2389
        Variable: The pooling result.
F
fengjiayi 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2403 2404 2405 2406
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2407
                            global_pooling=False)
Y
Yu Yang 已提交
2408 2409 2410 2411 2412
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2413

C
chengduoZH 已提交
2414 2415 2416 2417 2418
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2419 2420 2421 2422
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2423 2424
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2425

C
Add doc  
chengduoZH 已提交
2426
    l_type = 'pool2d'
2427 2428

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2429
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2430
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2431 2432

    helper.append_op(
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2444 2445
            "use_mkldnn": False,
            "exclusive": exclusive,
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2459 2460
           name=None,
           exclusive=True):
2461 2462
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2463
    pooling configurations mentioned in input parameters.
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2476
        exclusive (bool): Whether to exclude padding points in average pooling
2477
                          mode, default is true
2478

2479
    Returns:
2480
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2481 2482 2483 2484 2485
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2486

C
chengduoZH 已提交
2487 2488 2489 2490 2491
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2492 2493 2494
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2495

C
chengduoZH 已提交
2496 2497
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2498

2499 2500
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2501
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2502
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2503 2504

    helper.append_op(
2505
        type=l_type,
Y
Yu Yang 已提交
2506 2507 2508 2509 2510 2511 2512
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2513
            "paddings": pool_padding,
2514
            "use_cudnn": use_cudnn,
2515
            "ceil_mode": ceil_mode,
2516 2517
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2518 2519 2520 2521 2522
        })

    return pool_out


2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2556
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2557
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2558
          # of input data into m * n grids averagely and performs poolings in each
2559 2560
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2561
          #
2562 2563 2564 2565 2566 2567 2568 2569
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2570 2571
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2572
          pool_out = fluid.layers.adaptive_pool2d(
2573 2574
                            input=data,
                            pool_size=[3, 3],
2575
                            pool_type='avg')
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2586
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2612
    return (pool_out, mask) if require_index else pool_out
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2648 2649
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2650
          # of input data into l * m * n grids averagely and performs poolings in each
2651 2652
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2653
          #
2654 2655 2656 2657 2658 2659 2660 2661 2662
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2663
          #                 output[:, :, i, j, k] =
2664 2665
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2666 2667
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2668
          pool_out, mask = fluid.layers.adaptive_pool3d(
2669 2670
                            input=data,
                            pool_size=[3, 3],
2671
                            pool_type='avg')
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2682
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2708
    return (pool_out, mask) if require_index else pool_out
2709 2710


Y
Yu Yang 已提交
2711 2712 2713 2714 2715 2716 2717
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2718
               data_layout='NCHW',
Y
Yang Yang 已提交
2719
               in_place=False,
2720 2721
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2722
               moving_variance_name=None,
2723
               do_model_average_for_mean_and_var=False,
2724 2725
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2726
    """
Q
qiaolongfei 已提交
2727 2728 2729 2730
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2731

Q
qiaolongfei 已提交
2732
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2733

Q
qiaolongfei 已提交
2734 2735
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2736 2737 2738
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2765
    Args:
Q
qiaolongfei 已提交
2766
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2767 2768 2769 2770
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2771 2772 2773 2774 2775 2776 2777 2778
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2779
        data_layout(string, default NCHW): NCHW|NHWC
2780
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2781 2782 2783 2784
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2785
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2786
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2787 2788 2789 2790 2791
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2792 2793

    Returns:
Q
qiaolongfei 已提交
2794
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2795 2796 2797 2798 2799 2800 2801

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2802
    """
C
chengduo 已提交
2803
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2804 2805 2806
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2807 2808 2809 2810
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2828 2829 2830
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2831 2832

    bias = helper.create_parameter(
2833
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2834 2835 2836
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2837

2838 2839
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2840 2841 2842
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2843
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2844
        shape=param_shape,
W
Wu Yi 已提交
2845
        dtype=dtype)
2846 2847 2848 2849 2850 2851
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2852
            trainable=False,
W
wanghaoshuang 已提交
2853
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2854
        shape=param_shape,
W
Wu Yi 已提交
2855
        dtype=dtype)
2856
    variance.stop_gradient = True
Y
Yu Yang 已提交
2857 2858 2859 2860 2861 2862

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2863 2864 2865 2866
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2867

X
Xin Pan 已提交
2868 2869
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2887 2888 2889 2890
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2891
            "use_mkldnn": False,
2892 2893
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2894
        })
Y
Yu Yang 已提交
2895 2896 2897 2898

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2899
@templatedoc()
G
guosheng 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2910
    ${comment}
G
guosheng 已提交
2911 2912 2913

    The formula is as follows:

Y
yuyang18 已提交
2914
    ..  math::
G
guosheng 已提交
2915 2916 2917 2918 2919 2920 2921

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2922 2923 2924 2925 2926 2927 2928 2929
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2930

G
guosheng 已提交
2931 2932
    Args:
        input(Variable): The input tensor variable.
2933
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2934
            normalization. Default True.
2935
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2936 2937
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2938
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2939
            Default 1.
2940
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2941
            division by zero. Default 1e-05.
G
guosheng 已提交
2942
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2943 2944
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2945 2946
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2947
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2948 2949
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2950
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2951
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2952
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2953 2954 2955
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2956 2957

    Returns:
Y
yuyang18 已提交
2958
        ${y_comment}
G
guosheng 已提交
2959 2960 2961

    Examples:

Y
yuyang18 已提交
2962 2963 2964
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2980
    if shift:
G
guosheng 已提交
2981 2982 2983 2984 2985 2986
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2987 2988 2989 2990 2991
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3019
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3085 3086 3087 3088
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3089 3090 3091
                     padding=0,
                     stride=1,
                     dilation=1,
3092
                     groups=None,
C
caoying03 已提交
3093
                     param_attr=None,
3094
                     bias_attr=None,
C
chengduoZH 已提交
3095
                     use_cudnn=True,
3096
                     act=None,
C
caoying03 已提交
3097
                     name=None):
Y
Yu Yang 已提交
3098
    """
3099 3100 3101 3102 3103 3104 3105 3106
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3107 3108
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3109 3110 3111
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3112 3113 3114 3115 3116

    For each input :math:`X`, the equation is:

    .. math::

3117
        Out = \sigma (W \\ast X + b)
3118

3119
    Where:
3120 3121 3122

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3123 3124 3125 3126
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3127

3128 3129 3130 3131
    Example:

        - Input:

3132
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3133

3134
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3135 3136 3137

        - Output:

3138
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3139 3140

        Where
Y
Yu Yang 已提交
3141

3142 3143
        .. math::

3144 3145
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3146 3147
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3148 3149

    Args:
3150 3151 3152 3153
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3154 3155 3156 3157
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3186
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3187 3188 3189
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3190
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3191
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3192 3193

    Returns:
3194
        Variable: The tensor variable storing the convolution transpose result.
3195 3196

    Raises:
3197 3198
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3199 3200 3201 3202

    Examples:
       .. code-block:: python

3203 3204
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3205
    """
C
chengduo 已提交
3206
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3207 3208 3209 3210 3211 3212 3213 3214
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3215 3216 3217
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3218 3219 3220
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3221

C
chengduoZH 已提交
3222 3223
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3224

Y
Yu Yang 已提交
3225 3226 3227 3228 3229
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3230

Y
Yu Yang 已提交
3231 3232
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3233

C
chengduoZH 已提交
3234
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3235
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3236
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3237
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3238
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3239 3240 3241
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3242

3243 3244 3245 3246 3247 3248 3249
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3250
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3251
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3252

Y
Yu Yang 已提交
3253 3254 3255
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3256
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3257
    helper.append_op(
3258
        type=op_type,
Y
Yu Yang 已提交
3259 3260
        inputs={'Input': [input],
                'Filter': [img_filter]},
3261
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3262
        attrs={
3263
            'output_size': output_size,
3264 3265 3266 3267 3268
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3269 3270
        })

3271 3272 3273
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3274 3275


3276
def conv3d_transpose(input,
Y
Yu Yang 已提交
3277 3278 3279
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3280 3281 3282
                     padding=0,
                     stride=1,
                     dilation=1,
3283
                     groups=None,
C
caoying03 已提交
3284
                     param_attr=None,
3285
                     bias_attr=None,
C
chengduoZH 已提交
3286
                     use_cudnn=True,
3287
                     act=None,
C
caoying03 已提交
3288
                     name=None):
Y
Yu Yang 已提交
3289
    """
3290
    **Convlution3D transpose layer**
3291

3292
    The convolution3D transpose layer calculates the output based on the input,
3293
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3294 3295 3296 3297 3298 3299
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3300 3301 3302
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3303 3304 3305 3306 3307

    For each input :math:`X`, the equation is:

    .. math::

3308
        Out = \sigma (W \\ast X + b)
3309 3310 3311

    In the above equation:

3312 3313
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3314 3315 3316 3317
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3318

3319 3320 3321 3322
    Example:

