framework.py 191.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66 67
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
68
_current_device = None
69 70
global_prog_seed = 0

71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
179
def in_dygraph_mode():
L
lujun 已提交
180
    """
181 182 183 184
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
185
    This function checks whether the program runs in dynamic graph mode or not.
186 187 188
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
189 190

    Returns:
Y
Youwei Song 已提交
191
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
192 193 194 195

    Examples:
        .. code-block:: python

196
            import paddle.fluid as fluid
L
lujun 已提交
197

198 199 200 201
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
202
    """
L
lujun 已提交
203
    return _dygraph_tracer_ is not None
204 205


206 207 208
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
209
        ), "We don't support %s in imperative mode" % func.__name__
210 211 212 213 214 215 216 217
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
218
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


240 241
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
242
fake_interface_only = wrap_decorator(_fake_interface_only_)
243 244


L
lujun 已提交
245 246
def _dygraph_tracer():
    return _dygraph_tracer_
247

W
Wu Yi 已提交
248

M
minqiyang 已提交
249
def _current_expected_place():
L
lujun 已提交
250
    return _dygraph_current_expected_place_
M
minqiyang 已提交
251 252


L
Leo Chen 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
270
def _cpu_num():
271
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
272 273 274 275 276 277 278 279
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
280
        os.environ['CPU_NUM'] = str(1)
281
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
282 283 284 285 286 287 288 289 290 291
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
292 293


C
chengduo 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
309
def cuda_places(device_ids=None):
L
lujun 已提交
310
    """
311 312 313 314 315
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
316 317

    If :code:`device_ids` is None, environment variable of
318
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
319 320 321
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
322
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
323 324

    If :code:`device_ids` is not None, it should be the device
325
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
326 327 328
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
329 330
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
331 332

    Returns:
333
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
334 335 336 337

    Examples:
        .. code-block:: python

338
            import paddle.fluid as fluid
L
lujun 已提交
339 340 341
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
342 343 344
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
345
        device_ids = _cuda_ids()
S
sneaxiy 已提交
346 347 348 349 350 351
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
352
    """
353
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
354 355 356
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
357 358
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
359 360
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
361

362 363
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
364 365

    Returns:
366
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
367 368 369 370

    Examples:
        .. code-block:: python

371
            import paddle.fluid as fluid
L
lujun 已提交
372 373 374
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
375 376 377 378 379 380
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
381
    """
382
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
383 384 385

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
386 387 388 389
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
390

391 392
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
393 394

    Returns:
395
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
396 397 398 399

    Examples:
        .. code-block:: python

400
            import paddle.fluid as fluid
L
lujun 已提交
401 402 403 404 405
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
406 407 408
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
409 410
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
411 412


413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
439
@signature_safe_contextmanager
440 441
def name_scope(prefix=None):
    """
442 443
    :api_attr: Static Graph

444 445
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
446 447 448
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
449 450

    Args:
T
Tao Luo 已提交
451
        prefix(str, optional): prefix. Default is none.
452 453 454

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
455

456
          import paddle.fluid as fluid
457
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
458 459 460 461 462 463
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
464
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
465
                f = fluid.layers.pow(d, 2.0)
466
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
486 487
    """
    # TODO(panyx0718): Only [0-9a-z].
488
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
489 490 491
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
492
        assert prefix, "namescope prefix can not be empty."
493 494
        global _name_scope
        _name_scope = _name_scope.child(prefix)
495 496 497 498
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
499 500 501 502 503 504 505 506 507 508 509 510


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
511 512 513
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
514 515 516 517


def grad_var_name(var_name):
    """
518 519
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
520 521 522
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
523

524
def convert_np_dtype_to_dtype_(np_dtype):
525 526
    """
    Convert the data type in numpy to the data type in Paddle
527