        - Input:

3323
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3324

3325
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3326 3327 3328

        - Output:

3329
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3330 3331

        Where
Y
Yu Yang 已提交
3332

3333 3334
        .. math::

3335 3336 3337
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3338 3339

    Args:
3340
        input(Variable): The input image with [N, C, D, H, W] format.
3341 3342 3343
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3344
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3345 3346
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3347
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3348 3349 3350
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3351 3352
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3353
        stride(int|tuple): The stride size. If stride is a tuple, it must
3354 3355
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3356
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3357 3358 3359
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3360 3361 3362 3363 3364
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3374 3375
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3376 3377
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3378 3379
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3380 3381

    Returns:
3382
        Variable: The tensor variable storing the convolution transpose result.
3383 3384

    Raises:
3385 3386
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3387 3388 3389 3390

    Examples:
       .. code-block:: python

3391 3392
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3393
    """
C
chengduo 已提交
3394
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3395 3396
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3397
    if not isinstance(input, Variable):
3398
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3399 3400
    input_channel = input.shape[1]

3401 3402 3403
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3404

C
chengduoZH 已提交
3405 3406 3407
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3408 3409 3410 3411 3412 3413
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3414 3415 3416
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3417

3418
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3419
                         padding[0] - 1) // dilation[0] + 1
3420
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3421
                         padding[1] - 1) // dilation[1] + 1
3422
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3423
                         padding[2] - 1) // dilation[2] + 1
3424
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3425
    else:
3426 3427
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3428

3429
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3430
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3431 3432 3433
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3434
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3435
    helper.append_op(
3436
        type=l_type,
Y
Yu Yang 已提交
3437 3438
        inputs={'Input': [input],
                'Filter': [img_filter]},
3439
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3440 3441 3442 3443
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3444
            'groups': groups,
C
chengduoZH 已提交
3445 3446
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3447

3448 3449
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3450
    return out
Y
yangyaming 已提交
3451 3452


Y
yangyaming 已提交
3453
def sequence_expand(x, y, ref_level=-1, name=None):
3454
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3455 3456 3457 3458
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3459 3460 3461 3462 3463

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3464
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3465
                x.data = [[a], [b], [c], [d]]
3466 3467 3468
                x.dims = [4, 1]

            y is a LoDTensor:
3469 3470
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3471

Y
yangyaming 已提交
3472
            ref_level: 0
3473

Y
yangyaming 已提交
3474
            then output is a 1-level LoDTensor:
3475
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3476
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3477 3478 3479 3480
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3481
                x.data = [[a], [b], [c]]
3482 3483 3484
                x.dims = [3, 1]

            y is a LoDTensor:
3485
                y.lod = [[2, 0, 3]]
3486

Y
yangyaming 已提交
3487
            ref_level: -1
3488

Y
yangyaming 已提交
3489 3490 3491
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3492 3493 3494
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3495 3496
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3497
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3498
                        will be named automatically.
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3509
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3510
    """
Y
yangyaming 已提交
3511
    helper = LayerHelper('sequence_expand', input=x, **locals())
3512
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3513
    tmp = helper.create_variable_for_type_inference(dtype)
3514
    helper.append_op(
Y
yangyaming 已提交
3515 3516 3517 3518 3519
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3520
    return tmp
3521 3522


C
chengduo 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3579
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3580 3581 3582 3583 3584 3585 3586 3587
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3588
@templatedoc()
3589
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3590 3591 3592 3593 3594
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3595 3596 3597
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3598
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3599 3600 3601 3602
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3603 3604 3605
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3606

F
fengjiayi 已提交
3607
    Returns:
M
minqiyang 已提交
3608
        Variable: The padded sequence batch and the original lengths before
3609
                  padding. All sequences has the same length.
M
minqiyang 已提交
3610

F
fengjiayi 已提交
3611 3612 3613 3614 3615 3616 3617
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3618
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3619
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3620 3621 3622 3623 3624
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3625 3626
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3627 3628 3629 3630

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3631 3632 3633 3634 3635 3636
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3637 3638
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3639
        attrs={'padded_length': maxlen})
3640
    return out, length
F
fengjiayi 已提交
3641 3642


3643
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3644
    """
3645
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3646

3647 3648
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3658 3659 3660
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3661
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3662 3663 3664 3665 3666 3667

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3668
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3669 3670 3671 3672 3673 3674

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3675 3676
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3691
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3703 3704 3705 3706 3707 3708 3709 3710 3711
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3712 3713
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3714 3715 3716

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3717 3718

    This layer does the search in beams for one time step. Specifically, it
3719 3720 3721 3722 3723 3724
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3725

3726 3727 3728 3729 3730 3731 3732 3733
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3734

3735
    Args:
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3761

3762
    Returns:
3763 3764
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3765 3766 3767 3768

    Examples:
        .. code-block:: python

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3786 3787 3788 3789
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3790 3791 3792
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3793 3794 3795 3796 3797

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3798
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3816 3817 3818 3819 3820 3821 3822
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3823

3824 3825 3826 3827 3828 3829 3830 3831 3832
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3833

3834 3835 3836 3837 3838 3839
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3840

3841 3842
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3843

3844 3845 3846 3847 3848 3849
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3850 3851
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3867 3868 3869 3870
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3871
              param_attr=None,
C
caoying03 已提交
3872 3873
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3874 3875 3876 3877
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3878
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3879

3880
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3881

3882
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3883

3884
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3885 3886 3887

            h_t & = o_t tanh(c_t)

3888 3889 3890 3891 3892 3893
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3894 3895 3896

        .. math::

3897
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3898 3899 3900 3901 3902 3903 3904 3905

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3906
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3907 3908

    Args:
Y
yangyaming 已提交
3909 3910 3911 3912 3913 3914
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3915
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3928 3929
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3930 3931

    Returns:
Y
yangyaming 已提交
3932
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3933 3934

    Raises:
3935 3936 3937 3938
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3939 3940 3941 3942 3943 3944

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3945
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3946
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3947
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3964
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3965 3966 3967 3968
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3969 3970
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3971 3972 3973
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3974
    size = cell_t_prev.shape[1]
3975
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3976 3977
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3978
                param_attr=param_attr,
3979
                bias_attr=bias_attr)
Y
yangyaming 已提交
3980
    dtype = x_t.dtype
X
Xin Pan 已提交
3981 3982
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3983 3984 3985 3986 3987 3988 3989 3990 3991

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3992
    return h, c
G
guosheng 已提交
3993 3994


C
caoying03 已提交
3995
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3996
    """
Y
yangyaming 已提交
3997
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3998 3999 4000

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4001
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4002 4003
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4004 4005
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4006
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4007
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4008
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4009 4010
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4011 4012 4013

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4014

G
guosheng 已提交
4015 4016 4017 4018 4019 4020
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4021
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4022 4023 4024 4025
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4026 4027 4028 4029

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4030
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4031 4032 4033
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4034 4035
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4036
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4037 4038
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4039 4040 4041 4042 4043
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4044
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4045 4046 4047 4048
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4049 4050


C
caoying03 已提交
4051
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4052
    """
Y
Yibing Liu 已提交
4053
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4054 4055 4056

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4057 4058 4059
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4060
            must be in the range :math:`[-rank(input), rank(input))`. If
4061
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4062
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4063 4064
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4065
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4066
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4067
                       will be named automatically.
G
guosheng 已提交
4068 4069

    Returns:
Y
Yibing Liu 已提交
4070
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4071

G
guosheng 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4082 4083
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4084 4085 4086 4087 4088 4089 4090

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4091 4092
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4093
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4094 4095
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4096 4097 4098 4099 4100
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4101
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4102 4103 4104 4105
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4106 4107


C
caoying03 已提交
4108
def reduce_max(input, dim=None, keep_dim=False, name=None):
4109
    """
Y
yangyaming 已提交
4110
    Computes the maximum of tensor elements over the given dimension.
4111 4112 4113

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4114
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4115 4116 4117
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4118
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4119 4120
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4121
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4122 4123
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4124 4125 4126

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4127

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4139 4140 4141 4142 4143 4144 4145

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4146 4147
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4148
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4149 4150
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4151 4152 4153 4154 4155
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4156
            'dim': dim if dim != None else [0],
4157 4158 4159 4160 4161 4162
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4163
def reduce_min(input, dim=None, keep_dim=False, name=None):
4164
    """
Y
yangyaming 已提交
4165
    Computes the minimum of tensor elements over the given dimension.
4166 4167 4168

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4169
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4170 4171 4172
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4173
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4174 4175
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4176
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4177 4178
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4179 4180 4181

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4182

4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4194 4195 4196 4197 4198 4199 4200

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4201 4202
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4203
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4204 4205
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4206 4207 4208 4209 4210
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4211
            'dim': dim if dim != None else [0],
4212 4213 4214 4215
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4216 4217


4218 4219 4220 4221 4222 4223
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4224
        dim (list|int|None): The dimensions along which the product is performed. If
4225 4226
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4227 4228
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4229 4230 4231
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4232
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4233
            layer will be named automatically.
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4248
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4249
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4250 4251 4252 4253 4254 4255 4256

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4257 4258
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4259
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4260 4261
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4262 4263 4264 4265 4266
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4267
            'dim': dim if dim != None else [0],
4268 4269 4270 4271 4272 4273
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4274
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4275
    """
C
caoying03 已提交
4276
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4277 4278 4279

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4280 4281 4282 4283 4284
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4285
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4286
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4287
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4288 4289
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4290 4291

    Returns:
D
dzhwinter 已提交
4292
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4302 4303
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4319
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4342
    .. math::
4343 4344

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4345 4346 4347 4348 4349

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4350
        x(Variable|list): The input tensor to l2_normalize layer.
4351
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4352 4353
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4354
        epsilon(float): The epsilon value is used to avoid division by zero, \
4355
            the defalut value is 1e-10.
4356
        name(str|None): A name for this layer(optional). If set None, the layer \
4357
            will be named automatically.
C
caoying03 已提交
4358 4359

    Returns:
4360
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4361 4362

    Examples:
4363

C
caoying03 已提交
4364 4365
        .. code-block:: python

4366 4367 4368 4369
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4370 4371
    """

F
fengjiayi 已提交
4372 4373
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4374 4375
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4376 4377
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4378
    helper.append_op(
4379 4380 4381 4382
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4383
        attrs={
4384 4385
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4386 4387
        })
    return out
4388 4389


S
sneaxiy 已提交
4390
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4391
    """
Y
ying 已提交
4392 4393 4394 4395
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4396

C
chengduoZH 已提交
4397
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4398
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4399

4400 4401 4402 4403 4404
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4405
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4406

C
chengduoZH 已提交
4407
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4408
      performs in the following way.
G
guosheng 已提交
4409

4410
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4411
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4412
        last two dimensions and a batched matrix multiply supporting broadcast
4413
        applies on the two tensors.
G
guosheng 已提交
4414

Y
ying 已提交
4415 4416
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4417
    removed after matrix multiplication.
G
guosheng 已提交
4418 4419 4420

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4421 4422 4423
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4424
        alpha (float): The scale of output. Default 1.0.
4425
        name(str|None): A name for this layer(optional). If set None, the layer
4426
            will be named automatically.
G
guosheng 已提交
4427 4428

    Returns:
4429
        Variable: The product Tensor variable.
G
guosheng 已提交
4430

G
guosheng 已提交
4431 4432 4433
    Examples:
        .. code-block:: python

4434
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4435 4436
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4437

4438 4439
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4440

4441 4442
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4443

4444 4445
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4446 4447 4448 4449

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4450 4451
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4452

Y
ying 已提交
4453
            # x: [M], y: [N]
4454
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4455
    """
Y
ying 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4468
            y_shape = y_shape + [1]
Y
ying 已提交
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4485
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4486
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4487
    helper.append_op(
4488 4489 4490 4491
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4492 4493 4494
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4495
            'alpha': float(alpha),
S
sneaxiy 已提交
4496
        })
4497
    return out
4498 4499


4500
def topk(input, k, name=None):
Q
qingqing01 已提交
4501 4502 4503 4504
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4505
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4506 4507 4508 4509 4510 4511
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4533 4534 4535
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4536
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4537
                 of input.
4538
        name(str|None): A name for this layer(optional). If set None, the layer
4539
                       will be named automatically.
F
fengjiayi 已提交
4540
                       Default: None
Q
qingqing01 已提交
4541 4542

    Returns:
4543 4544 4545
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4546
        within the last dimension of input.
Q
qingqing01 已提交
4547

F
fengjiayi 已提交
4548 4549
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4550 4551 4552 4553 4554 4555 4556

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4557 4558
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4559 4560 4561 4562 4563 4564
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4565 4566
    helper.append_op(
        type="top_k",
W
whs 已提交
4567
        inputs=inputs,
Q
qingqing01 已提交
4568 4569
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4570
        attrs=attrs)
Q
qingqing01 已提交
4571 4572 4573 4574 4575
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4576
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4577
    """
Y
ying 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4587

Y
ying 已提交
4588
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4589

4590
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4591 4592
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4593
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4594

4595
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4596 4597
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4598

4599 4600 4601
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4602
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4603
                          the length of reference string.
4604
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4605
                                     calculating edit distance.
4606
        name (str): The name of this layer. It is optional.
4607

W
wanghaoshuang 已提交
4608
    Returns:
W
wanghaoshuang 已提交
4609
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4610 4611 4612 4613

    Examples:
        .. code-block:: python

T
tink2123 已提交
4614 4615
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4616
            cost = fluid.layers.edit_distance(input=x,label=y)
4617
    """
4618
    helper = LayerHelper("edit_distance", **locals())
4619

4620
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4621
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4622 4623
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4624 4625 4626 4627 4628

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4629
            attrs={"tokens": ignored_tokens})
4630 4631 4632 4633 4634
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4635
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4636
            attrs={"tokens": ignored_tokens})
4637 4638
        label = erased_label

4639
    # edit distance op
X
Xin Pan 已提交
4640 4641
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4642 4643 4644 4645
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4646 4647
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4648 4649
        attrs={"normalized": normalized})

4650
    return edit_distance_out, sequence_num
4651 4652 4653 4654 4655


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4656

Y
ying 已提交
4657 4658 4659 4660
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4678
        input.lod = [[4, 4]]
M
minqiyang 已提交
4679

W
whs 已提交
4680
        Computation:
4681

W
whs 已提交
4682 4683 4684 4685 4686 4687
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4688 4689 4690 4691 4692

        output.data = [[2],
                       [1],
                       [3]]

4693
        output.lod = [[2, 1]]
4694

W
whs 已提交
4695

4696 4697
    Args:

Y
ying 已提交
4698 4699 4700 4701 4702 4703 4704 4705 4706
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4707
        name (str): The name of this layer. It is optional.
4708 4709

    Returns:
H
haowang101779990 已提交
4710 4711 4712
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4713
                  LoD [[]] and dims [1, 1].
4714 4715 4716 4717 4718

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4719

4720
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4721
    """
4722
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4723
    _, topk_indices = topk(input, k=1)
4724 4725

    # ctc align op
X
Xin Pan 已提交
4726
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4727 4728 4729
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4730
        outputs={"Output": [ctc_out]},
4731 4732
        attrs={"merge_repeated": True,
               "blank": blank})
4733
    return ctc_out
4734 4735


W
Wu Yi 已提交
4736
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4737
    """
4738 4739
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4740
    to compute Connectionist Temporal Classification (CTC) loss.
4741 4742
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4743 4744 4745
    input tensor.

    Args:
4746
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4747 4748 4749 4750
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4751
       label (Variable): The ground truth of variable-length sequence,
4752 4753 4754
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4755 4756
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4757 4758 4759
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4760
         follewed by a mean_op.
W
Wu Yi 已提交
4761
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4762 4763

    Returns:
4764 4765
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4766 4767

    Examples:
4768

W
wanghaoshuang 已提交
4769
        .. code-block:: python
4770

4771 4772 4773
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4774 4775

    """
F
fengjiayi 已提交
4776
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4777 4778
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4779 4780 4781 4782 4783 4784
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4785 4786 4787 4788 4789
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4790
    return loss_out
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4806 4807 4808
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4809 4810 4811 4812 4813
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4814

4815
            out.lod  = [[0, 1, 3]]
4816 4817 4818 4819

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4820 4821 4822 4823 4824 4825 4826
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4827 4828 4829

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4830 4831

    Returns:
4832

4833 4834 4835 4836 4837
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4838
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4839
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4840 4841
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4842
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4843 4844 4845 4846 4847 4848
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4849 4850


4851 4852 4853 4854
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4855 4856 4857 4858 4859 4860
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4861
        num_neg_samples=None,
4862 4863 4864
        name=None,
        sampler="uniform",
        custom_dist=None,
4865 4866
        seed=0,
        is_sparse=False):
4867 4868 4869 4870 4871 4872 4873
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4874 4875
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4876
            sample is 1.0.
C
chengduo 已提交
4877 4878 4879 4880 4881 4882 4883 4884 4885
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4886
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4887 4888
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4889 4890 4891
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4892
        custom_dist (float[]): A float[] with size=num_total_classes.
4893 4894 4895 4896
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4897
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4898

4899
    Returns:
Y
Yibing Liu 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4927 4928 4929 4930 4931 4932 4933 4934 4935

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4936

4937
    """
Y
Yang Yu 已提交
4938 4939 4940
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4941 4942

    dim = input.shape[1]
Y
Yang Yu 已提交
4943 4944 4945 4946 4947 4948
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4949
    inputs = {}
C
chengduo 已提交
4950 4951 4952 4953 4954 4955 4956
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4957 4958 4959
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4960