528
    Args:
529
        np_dtype(np.dtype): the data type in numpy.
530

531 532
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
533 534

    """
535 536
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
537
        return core.VarDesc.VarType.FP32
538
    elif dtype == np.float64:
539
        return core.VarDesc.VarType.FP64
540
    elif dtype == np.float16:
541
        return core.VarDesc.VarType.FP16
542
    elif dtype == np.int32:
543
        return core.VarDesc.VarType.INT32
544
    elif dtype == np.int16:
545
        return core.VarDesc.VarType.INT16
546
    elif dtype == np.int64:
547
        return core.VarDesc.VarType.INT64
548
    elif dtype == np.bool:
549
        return core.VarDesc.VarType.BOOL
550 551
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
552 553
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
554 555
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
556
    else:
M
minqiyang 已提交
557
        raise ValueError("Not supported numpy dtype %s" % dtype)
558 559 560


def dtype_is_floating(dtype):
561 562 563
    """
    Check the data type is floating or not.
    Args:
564
        dtype(np.dtype|core.VarDesc.VarType): data type.
565 566 567 568 569
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
570
    if not isinstance(dtype, core.VarDesc.VarType):
571 572
        dtype = convert_np_dtype_to_dtype_(dtype)

573 574 575 576
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
577 578


Y
Yang Yang(Tony) 已提交
579
def _debug_string_(proto, throw_on_error=True):
580 581 582 583 584 585 586 587 588 589 590
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
591
    error_fields = list()
Y
Yang Yang(Tony) 已提交
592
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
593 594
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
595 596 597
    return proto.__str__()


598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
655
    target_block = default_main_program().current_block()
656 657 658 659 660 661 662 663 664 665 666

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
667
            })
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
707
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
708
                fill_constant([1], 1, force_cpu=True, out=temp_1)
709
                temp_end = target_block.create_var(dtype=slice_item.dtype)
710
                target_block.append_op(
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
750

751
    # starts
L
Leo Chen 已提交
752
    if contain_var(slice_start):
753 754 755 756 757 758 759 760
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
761 762 763 764
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
765 766 767 768 769 770 771
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
772 773 774
    else:
        attrs['ends'] = slice_end

775 776
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
777
        if contain_var(slice_step):
778 779 780 781 782 783 784
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
785 786
        else:
            attrs['strides'] = slice_step
787 788 789 790 791 792
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
793
        slice_out_var = target_block.create_var(
794 795 796
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

797
        target_block.append_op(
798 799 800 801 802 803 804
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
805
        strided_slice_out_var = target_block.create_var(
806 807 808
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
809
        target_block.append_op(
810 811 812 813 814 815 816 817
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
818
        reverse_out_var = target_block.create_var(
819 820 821
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
822
        target_block.append_op(
823 824 825 826 827 828 829 830 831 832 833
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
834
class Variable(object):
835
    """
J
Jiabin Yang 已提交
836
    **Notes**:
837
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
838

839 840
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
841 842 843
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
844
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
845 846
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
847

848
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
849
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
850

T
tianshuo78520a 已提交
851
    Most of a Variable's member variables can be set to be None. It mean
852
    it is not available or will be specified later.
853

854
    Examples:
855 856
        In Static Graph Mode:

857 858
        .. code-block:: python

859
            import paddle.fluid as fluid
860
            cur_program = fluid.Program()
861 862 863 864
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
865
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
866 867 868 869 870 871 872 873 874

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

875 876
    """

Y
Yu Yang 已提交
877 878
    def __init__(self,
                 block,
Y
Yu Yang 已提交
879
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
880 881 882 883
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
884
                 capacity=None,
Q
QI JUN 已提交
885
                 persistable=None,
F
fengjiayi 已提交
886
                 error_clip=None,
Y
Yu Yang 已提交
887
                 stop_gradient=False,
F
fengjiayi 已提交
888
                 is_data=False,
H
Huihuang Zheng 已提交
889
                 need_check_feed=False,
H
hong 已提交
890
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
891
                 **kwargs):
Y
Yu Yang 已提交
892 893
        self.block = block
        if name is None:
Y
Yu Yang 已提交
894
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
895

Y
Yu Yang 已提交
896
        if dtype is not None:
897
            if not isinstance(dtype, core.VarDesc.VarType):
898
                dtype = convert_np_dtype_to_dtype_(dtype)
899

H
hong 已提交
900 901
        self.belong_to_optimizer = belong_to_optimizer

902 903 904 905 906
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
907

908 909 910
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
911

912 913 914 915 916 917 918
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
919