4961 4962 4963 4964
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4965 4966 4967 4968 4969 4970 4971

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5024 5025 5026 5027
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5028 5029 5030 5031 5032
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5033 5034 5035 5036
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5037

Y
Yang Yu 已提交
5038 5039
    attrs = {
        'num_total_classes': int(num_total_classes),
5040 5041
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5042
        'sampler': sampler,
5043 5044
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5045
    }
Y
Yang Yu 已提交
5046 5047 5048

    helper.append_op(
        type='nce',
C
chengduo 已提交
5049
        inputs=inputs,
Y
Yang Yu 已提交
5050 5051 5052 5053 5054 5055
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5056
    return cost / (num_neg_samples + 1)
5057 5058


C
chengduo 已提交
5059 5060
def hsigmoid(input,
             label,
5061
             num_classes,
C
chengduo 已提交
5062 5063
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5064
             name=None,
5065 5066 5067
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5068
             is_sparse=False):
W
weixing02 已提交
5069 5070
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5071
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5072
    complete binary tree, or you can use is_custom to pass your own tree to
5073
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5074 5075 5076 5077 5078 5079
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5080
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5081
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5082

5083 5084
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5085 5086 5087 5088
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5089
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5090
       related to the same batch of inputs.
5091

W
weixing02 已提交
5092
    Args:
M
minqiyang 已提交
5093
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5094 5095 5096 5097
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5098 5099
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5100
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5112
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5113
            it should be in leaf -> root order
M
minqiyang 已提交
5114 5115 5116
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5117
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5118
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5119
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5120
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5121
             of W and input will be sparse.
W
weixing02 已提交
5122 5123

    Returns:
J
JiabinYang 已提交
5124
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5125 5126 5127 5128 5129

    Examples:

        .. code-block:: python

G
guosheng 已提交
5130 5131 5132
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5133 5134 5135 5136
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5137 5138
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5139
    dim = input.shape[1]
5140
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5141 5142 5143
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5144 5145 5146 5147
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5148 5149
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5150 5151 5152
    else:
        pass

J
JiabinYang 已提交
5153
    weights = None
5154 5155 5156 5157
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5158
    if not is_custom:
J
JiabinYang 已提交
5159 5160 5161 5162 5163 5164 5165 5166
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5167
            shape=[num_classes, dim],
J
JiabinYang 已提交
5168 5169
            is_bias=False,
            dtype=input.dtype)
5170 5171 5172
    inputs = {
        "X": input,
        "W": weights,
5173
        "PathTable": path_table,
5174
        "PathCode": path_code,
5175 5176
        "Label": label
    }
W
weixing02 已提交
5177
    if helper.bias_attr:
5178
        if not is_custom:
J
JiabinYang 已提交
5179 5180
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5181
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5182 5183 5184 5185 5186 5187
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5188
                shape=[num_classes, 1],
J
JiabinYang 已提交
5189 5190 5191
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5192 5193
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5194
        inputs=inputs,
W
weixing02 已提交
5195
        outputs={"Out": out,
5196 5197 5198 5199 5200 5201 5202
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5203 5204 5205
    return out


Y
fix ci.  
ying 已提交
5206
def transpose(x, perm, name=None):
Y
ying 已提交
5207 5208 5209 5210 5211 5212 5213
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5214 5215 5216
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5217 5218 5219 5220 5221 5222 5223

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5224
            # use append_batch_size=False to avoid prepending extra
5225
            # batch size in shape
5226
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5227
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5228
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5229 5230
    """

Y
fix ci.  
ying 已提交
5231
    if len(perm) != len(x.shape):
Y
ying 已提交
5232 5233 5234
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5235 5236 5237 5238 5239 5240
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5241 5242

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5243 5244
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5245
    helper.append_op(
5246
        type='transpose2',
Y
fix ci.  
ying 已提交
5247
        inputs={'X': [x]},
5248 5249
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5250 5251
        attrs={'axis': perm})
    return out
5252 5253


5254 5255 5256 5257 5258 5259 5260
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5261
    """
5262 5263 5264 5265 5266 5267 5268
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5297 5298 5299 5300 5301 5302 5303 5304 5305
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5306 5307 5308
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5309 5310 5311 5312 5313
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5341 5342 5343
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5356
            output.dims = {8, 8}
5357

5358
            output.lod = [[4, 4]]
5359

T
Tink_Y 已提交
5360
    Examples:
5361 5362 5363

        .. code-block:: python

5364 5365
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5366 5367

    """
W
wanghaoshuang 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5378 5379 5380 5381 5382 5383 5384
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5385
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5386
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5387
    helper.append_op(
5388
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5389
    return out
5390 5391


Y
yuyang18 已提交
5392
@templatedoc()
5393
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5394 5395
    """
    ${comment}
5396 5397

    Args:
Y
yuyang18 已提交
5398
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5399 5400
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5401 5402 5403 5404 5405
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5406
        ${out_comment}.
5407 5408

    Examples:
Y
yuyang18 已提交
5409 5410 5411 5412
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5413 5414 5415 5416 5417 5418
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5419
    out = helper.create_variable_for_type_inference(dtype)
5420 5421 5422 5423 5424
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5425
    return helper.append_activation(out)
5426 5427


Y
yuyang18 已提交
5428
@templatedoc()
5429 5430
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5431 5432 5433 5434 5435 5436 5437
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5438 5439

    Args:
Y
yuyang18 已提交
5440 5441
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5442 5443

    Returns:
Y
yuyang18 已提交
5444
        ${out_comment}.
5445 5446
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5447 5448 5449 5450 5451

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5452
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5453 5454 5455 5456 5457 5458
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5459 5460


5461 5462 5463
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5464
                               ignore_index=kIgnoreIndex,
5465 5466
                               numeric_stable_mode=False,
                               return_softmax=False):
5467 5468
    """
    **Softmax With Cross Entropy Operator.**
5469

5470 5471 5472 5473
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5474

5475 5476 5477
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5478

5479 5480 5481
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5482

5483
    The equation is as follows:
5484

5485
    1) Hard label (one-hot label, so every sample has exactly one class)
5486

5487 5488 5489 5490
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5491

5492 5493 5494
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5495

5496 5497 5498 5499
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5500 5501 5502
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5503

H
haowang101779990 已提交
5504
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5505

H
haowang101779990 已提交
5506
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5507

H
haowang101779990 已提交
5508
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5509 5510 5511

    and then cross entropy loss is calculated by softmax and label.

5512 5513 5514 5515 5516 5517 5518 5519
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5520 5521
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5522
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5523 5524 5525
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5526 5527 5528
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5529
                                    stable algorithm. Default: False
5530
        return_softmax (bool): A flag indicating whether to return the softmax
5531
                               along with the cross entropy loss. Default: False
5532

5533
    Returns:
H
haowang101779990 已提交
5534 5535 5536 5537 5538
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5539 5540 5541 5542 5543 5544 5545

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5546 5547
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5548 5549
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5550 5551
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5552 5553 5554 5555 5556 5557
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5558 5559 5560 5561 5562
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5563 5564 5565 5566

    if return_softmax:
        return loss, softmax

5567 5568 5569 5570 5571
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5572 5573
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5574
    For each instance, it computes the smooth L1 loss element by element first
5575
    and then sums all the losses. So the shape of ouput Variable is
5576
    [batch_size, 1].
5577

5578 5579
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5580
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5581
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5582
            L1 loss op with same shape as :attr:`x`.
5583
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5584 5585
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5586
            by this tensor element by element.
5587
        outside_weight (Variable|None): A tensor with rank at least 2. This
5588 5589
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5590
            element by element.
5591
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5592 5593
           scalar with default value 1.0.

5594
    Returns:
5595
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5596 5597 5598 5599 5600

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5601 5602
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5603
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5604
            out = fluid.layers.smooth_l1(x=fc, y=label)
5605
    """
5606

5607
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5608 5609
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5622 5623 5624 5625


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5626
    This layer creates the one-hot representations for input indices.
5627 5628

    Args:
Y
Yibing Liu 已提交
5629 5630
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5631 5632

    Returns:
Y
Yibing Liu 已提交
5633
        Variable: The one-hot representations of input.
5634 5635

    Examples:
C
caoying03 已提交
5636
        .. code-block:: python
5637

Y
Yibing Liu 已提交
5638 5639
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5640 5641
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5642
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5643 5644 5645 5646 5647 5648
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5649 5650


Y
Yu Yang 已提交
5651
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5652
    """
Y
yi.wu 已提交
5653 5654 5655
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5656 5657 5658 5659 5660 5661

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5662 5663
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5664 5665 5666 5667 5668 5669

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5670 5671
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5672 5673
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5674 5675 5676 5677 5678
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5679
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5680
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5681 5682
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5683 5684
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5685 5686 5687
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5688 5689


5690
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5691
    """
C
caoying03 已提交
5692 5693
    Gives a new shape to the input Tensor without changing its data.

5694 5695 5696 5697 5698
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5699

5700
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5701

5702 5703 5704 5705
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5706
    2. 0 means the actual dimension value is going to be copied from the
5707 5708 5709 5710
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5711 5712

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5713
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5714
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5715

5716
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5717 5718
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5719 5720
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5721
    dimensions.
C
caoying03 已提交
5722

5723
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5724 5725 5726 5727
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5728 5729

    Args:
5730
        x(variable): The input tensor.
C
caoying03 已提交
5731 5732
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5733 5734 5735 5736 5737
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5738 5739
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5740 5741 5742 5743 5744 5745 5746
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5747
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5748

5749
    Returns:
G
guosheng 已提交
5750 5751 5752 5753
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5754

X
Xin Pan 已提交
5755 5756 5757
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5758 5759
    Examples:
        .. code-block:: python
G
guosheng 已提交
5760

5761
            data = fluid.layers.data(
5762
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5763
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5764
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5765 5766 5767
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5768
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5769 5770 5771 5772 5773
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5774

5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5790
    helper = LayerHelper("reshape2", **locals())
5791 5792
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5793
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5794
    helper.append_op(
5795
        type="reshape2",
X
Xin Pan 已提交
5796
        inputs=inputs,
D
dzhwinter 已提交
5797
        attrs={"shape": shape},
5798 5799
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5800

D
dzhwinter 已提交
5801
    return helper.append_activation(out)
5802

5803

5804
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5805
    """
M
minqiyang 已提交
5806 5807 5808
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5809
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5810

H
haowang101779990 已提交
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
5832

Y
Yibing Liu 已提交
5833
    Args:
5834
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5835
        axes (list): List of integers, indicating the dimensions to be squeezed.
5836
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5837 5838 5839 5840 5841 5842 5843 5844

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5845
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5846 5847
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5848 5849
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5850
    helper.append_op(
5851
        type="squeeze2",
5852
        inputs={"X": input},
Y
Yibing Liu 已提交
5853
        attrs={"axes": axes},
5854 5855
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5856

5857 5858 5859
    return out


5860
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5861
    """
M
minqiyang 已提交
5862 5863 5864
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5865

M
minqiyang 已提交
5866
    For example:
H
haowang101779990 已提交
5867 5868 5869

    .. code-block:: text

M
minqiyang 已提交
5870
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5871
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5872

Y
Yibing Liu 已提交
5873
    Args:
5874
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5875
        axes (list): List of integers, indicating the dimensions to be inserted.
5876
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5877 5878 5879 5880 5881 5882 5883 5884

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5885
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5886 5887
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5888 5889
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5890
    helper.append_op(
5891
        type="unsqueeze2",
5892
        inputs={"X": input},
Y
Yibing Liu 已提交
5893
        attrs={"axes": axes},
5894 5895
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5896

5897 5898
    return out

5899

Y
yangyaming 已提交
5900
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5901
    """
Y
Yibing Liu 已提交
5902
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5903 5904 5905 5906
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5907
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5908 5909 5910 5911 5912 5913

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5914
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5915 5916 5917
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5918
            target_lod: [4, 2]
Y
yangyaming 已提交
5919 5920

            then we get a 1-level LoDTensor:
5921
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5922 5923 5924 5925 5926 5927
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5928
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5929 5930 5931 5932
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5933
                y.data = [[2, 4]]
Y
yangyaming 已提交
5934 5935 5936
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5937
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5938 5939 5940 5941 5942 5943
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5944
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5945 5946 5947 5948
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5949
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5950 5951 5952 5953
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5954
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5955 5956 5957 5958 5959
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5960
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5961
                           from :attr:`y`.
Y
yangyaming 已提交
5962
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5963
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5964 5965

    Returns:
Y
Yibing Liu 已提交
5966
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5967 5968

    Raises:
Y
Yibing Liu 已提交
5969
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5970 5971 5972 5973 5974 5975 5976 5977 5978

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5979
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6005
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6034 6035
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6048 6049 6050
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6064 6065 6066 6067


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6068
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6069
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6070

G
guosheng 已提交
6071 6072 6073 6074
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6097
                         The length of :attr:paddings must be
G
guosheng 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6108

G
guosheng 已提交
6109 6110 6111 6112 6113 6114
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6115
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6116 6117 6118 6119 6120 6121 6122
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6123 6124


C
chengduo 已提交
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6156 6157
		And
            pad_value = -1,
C
chengduo 已提交
6158

T
Tink_Y 已提交
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6194
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6195 6196 6197 6198 6199 6200 6201 6202 6203
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6204 6205 6206 6207 6208 6209 6210
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6211 6212
    called label-smoothing regularization (LSR).

6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6236
                              be :math:`(1, class\_num)`.
6237 6238
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6239
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6259
    smooth_label = helper.create_variable_for_type_inference(dtype)
6260 6261 6262 6263 6264 6265 6266
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6267 6268


W
wopeizl 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6305 6306


J
jerrywgz 已提交
6307 6308 6309 6310 6311 6312
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6313 6314
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6331 6332 6333
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6334 6335 6336 6337 6338 6339
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6340
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6381 6382
        .. code-block:: python

W
whs 已提交
6383 6384 6385 6386
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6387
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6388 6389 6390 6391 6392 6393
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6394 6395


6396 6397 6398 6399
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6400 6401
                 resample='BILINEAR',
                 actual_shape=None):
6402
    """
Q
qiaolongfei 已提交
6403
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6404

6405
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6406 6407 6408
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6409

6410
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6411

6412
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6413

6414
    Args:
6415
        input (Variable): The input tensor of image resize layer,
6416 6417
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6418
        out_shape(list|tuple|Variable|None): Output shape of image resize
6419 6420
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6421
        scale(float|None): The multiplier for the input height or width.
6422 6423 6424
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6425 6426
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6427
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6428
                       currently.
6429
                       Default: 'BILINEAR'
6430 6431 6432
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6433
                                :attr:`out_shape` and :attr:`scale` specifying
6434 6435 6436 6437 6438 6439 6440
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6441 6442
                                constructing stage.
                                Default: None
6443 6444

    Returns:
Q
update  
qiaolongfei 已提交
6445 6446
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6447

6448 6449 6450
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6451
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6452 6453 6454 6455
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6456 6457 6458
    Examples:
        .. code-block:: python

6459
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6460
    """
6461 6462 6463 6464
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6465 6466
    if resample not in resample_methods:
        raise ValueError(
6467
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6468
        )
6469
    resample_type = resample_methods[resample]
6470
    if out_shape is None and scale is None:
6471
        raise ValueError("One of out_shape and scale must not be None.")
6472
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6473
    dtype = helper.input_dtype()
6474 6475 6476 6477

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6478 6479 6480
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6481
    if out_shape is not None:
6482 6483 6484 6485
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6486
            inputs['OutSize'] = out_shape
6487 6488 6489 6490 6491 6492 6493 6494
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6495 6496 6497 6498
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6499 6500 6501 6502 6503
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6504
    out = helper.create_variable_for_type_inference(dtype)
6505
    helper.append_op(
6506
        type='{}_interp'.format(resample_type),
6507
        inputs=inputs,
6508
        outputs={"Out": out},
6509 6510 6511
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6512
    return out
F
stash  
fengjiayi 已提交
6513 6514


6515
@templatedoc(op_type="bilinear_interp")
6516 6517 6518 6519 6520
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6521
    """
6522 6523
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6524 6525
    in priority order.

6526 6527 6528 6529
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6530 6531
    again in the other direction.

6532
    For details of bilinear interpolation, please refer to Wikipedia:
6533
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6534 6535 6536 6537 6538

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6539

Y
yuyang18 已提交
6540 6541 6542 6543 6544
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6545 6546 6547
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6548
                                :attr:`out_shape` and :attr:`scale` specifying
6549 6550 6551 6552 6553 6554 6555
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6556 6557
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6558 6559 6560

    Returns:
        ${out_comment}.
6561 6562 6563 6564 6565

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6566 6567
    """

6568
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6569 6570


6571
@templatedoc(op_type="nearest_interp")
6572 6573 6574 6575 6576
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6577
    """
6578
    Resize input by performing nearest neighbor interpolation in both the
6579 6580
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6581 6582
    out_shape and scale in priority order.

6583
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6584
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6585 6586 6587 6588 6589

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6590

Y
yuyang18 已提交
6591 6592 6593 6594 6595
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6596 6597 6598
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6599
                                :attr:`out_shape` and :attr:`scale` specifying
6600 6601 6602 6603 6604 6605 6606
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6607 6608
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6609 6610 6611

    Returns:
        ${out_comment}.
6612 6613 6614 6615 6616

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6617 6618
    """

6619
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6620 6621 6622 6623


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6624 6625 6626
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6627 6628 6629 6630 6631 6632 6633
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6634
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6635

6636
    Returns:
Q
update  
qiaolongfei 已提交
6637
        Variable: The output is a 4-D tensor of the shape
6638
        (num_batches, channls, out_h, out_w).
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6649 6650 6651
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6652 6653 6654
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6655 6656
def gather(input, index):
    """
Q
qiaolongfei 已提交
6657 6658
    **Gather Layer**

6659
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6660 6661 6662 6663
    of X indexed by `index` and concatenate them together.