920
        if shape is not None:
921
            if is_new_var:
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
963

964 965
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
966

967 968 969 970 971 972 973
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
974

975 976 977 978
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
979

980
    @fake_interface_only
981 982
    def detach(self):
        """
J
Jiabin Yang 已提交
983
        **Notes**:
T
tianshuo78520a 已提交
984
            **This API is ONLY available in Dygraph mode**
985

986
        Returns a new Variable, detached from the current graph.
987

988
        Returns:
J
Jiabin Yang 已提交
989
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
990

991

992 993 994 995 996
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
997
                from paddle.fluid.dygraph import Linear
998 999 1000 1001
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1002
                    linear = Linear(32, 64)
1003
                    data = to_variable(data)
1004
                    x = linear(data)
1005 1006 1007
                    y = x.detach()

        """
1008
        pass
1009

1010
    @fake_interface_only
1011
    def numpy(self):
1012
        """
J
Jiabin Yang 已提交
1013
        **Notes**:
T
tianshuo78520a 已提交
1014
            **This API is ONLY available in Dygraph mode**
1015

J
Jiabin Yang 已提交
1016
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1017 1018 1019 1020 1021

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1022
            ndarray: dtype is same as current Variable
1023 1024 1025 1026 1027 1028

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1029
                from paddle.fluid.dygraph import Linear
1030 1031 1032 1033
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1034
                    linear = Linear(32, 64)
1035
                    data = to_variable(data)
1036
                    x = linear(data)
1037 1038 1039
                    print(x.numpy())

        """
1040
        pass
1041

1042
    @fake_interface_only
1043 1044
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1045
        **Notes**:
T
tianshuo78520a 已提交
1046
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1058
                from paddle.fluid.dygraph import Linear
1059 1060
                import numpy as np

1061
                data = np.ones([3, 1024], dtype='float32')
1062
                with fluid.dygraph.guard():
1063
                    linear = fluid.dygraph.Linear(1024, 4)
1064
                    t = to_variable(data)
1065
                    linear(t)  # call with default weight
1066
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1067 1068
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1069 1070

        """
1071
        pass
1072

1073
    @fake_interface_only
1074
    def backward(self, backward_strategy=None):
1075
        """
J
Jiabin Yang 已提交
1076
        **Notes**:
T
tianshuo78520a 已提交
1077
            **This API is ONLY available in Dygraph mode**
1078 1079 1080

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1081 1082
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1083

J
Jiabin Yang 已提交
1084 1085
        Returns:
            NoneType: None
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1098 1099
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1100 1101 1102 1103 1104 1105 1106 1107 1108
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1109
        pass
1110

1111
    @fake_interface_only
1112
    def gradient(self):
1113
        """
J
Jiabin Yang 已提交
1114
        **Notes**:
T
tianshuo78520a 已提交
1115
            **This API is ONLY available in Dygraph mode**
1116 1117 1118

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1119
        Returns:
1120
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1121 1122 1123 1124 1125 1126 1127

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1128
                # example1: return ndarray
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1156
        """
1157
        pass
1158

1159
    @fake_interface_only
1160
    def clear_gradient(self):
1161
        """
J
Jiabin Yang 已提交
1162
        **Notes**:
T
tianshuo78520a 已提交
1163
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1164 1165

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1166

J
Jiabin Yang 已提交
1167
        Clear  (set to ``0`` ) the Gradient of Current Variable
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1194
        pass
X
Xin Pan 已提交
1195

1196
    def __str__(self):
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1241

F
update  
fengjiayi 已提交
1242
    def to_string(self, throw_on_error, with_details=False):
1243 1244 1245
        """
        Get debug string.