    .. math::

6664
        Out = X[Index]
W
whs 已提交
6665 6666 6667 6668 6669 6670 6671


    .. code-block:: text


                Given:

6672 6673
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6684
        input (Variable): The source input with rank>=1.
W
whs 已提交
6685 6686 6687 6688 6689 6690
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6691

W
whs 已提交
6692 6693 6694 6695 6696 6697
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6698
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6699 6700 6701 6702 6703 6704 6705 6706
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6738
    out = helper.create_variable_for_type_inference(dtype)
6739 6740 6741 6742 6743 6744 6745 6746 6747
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6748 6749 6750 6751 6752 6753 6754 6755 6756
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
6757

Q
Qingsheng Li 已提交
6758
    Given the following input:
H
haowang101779990 已提交
6759

Q
Qingsheng Li 已提交
6760
    .. code-block:: text
H
haowang101779990 已提交
6761

Q
Qingsheng Li 已提交
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
6774

Q
Qingsheng Li 已提交
6775
    .. code-block:: text
H
haowang101779990 已提交
6776

Q
Qingsheng Li 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
6792
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6803
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6826

6827 6828 6829
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6830
    """
F
stash  
fengjiayi 已提交
6831
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6832
    dtype = x.dtype
X
Xin Pan 已提交
6833
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6834
    if seed is None:
6835
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6836
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6837
    if isinstance(seed, int):
F
fengjiayi 已提交
6838 6839 6840 6841 6842
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6843 6844 6845 6846
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6847
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6848 6849
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6850 6851
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6852
    return out
W
whs 已提交
6853 6854


6855
def log(x, name=None):
W
wanghaoshuang 已提交
6856 6857 6858 6859 6860
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6861
        Out = \\ln(x)
W
wanghaoshuang 已提交
6862 6863

    Args:
6864
        x (Variable): Input tensor.
6865 6866
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6867 6868 6869 6870 6871 6872 6873 6874

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6875
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6876 6877
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6878
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6879
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6880
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6881 6882 6883
    return out


6884
def relu(x, name=None):
W
wanghaoshuang 已提交
6885 6886
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6887
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6888 6889 6890 6891
    the tensor elementwise.

    .. math::

6892
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6893 6894

    Args:
6895
        x (Variable): The input tensor.
6896 6897
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6898 6899 6900 6901 6902 6903 6904 6905

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6906
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6907 6908
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6909
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6910
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6911 6912
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6913
    return out
6914 6915


C
chengduo 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6957 6958 6959
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6960 6961 6962 6963
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6964
    .. math::
6965

H
haowang101779990 已提交
6966
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6967

6968
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6969 6970 6971 6972 6973
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6974
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6975
                           Its shape should be the same as input.
6976
        num_classes (int): The possible number of labels.
W
whs 已提交
6977 6978

    Returns:
M
minqiyang 已提交
6979 6980
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
6981
                     Three variables:
M
minqiyang 已提交
6982

H
haowang101779990 已提交
6983 6984 6985
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6986 6987 6988 6989

    Examples:

        .. code-block:: python
6990

W
whs 已提交
6991 6992 6993 6994
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6995 6996 6997
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6998 6999
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7000 7001
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7002
        outputs={
W
whs 已提交
7003 7004 7005
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7006 7007 7008
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7077
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7078 7079 7080 7081 7082

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7083
            isinstance(shape, Variable)):
7084 7085 7086 7087 7088
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7089
    out = helper.create_variable_for_type_inference(x.dtype)
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7107 7108


W
whs 已提交
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7126

W
whs 已提交
7127
              out_shape = [2, 3, 5, 5]
7128

W
whs 已提交
7129
          Step 1:
7130

W
whs 已提交
7131 7132 7133
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7134

W
whs 已提交
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7180
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7181
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7194

W
whs 已提交
7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7206
            isinstance(out_shape, Variable)):
W
whs 已提交
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7228 7229
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7230

7231 7232
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7233
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7234 7235 7236
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7237

7238 7239
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7240

H
haowang101779990 已提交
7241 7242
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7243 7244
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7245

H
haowang101779990 已提交
7246 7247 7248 7249 7250 7251 7252 7253
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7254 7255 7256

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7291
    out = helper.create_variable_for_type_inference("float32")
7292 7293 7294 7295 7296 7297 7298 7299

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7300 7301


M
minqiyang 已提交
7302 7303
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7304
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7305
    which compares left score and right score passed in.
M
minqiyang 已提交
7306
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7307 7308 7309

    .. math::

H
haowang101779990 已提交
7310
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7311 7312

    Args:
M
minqiyang 已提交
7313
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7314 7315
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7316
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7317 7318
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7319

M
minqiyang 已提交
7320
    Returns:
M
minqiyang 已提交
7321
       Variable: The ranking loss.
H
haowang101779990 已提交
7322

M
minqiyang 已提交
7323
    Raises:
M
minqiyang 已提交
7324
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7325

M
minqiyang 已提交
7326
    Examples:
H
haowang101779990 已提交
7327

M
minqiyang 已提交
7328
        .. code-block:: python
H
haowang101779990 已提交
7329

M
minqiyang 已提交
7330 7331 7332 7333 7334
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7335
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7336 7337 7338 7339 7340 7341
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7342 7343
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7367
        .. code-block:: text
W
whs 已提交
7368

T
Tink_Y 已提交
7369
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7370

T
Tink_Y 已提交
7371 7372
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7373

T
Tink_Y 已提交
7374
	      Case 0:
M
minqiyang 已提交
7375

T
Tink_Y 已提交
7376 7377 7378
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7379

T
Tink_Y 已提交
7380 7381 7382
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7383

T
Tink_Y 已提交
7384
	      Case 1:
M
minqiyang 已提交
7385

T
Tink_Y 已提交
7386 7387
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7388

T
Tink_Y 已提交
7389 7390 7391
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7392

T
Tink_Y 已提交
7393
	      Case 2:
M
minqiyang 已提交
7394

T
Tink_Y 已提交
7395 7396
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7397

T
Tink_Y 已提交
7398 7399 7400
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7401 7402


W
whs 已提交
7403 7404
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7405
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7429
    out = helper.create_variable_for_type_inference(dtype)
7430 7431 7432 7433 7434 7435 7436 7437 7438
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7439
    helper.append_op(
7440
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7441 7442 7443 7444

    return out


7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7457 7458 7459 7460 7461

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7462 7463
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7464 7465
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7466
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7487 7488 7489 7490 7491

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7492 7493
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7494 7495
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7496
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7517 7518 7519 7520 7521

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7522 7523
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7524 7525
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7526
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7548 7549 7550 7551 7552

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7553
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7554
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7555 7556
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7557
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7580 7581 7582 7583 7584

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7585 7586
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7587 7588
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7589
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7611 7612 7613 7614 7615

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7616 7617
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7618 7619
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7620
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7621 7622 7623 7624 7625 7626 7627 7628
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7629 7630 7631 7632
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
7633 7634
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
7635 7636 7637

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7638
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7639
          weight (alpha).
J
jerrywgz 已提交
7640
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7641 7642 7643
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7644
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7645
          will be named automatically.
J
jerrywgz 已提交
7646 7647 7648 7649 7650 7651 7652 7653

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7654
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7668
        attr=helper.param_attr,
J
jerrywgz 已提交
7669 7670 7671 7672
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7673
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7674 7675 7676 7677 7678 7679 7680 7681 7682
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7693
    Returns:
7694
        output(${out_type}): ${out_comment}
7695 7696 7697

    Examples:

7698
    .. code-block:: python
7699

H
haowang101779990 已提交
7700 7701
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7702 7703
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7704
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7723
    Returns:
7724
        output(${out_type}): ${out_comment}
7725 7726 7727 7728 7729

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7730 7731
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
7732 7733
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7734
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7752
    Returns:
7753
        output(${out_type}): ${out_comment}
7754 7755 7756 7757 7758

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7759 7760
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
7761 7762
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7763
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7764 7765 7766 7767 7768 7769 7770 7771
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7772 7773 7774 7775
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
7776

H
haowang101779990 已提交
7777
    For Example:
M
minqiyang 已提交
7778

H
haowang101779990 已提交
7779
    .. code-block:: text
7780

H
haowang101779990 已提交
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
7802 7803 7804

    Args:
        x (Variable): A tensor of rank >= axis.
7805 7806
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7807 7808 7809 7810 7811 7812 7813 7814
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
7815 7816 7817
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
7818 7819 7820 7821
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7822
        ValueError: If axis is not in range [0, rank(x)].
7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7839 7840
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7841
    helper.append_op(
7842
        type='flatten2',
7843
        inputs={"X": x},
7844 7845
        outputs={'Out': out,
                 'XShape': x_shape},
7846 7847
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7848 7849


C
chenweihang 已提交
7850
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7851
    """
C
chenweihang 已提交
7852
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7853
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7854 7855
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7856

H
haowang101779990 已提交
7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
7874 7875

    Args:
C
chenweihang 已提交
7876 7877 7878
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7890 7891
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7892 7893 7894 7895 7896 7897
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7898
    return out
7899

7900

S
sneaxiy 已提交
7901 7902 7903 7904 7905 7906 7907 7908 7909
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7910

S
sneaxiy 已提交
7911
    .. math::
7912

S
sneaxiy 已提交
7913 7914 7915
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7916
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7917 7918 7919 7920
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7921 7922 7923
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7924 7925
    Returns:
        Variable: The output sequence mask.
7926

S
sneaxiy 已提交
7927 7928
    """

Q
qingqing01 已提交
7929
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7930
    if name is None:
X
Xin Pan 已提交
7931
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7932
    else:
X
Xin Pan 已提交
7933
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7934

Q
qingqing01 已提交
7935 7936 7937
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7938 7939
        outputs={'Y': out},
        attrs={
7940
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7941 7942 7943
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7944 7945


X
Xin Pan 已提交
7946
def stack(x, axis=0):
S
sneaxiy 已提交
7947 7948 7949 7950
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7951 7952 7953 7954 7955 7956 7957

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7958
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7959
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7960 7961

    Args:
7962
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7963
        axis (int|None): The axis along which all inputs are stacked.
7964

S
sneaxiy 已提交
7965 7966
    Returns:
        Variable: The stacked variable.
7967

S
sneaxiy 已提交
7968 7969
    """

X
Xin Pan 已提交
7970 7971 7972 7973 7974 7975
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7976
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7977
    helper.append_op(
S
sneaxiy 已提交
7978 7979
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7980

X
Xin Pan 已提交
7981
    return out
D
dzhwinter 已提交
7982 7983 7984 7985 7986 7987 7988


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7989

D
dzhwinter 已提交
7990 7991 7992
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7993
    raised.
D
dzhwinter 已提交
7994 7995

    Args:
M
minqiyang 已提交
7996
        x (Variable): Input variable.
D
dzhwinter 已提交
7997 7998
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7999

D
dzhwinter 已提交
8000 8001
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8002

D
dzhwinter 已提交
8003 8004 8005 8006 8007 8008 8009 8010 8011 8012
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8013
    for _ in range(num):
X
Xin Pan 已提交
8014
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8015 8016 8017 8018 8019 8020 8021 8022

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8035

W
whs 已提交
8036 8037 8038 8039
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8040

W
whs 已提交
8041
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8042

W
whs 已提交
8043
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8044

W
whs 已提交
8045 8046 8047 8048
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8049

W
whs 已提交
8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8066
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8067 8068 8069 8070 8071 8072
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8073 8074


G
fix  
gongweibao 已提交
8075 8076 8077
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8078
@templatedoc()
G
fix  
gongweibao 已提交
8079 8080 8081 8082 8083 8084 8085 8086 8087
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8088
    ${comment}
G
fix  
gongweibao 已提交
8089 8090

    Args:
G
gongweibao 已提交
8091 8092 8093
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8094
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8095 8096 8097
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8098 8099
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8100
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8101

8102 8103 8104 8105 8106
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8107 8108 8109
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8110
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8127 8128


G
gongweibao 已提交
8129
@templatedoc()
X
Xin Pan 已提交
8130
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8131
    """
G
gongweibao 已提交
8132
    ${comment}
G
fix  
gongweibao 已提交
8133 8134

    Args:
G
gongweibao 已提交
8135 8136 8137 8138
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8139 8140 8141
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8142
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8143

8144 8145 8146 8147
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8148 8149 8150
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8151
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8162
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8163 8164 8165 8166 8167
        })

    return out


G
gongweibao 已提交
8168
@templatedoc()
G
fix  
gongweibao 已提交
8169
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8170
    """
G
gongweibao 已提交
8171
    ${comment}
G
fix  
gongweibao 已提交
8172 8173

    Args:
G
gongweibao 已提交
8174 8175 8176 8177
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8178
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8179 8180

    Returns:
G
gongweibao 已提交
8181
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8182

8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8193 8194 8195
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8196
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8208
@templatedoc()
G
fix  
gongweibao 已提交
8209 8210 8211 8212 8213 8214 8215 8216 8217
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8218
    ${comment}
G
fix  
gongweibao 已提交
8219 8220

    Args:
G
gongweibao 已提交
8221 8222
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8223
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8224 8225 8226 8227
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8228
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8229 8230

    Returns:
G
gongweibao 已提交
8231
        out (Variable): ${out_comment}
8232 8233 8234 8235 8236 8237 8238 8239

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8240 8241 8242
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8243
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8262
@templatedoc()
X
Xin Pan 已提交
8263
def sum(x):
G
fix  
gongweibao 已提交
8264
    """
G
gongweibao 已提交
8265
    ${comment}
G
fix  
gongweibao 已提交
8266 8267

    Args:
G
gongweibao 已提交
8268
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8269 8270

    Returns:
G
gongweibao 已提交
8271
        out (Variable): ${out_comment}
8272 8273 8274 8275 8276 8277

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8278 8279 8280
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8281 8282
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8283 8284 8285 8286
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8287
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8288 8289 8290 8291

    return out


G
gongweibao 已提交
8292
@templatedoc()
G
fix  
gongweibao 已提交
8293 8294
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8295
    ${comment}
G
fix  
gongweibao 已提交
8296 8297

    Args:
G
gongweibao 已提交
8298 8299 8300 8301
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8302 8303

    Returns:
G
gongweibao 已提交
8304
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8305

8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8317 8318 8319
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8320 8321
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8333
@templatedoc()
G
fix  
gongweibao 已提交
8334 8335
def shape(input):
    """
G
gongweibao 已提交
8336
    ${comment}
G
fix  
gongweibao 已提交
8337 8338

    Args:
G
gongweibao 已提交
8339
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8340 8341

    Returns:
G
gongweibao 已提交
8342
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8343

8344 8345 8346 8347 8348 8349
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8350 8351 8352
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8353 8354
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8355
    helper.append_op(
G
fix  
gongweibao 已提交
8356
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8357 8358

    return out
G
merge  
gongweibao 已提交
8359 8360


S
sneaxiy 已提交
8361 8362 8363 8364 8365 8366 8367 8368
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8369 8370
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8371
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8372 8373 8374
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8375

S
sneaxiy 已提交
8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8387
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8388 8389 8390 8391 8392 8393 8394 8395
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8396
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8397
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8398 8399 8400 8401 8402 8403

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8404
    if name is None:
X
Xin Pan 已提交
8405
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8406 8407 8408
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8419
    return helper.append_activation(out)
S
sneaxiy 已提交
8420 8421


X
Xin Pan 已提交
8422
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8423 8424 8425
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8426
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8427 8428 8429
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8430
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8431 8432 8433
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8434
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8435 8436 8437
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8438
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8439 8440 8441
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8442
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8443 8444 8445
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8446
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8458 8459
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8460
        ])
M
minqiyang 已提交
8461 8462


8463
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8464 8465
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8466 8467
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8468 8469 8470

    if out is None:
        if name is None:
X
Xin Pan 已提交
8471
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8487
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8499 8500 8501 8502 8503 8504 8505 8506 8507

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8508 8509 8510 8511 8512 8513 8514
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8515
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8527 8528 8529 8530 8531 8532 8533 8534 8535

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8536 8537 8538 8539 8540 8541 8542
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8543
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8555 8556 8557 8558 8559 8560 8561 8562 8563

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8564 8565 8566 8567 8568 8569 8570
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8571
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8572 8573 8574 8575 8576 8577 8578 8579 8580 8581
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8582 8583 8584 8585 8586 8587 8588

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8589 8590 8591 8592
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8608 8609 8610 8611 8612 8613 8614

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8615 8616 8617 8618 8619
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8620 8621 8622 8623
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8647 8648 8649 8650 8651 8652 8653

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8654 8655 8656 8657 8658
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8659 8660 8661 8662
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8663 8664 8665 8666 8667 8668 8669 8670

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8689
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8690 8691 8692 8693 8694 8695 8696 8697 8698 8699
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8742
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8743 8744 8745 8746 8747 8748 8749 8750 8751
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8752 8753
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8754 8755 8756 8757 8758 8759
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8760 8761 8762 8763
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8764 8765 8766 8767 8768 8769
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8770
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8771 8772 8773 8774 8775 8776 8777 8778 8779
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8780
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8781 8782 8783 8784 8785 8786 8787 8788
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8789
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8810
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8811 8812 8813 8814 8815 8816 8817 8818 8819 8820
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8821 8822


J
JiabinYang 已提交
8823
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8824
    """
J
JiabinYang 已提交
8825
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8826 8827 8828