J
Jiabin Yang 已提交
1246 1247 1248 1249 1250
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1251

1252 1253
        Returns:
            str: The debug string.
1254 1255 1256 1257 1258

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1259

1260 1261 1262 1263 1264
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1265
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1266
                print("=============with detail===============")
1267
                print(new_variable.to_string(True, True))
1268
        """
F
update  
fengjiayi 已提交
1269 1270
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1271
        protostr = self.desc.serialize_to_string()
1272
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1273 1274 1275 1276
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1277 1278 1279
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1280
        return res_str
1281 1282 1283

    __repr__ = __str__

1284
    @property
1285
    def stop_gradient(self):
J
Jiabin Yang 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1301 1302
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1303 1304 1305
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1306 1307
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1308 1309 1310 1311
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1312
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1313 1314
                assert (out1.gradient() == 0).all()
        """
1315
        return self._stop_gradient
1316

1317 1318
    @stop_gradient.setter
    def stop_gradient(self, s):
1319
        self._stop_gradient = s
1320

1321 1322
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1344
        return self.desc.persistable()
1345

Y
Yu Yang 已提交
1346 1347
    @persistable.setter
    def persistable(self, p):
1348
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1349

Y
Yu Yang 已提交
1350 1351
    @property
    def name(self):
J
Jiabin Yang 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1368
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1390 1391
    @name.setter
    def name(self, new_name):
1392
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1393

Y
Yu Yang 已提交
1394 1395
    @property
    def shape(self):
J
Jiabin Yang 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1413
        # convert to tuple, make it as same as numpy API.
1414
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1415 1416

    @property
F
fengjiayi 已提交
1417
    def dtype(self):
J
Jiabin Yang 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1434
        return self.desc.dtype()
Y
Yu Yang 已提交
1435 1436 1437

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1459 1460 1461
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1462
        return self.desc.lod_level()
Y
Yu Yang 已提交
1463

Y
Yu Yang 已提交
1464 1465
    @property
    def type(self):
J
Jiabin Yang 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1482
        return self.desc.type()
Y
Yu Yang 已提交
1483

W
Wu Yi 已提交
1484
    def _set_error_clip(self, error_clip):
1485 1486 1487 1488 1489 1490 1491 1492 1493
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1494 1495
        self.error_clip = error_clip

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1536
            raise ValueError("slice step can not be zero")
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1612
    def _cloneVar(self, copy=False):
1613 1614
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1615 1616
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1617 1618 1619 1620
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1621
        new_var = self._cloneVar()
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1632
        new_var = self._cloneVar()
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1643
                return self._cloneVar(True)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1662
                return self._cloneVar(True)
1663
            index = int(item)
1664
            if (index > 0 and index >= self.shape[axis]) \
1665 1666 1667 1668 1669 1670 1671
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1672
        return _getitem_impl_(self, item)
1673

Y
Yu Yang 已提交
1674

F
fengjiayi 已提交
1675 1676 1677
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1678

1679 1680
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1681 1682 1683 1684
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1685
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1686 1687 1688 1689
        ret_values.append(op_proto)
    return ret_values


1690 1691
class ComplexVariable(object):
    """
1692 1693
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1694 1695 1696
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1697
        **The constructor of ComplexTensor should not be invoked directly.**
1698

1699
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1700 1701

    Args:
1702 1703
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1704 1705 1706 1707
    
    Examples:
        .. code-block:: python

1708
            import paddle
1709 1710
            import numpy as np

1711 1712 1713 1714 1715 1716 1717 1718
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1719 1720
    """

1721 1722 1723 1724 1725
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1772 1773 1774
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1775 1776 1777 1778

    __repr__ = __str__


F
fengjiayi 已提交
1779
class OpProtoHolder(object):
1780 1781 1782 1783
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1793
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1794 1795 1796 1797 1798 1799
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1800 1801 1802 1803 1804 1805 1806 1807
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1808 1809
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1810 1811
        return self.op_proto_map[type]

1812 1813 1814 1815 1816 1817
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1818 1819 1820 1821
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1822
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1823
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1824 1825
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1826 1827
        }

F
fengjiayi 已提交
1828

X
Xin Pan 已提交
1829
class Operator(object):
1830
    """
1831 1832 1833 1834 1835 1836 1837
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1838
        type(str): The type of operator. Default None.
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1859
        Block.append_op or Block._prepend_op instead.
1860 1861 1862 1863

    Examples:
        .. code-block:: python

1864
            import paddle.fluid as fluid
1865
            cur_program = fluid.Program()
1866 1867 1868 1869 1870
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1871
    """
1872
    OP_WITHOUT_KERNEL_SET = {
1873 1874
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1875 1876
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1877
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1878
    }
1879

Y
Yu Yang 已提交
1880 1881
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1882
                 desc,
Y
Yu Yang 已提交
1883 1884 1885
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1886
                 attrs=None):
L
lujun 已提交
1887
        if in_dygraph_mode():
1888 1889
            if type is None:
                raise ValueError(
1890
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1891
            self._type = type
M
minqiyang 已提交
1892
            self.attrs = attrs if attrs else {}
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1907
                )] = self.block.program._op_role
1908 1909 1910

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1911 1912
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1913 1914 1915 1916 1917 1918 1919 1920

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1921
                    "`type` to initialized an Operator can not be None.")
1922 1923
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1924 1925 1926 1927 1928 1929 1930
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1931 1932 1933 1934 1935 1936 1937

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
1969
                        if not isinstance(in_args, (list, tuple)):
1970 1971 1972 1973 1974 1975
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1976
                        for index, arg in enumerate(in_args):
1977 1978 1979 1980
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1981
                            elif isinstance(arg, (Variable, core.VarBase)):
1982
                                in_arg_names.append(cpt.to_text(arg.name))
1983
                            else:
1984 1985 1986 1987
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1988 1989
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2016
                        if not in_dygraph_mode():
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2036
    def _has_kernel(self, op_type):
2037 2038
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2039
    def to_string(self, throw_on_error):
2040
        """
2041 2042
        Get debug string.

2043
        Args:
2044 2045
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2046

2047 2048
        Returns:
            str: The debug string.
2049 2050

        """
2051
        protostr = self.desc.serialize_to_string()
2052
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2053 2054
        return _debug_string_(proto, throw_on_error)

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2148
    def __str__(self):
2149
        return self._to_readable_code()
2150 2151 2152

    __repr__ = __str__

F
fengjiayi 已提交
2153 2154
    @property
    def type(self):
2155
        return self.desc.type()
F
fengjiayi 已提交
2156 2157

    def input(self, name):
2158
        """
2159
        Get the input arguments according to the input parameter name.
2160

2161 2162
        Args:
            name(str): The input parameter name.
2163

2164 2165 2166
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2167
        """
F
fengjiayi 已提交
2168 2169
        return self.desc.input(name)

W
Wu Yi 已提交
2170
    def _rename_input(self, old_name, new_name):
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2181
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2182

W
Wu Yi 已提交
2183
    def _rename_output(self, old_name, new_name):
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2194
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2195

F
fengjiayi 已提交
2196 2197 2198 2199
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2200 2201 2202 2203 2204 2205 2206 2207
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2208
    def output(self, name):
2209
        """
2210
        Get output arguments by the output parameter name.
2211

2212 2213
        Args:
            name(str): The output parameter name.
2214

2215 2216 2217
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2218
        """
F
fengjiayi 已提交
2219 2220 2221 2222 2223 2224
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2225 2226 2227 2228 2229 2230 2231 2232
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2233
    def has_attr(self, name):
2234
        """
2235 2236
        Whether this Operator has the attribute with name or not.

2237
        Args:
2238
            name(str): the attribute name.
2239

2240 2241
        Returns:
            bool: True if has this attribute.
2242 2243

        """
F
fengjiayi 已提交
2244 2245 2246
        return self.desc.has_attr(name)

    def attr_type(self, name):
2247
        """
2248
        Get the type of attribute by attribute's name.
2249

2250 2251
        Args:
            name(str): the attribute name.
2252

2253 2254
        Returns:
            core.AttrType: the attribute type.
2255
        """
F
fengjiayi 已提交
2256 2257
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2258
    def _set_attr(self, name, val):
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2269 2270
        self._update_desc_attr(name, val)

2271 2272 2273
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2285 2286
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2287 2288
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2289
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2290 2291 2292 2293
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2294
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2295

F
fengjiayi 已提交
2296 2297 2298 2299 2300
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2301
        """
2302 2303
        Get the attribute by name.