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8829
    The attr blocksize indicates the input block size.
8830 8831

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8832
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8833 8834

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8835
    (but keeping all data)
J
JiabinYang 已提交
8836

J
JiabinYang 已提交
8837
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8838
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8839 8840 8841 8842 8843
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8844
    Args:
J
JiabinYang 已提交
8845
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8846
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8847 8848

    Returns:
J
JiabinYang 已提交
8849
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8850 8851

    Raises:
J
JiabinYang 已提交
8852
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8853 8854 8855 8856 8857 8858

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8859
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8860
                x=data, blocksize=2)
J
JiabinYang 已提交
8861 8862
    """

J
JiabinYang 已提交
8863
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8864

J
JiabinYang 已提交
8865 8866
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8867 8868

    if name is None:
J
JiabinYang 已提交
8869 8870
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8871 8872 8873 8874 8875
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8876
        type="space_to_depth",
J
JiabinYang 已提交
8877
        inputs={"X": x},
J
JiabinYang 已提交
8878
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8879
        outputs={"Out": out})
J
JiabinYang 已提交
8880 8881
    return out

J
JiabinYang 已提交
8882

S
sneaxiy 已提交
8883 8884
@templatedoc()
def sequence_reverse(x, name=None):
8885
    """
S
sneaxiy 已提交
8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8897
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8898 8899 8900 8901 8902 8903 8904 8905 8906 8907
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8908 8909


8910 8911 8912 8913 8914 8915
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8916

8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8936
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8949 8950


B
barrierye 已提交
8951
def similarity_focus(input, axis, indexes, name=None):
8952
    """
B
barrierye 已提交
8953
    SimilarityFocus Operator
B
barrierye 已提交
8954 8955

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
8956

8957 8958 8959
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8960
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8961 8962 8963 8964 8965 8966 8967
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8968
       each index.
B
barrierye 已提交
8969 8970 8971 8972
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9022
    Args:
9023
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9024
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9025
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9026
            1, 2 or 3.
B
barrierye 已提交
9027
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9028 9029

    Returns:
H
haowang101779990 已提交
9030 9031
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9032

B
barrierye 已提交
9033 9034
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9035

B
barrierye 已提交
9036
            data = fluid.layers.data(
B
barrierye 已提交
9037 9038
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9039

B
barrierye 已提交
9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9052 9053 9054 9055 9056
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9057 9058 9059 9060 9061 9062 9063
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9064 9065


M
minqiyang 已提交
9066 9067
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9068 9069
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9070 9071
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9110
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9111
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9112 9113 9114 9115 9116 9117

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9118

M
minqiyang 已提交
9119 9120 9121
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9122 9123
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9124 9125
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9126 9127 9128 9129 9130 9131 9132
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9133 9134


D
dengkaipeng 已提交
9135
@templatedoc()
9136 9137
def grid_sampler(x, grid, name=None):
    """
9138
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9139
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9140 9141 9142 9143
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9144
    interpolation value of 4 nearest corner points.
9145

H
haowang101779990 已提交
9146
    .. code-block:: text
9147

H
haowang101779990 已提交
9148 9149
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9150

H
haowang101779990 已提交
9151 9152
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9153

H
haowang101779990 已提交
9154 9155 9156
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9157

H
haowang101779990 已提交
9158 9159 9160 9161 9162 9163 9164 9165 9166
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9167

H
haowang101779990 已提交
9168 9169 9170 9171
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9172

H
haowang101779990 已提交
9173 9174 9175 9176
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9177

H
haowang101779990 已提交
9178 9179 9180 9181
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9182

H
haowang101779990 已提交
9183 9184
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9185 9186

    Args:
9187 9188 9189
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9190 9191

    Returns:
H
haowang101779990 已提交
9192
        Variable: Output of shape [N, C, H, W] data samples input X
9193 9194
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9195 9196 9197 9198 9199 9200 9201 9202
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9203

D
dengkaipeng 已提交
9204 9205 9206 9207 9208 9209 9210 9211 9212
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9213
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9214 9215
    ipts = {'X': x, 'Grid': grid}

9216
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9217 9218 9219
    return out


G
gmcather 已提交
9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9271
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9272 9273
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9274
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9275 9276

    .. math::
H
haowang101779990 已提交
9277 9278 9279
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9280 9281

    Where:
H
haowang101779990 已提交
9282 9283
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9298

G
gmcather 已提交
9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9315 9316 9317 9318 9319 9320 9321 9322 9323 9324


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9325
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9326

Q
Qiao Longfei 已提交
9327
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9328 9329 9330
    For example:

    .. math::
H
haowang101779990 已提交
9331
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9332

Q
Qiao Longfei 已提交
9333
    In this formula:
9334 9335
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9336
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9337
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9338 9339 9340
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9341 9342
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9343 9344 9345
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9346
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9347
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9348
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9349 9350 9351 9352
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9353
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9354 9355 9356 9357

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9358
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9359 9360
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9361
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9362 9363 9364 9365

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9366
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9407 9408


S
sneaxiy 已提交
9409
class PyFuncRegistry(object):
S
sneaxiy 已提交
9410 9411 9412
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9413
        if func is None or not callable(func):
S
sneaxiy 已提交
9414 9415 9416
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9417
        # find named args using reflection
S
sneaxiy 已提交
9418 9419 9420 9421 9422 9423 9424
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9425 9426 9427
        '''
        Why record self here?

M
minqiyang 已提交
9428 9429
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9430
           to find the registered function corresponding
M
minqiyang 已提交
9431
           to :code:`idx`.
S
sneaxiy 已提交
9432

M
minqiyang 已提交
9433 9434
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9435
           whose reference count is 1 would cause
M
minqiyang 已提交
9436
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9437 9438
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9439
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9454 9455 9456 9457 9458 9459 9460 9461 9462
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9463

S
sneaxiy 已提交
9464 9465
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9466 9467

        ret = []
S
sneaxiy 已提交
9468 9469 9470
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9471 9472
                continue

S
sneaxiy 已提交
9473 9474
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9475

S
sneaxiy 已提交
9476 9477 9478
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9479

S
sneaxiy 已提交
9480
        return tuple(ret)
S
sneaxiy 已提交
9481 9482


S
sneaxiy 已提交
9483 9484 9485 9486
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
9487

S
sneaxiy 已提交
9488 9489 9490 9491 9492 9493 9494 9495
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9496
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9497

S
sneaxiy 已提交
9498 9499
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9500 9501 9502 9503
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9504
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
9505
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
9506 9507
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9508 9509 9510 9511 9512
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
9513
            should create :code:`out` beforehand.
S
sneaxiy 已提交
9514
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
9515
                                       None means no backward. Default None.
S
sneaxiy 已提交
9516
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
9517
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
9518 9519
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
9520
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
9521 9522 9523

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9524 9525

    Examples:
M
minqiyang 已提交
9526

S
sneaxiy 已提交
9527 9528 9529 9530 9531
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
9532
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
9533 9534
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
9535
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
9536 9537 9538
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
9539
        >>>
S
sneaxiy 已提交
9540 9541 9542 9543 9544
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
9545
        >>>     print(x)
S
sneaxiy 已提交
9546 9547 9548 9549 9550 9551
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
9552
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
9553 9554
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
9555 9556
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
9557 9558 9559 9560 9561 9562 9563 9564
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9565
    """
S
sneaxiy 已提交
9566
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9567 9568 9569
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9570
        x = [x]
S
sneaxiy 已提交
9571 9572
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9573

S
sneaxiy 已提交
9574 9575 9576
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9577
        out_list = [out]
S
sneaxiy 已提交
9578
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9579
        out_list = out
S
sneaxiy 已提交
9580 9581 9582
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9583

S
sneaxiy 已提交
9584 9585
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9586
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9587 9588

    for each_out in out_list:
S
sneaxiy 已提交
9589 9590
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9591 9592
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9593

S
sneaxiy 已提交
9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9609 9610 9611 9612

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9613 9614
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9615 9616 9617
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9618
        })
S
sneaxiy 已提交
9619
    return out
S
sneaxiy 已提交
9620 9621 9622


# For debug usage
S
sneaxiy 已提交
9623 9624 9625 9626
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9679

M
minqiyang 已提交
9680

M
minqiyang 已提交
9681
def huber_loss(input, label, delta):
9682
    """
M
minqiyang 已提交
9683 9684 9685
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9686 9687 9688 9689

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9690
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9691 9692 9693 9694

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9695
        huber\_loss = 0.5 * (label - input) * (label - input)
9696 9697 9698 9699 9700 9701 9702


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9703
        delta (float): The parameter of huber loss, which controls
9704 9705 9706
                       the range of outliers

    Returns:
M
minqiyang 已提交
9707
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9708 9709 9710 9711 9712

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9713
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9714
    """
M
minqiyang 已提交
9715
    helper = LayerHelper('huber_loss', **locals())
9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out