2304
        Args:
2305
            name(str): the attribute name.
2306

2307 2308
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2309 2310
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2311
        return self.desc.attr(name)
Y
Yu Yang 已提交
2312

W
Wu Yi 已提交
2313
    def _block_attr_id(self, name):
2314
        """
G
gongweibao 已提交
2315
        Get the block attribute's id by name.
2316

2317 2318
        Args:
            name(str): the attribute name.
2319

2320 2321
        Returns:
            int: the block index.
2322
        """
W
Wu Yi 已提交
2323
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2324

W
Wu Yi 已提交
2325
    def _block_attr(self, name):
G
gongweibao 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2336
        id = self._block_attr_id(name)
G
gongweibao 已提交
2337 2338 2339
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2340
    def _blocks_attr(self, name):
G
gongweibao 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2351
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2352 2353 2354 2355 2356
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2357
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2368
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2369

J
JiayiFeng 已提交
2370
    def all_attrs(self):
F
fengjiayi 已提交
2371
        """
2372 2373 2374
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2375
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2376 2377 2378 2379
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2380 2381
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2382
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2383 2384 2385
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2386
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2387 2388 2389 2390
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2391 2392
        return attr_map

2393 2394 2395
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2396 2397 2398 2399

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2400 2401 2402
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2403 2404 2405 2406 2407 2408 2409 2410

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2411 2412
            return False

2413 2414 2415 2416 2417 2418
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2419

Y
Yu Yang 已提交
2420
class Block(object):
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2435
        use `Program._create_block()` to create a block.
2436 2437 2438 2439

    Examples:
        .. code-block:: python

2440 2441 2442
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2443 2444 2445 2446 2447 2448 2449 2450 2451
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2452
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2453
        self.desc = program.desc.block(idx)
2454
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2455
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2456
        self.program = program
2457
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2458

2459
    def __str__(self):
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2506

F
fengjiayi 已提交
2507 2508
    def to_string(self, throw_on_error, with_details=False):
        """
2509 2510
        Get debug string.

F
fengjiayi 已提交
2511 2512
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2513
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2514
            with_details(bool): more details about variables and parameters
2515 2516
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2517

2518 2519
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2520 2521 2522 2523
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2524
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2525 2526
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2527
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2528
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2529
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2530
            for op in self.ops:
F
fengjiayi 已提交
2531 2532
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2533 2534 2535
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2536 2537
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2538 2539
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2540 2541 2542

    __repr__ = __str__

Y
Yu Yang 已提交
2543 2544
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2545
        return self.desc.parent
Y
Yu Yang 已提交
2546

Y
Yu Yang 已提交
2547 2548 2549 2550
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2551
    def _set_forward_block_idx(self, idx):
2552 2553 2554 2555 2556 2557 2558 2559 2560
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2561
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2562

2563 2564 2565 2566 2567 2568 2569 2570
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2571 2572
    @property
    def idx(self):
Y
Yu Yang 已提交
2573
        return self.desc.id
Y
Yu Yang 已提交
2574

Q
Qiao Longfei 已提交
2575
    def var(self, name):
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2589
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2590 2591 2592
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2593 2594
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2595
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2596
        return v
Q
Qiao Longfei 已提交
2597

X
Xin Pan 已提交
2598
    def _find_var_recursive(self, name):
2599 2600 2601 2602 2603 2604 2605
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2606
            Variable: the Variable with the giving name. Or None if not found.
2607
        """
Y
Yu Yang 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2632
        return None
Y
Yu Yang 已提交
2633

X
Xin Pan 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2653

Q
Qiao Longfei 已提交
2654
    def all_parameters(self):
2655
        return list(self.iter_parameters())
2656

2657
    def iter_parameters(self):
M
minqiyang 已提交
2658
        return (item[1] for item in six.iteritems(self.vars)
2659
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2660

Y
Yu Yang 已提交
2661
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2662 2663 2664
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2665 2666 2667
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2668
        return var
Y
Yu Yang 已提交
2669

Q
Qiao Longfei 已提交
2670 2671 2672
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2673
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2674 2675
        """
        Rename variable in vars and ops' inputs and outputs
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2688
        """
M
minqiyang 已提交
2689 2690
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2691

T
typhoonzero 已提交
2692
        if not self.has_var(name):
2693
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2694 2695
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2696
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2697 2698 2699 2700 2701 2702
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2703
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2704 2705 2706 2707
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2708
        orig_var_type = v.type
M
minqiyang 已提交
2709
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2710
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2711
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2712
        if var_type == "Parameter":
L
Leo Chen 已提交
2713 2714
            if in_dygraph_mode():
                var = ParamBase(
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2725 2726
                var = Parameter(
                    self,
2727 2728 2729 2730 2731 2732 2733 2734 2735
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2736
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2737 2738
            var = Variable(
                self,
T
typhoonzero 已提交
2739
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2740 2741 2742 2743
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2744
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2745 2746 2747
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2748
        self._sync_with_cpp()
2749
        return var
T
typhoonzero 已提交
2750

W
Wu Yi 已提交
2751 2752
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2753
        self.desc._remove_var(cpt.to_bytes(name))
2754 2755
        del self.vars[name]

Y
Yu Yang 已提交
2756 2757
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2758
        param = None
L
Leo Chen 已提交
2759
        if in_dygraph_mode():
2760
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2761 2762
        else:
            param = Parameter(global_block, *args, **kwargs)
2763
        if 'initializer' in kwargs:
2764 2765 2766 2767 2768

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2769 2770 2771 2772 2773
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2785
                # TODO already inited, do nothing, should log a warning
2786 2787 2788
                pass
            else:
                initializer(param, self)
2789
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2790
        return param
Y
Yu Yang 已提交
2791

Y
Yu Yang 已提交
2792
    def append_op(self, *args, **kwargs):
2793 2794 2795 2796 2797 2798
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2799
        if in_dygraph_mode():
2800
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2801
            type = kwargs.get("type", None)
2802 2803 2804
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2805
                type=type,
M
minqiyang 已提交
2806 2807
                inputs=None,
                outputs=None,
2808
                attrs=attrs)
2809

M
minqiyang 已提交
2810 2811 2812
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2813
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2814 2815

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2816
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2817 2818
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2819
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2820
        else:
2821 2822 2823 2824 2825 2826 2827 2828 2829
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2830
            self.ops.append(op)
M
minqiyang 已提交
2831

2832 2833
        return op

W
Wu Yi 已提交
2834
    def _insert_op(self, index, *args, **kwargs):
2835 2836 2837 2838 2839 2840 2841 2842 2843
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2844 2845
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2846 2847 2848 2849
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2850
    def _remove_op(self, index):
2851 2852 2853 2854 2855 2856 2857 2858 2859
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2860 2861
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2862 2863
        del self.ops[index]

W
Wu Yi 已提交
2864
    def _slice_ops(self, start, end):
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2875
        return self.ops[start:end]
Y
Yancey1989 已提交
2876

W
Wu Yi 已提交
2877
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2878
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2879 2880
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2881
            op = Operator(
J
Jiabin Yang 已提交
2882
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2883

J
Jiabin Yang 已提交
2884
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2885
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2886 2887
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2888
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2889
        else:
2890 2891 2892 2893 2894 2895 2896 2897
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2898
            self.ops.insert(0, op)
2899

Y
Yu Yang 已提交
2900 2901
        return op

W
Wu Yi 已提交
2902
    def _sync_with_cpp(self):
2903
        """
2904 2905
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2906
        """
Q
Qiao Longfei 已提交
2907 2908 2909 2910 2911
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2912
        # sync variables removed from c++ end
2913
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2914
            if not self.desc.find_var(cpt.to_bytes(var)):
2915 2916
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2917
        # sync operators from cpp
2918 2919 2920 2921
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2938 2939 2940 2941 2942

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2943
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2944 2945 2946 2947 2948 2949 2950

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2964 2965 2966 2967
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2968
    def _copy_param_info_from(self, other):
2969
        """
2970 2971
        Copy the information of parameters from the other block.

2972
        Args:
2973 2974 2975 2976 2977
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2978 2979 2980 2981 2982

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2983 2984
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2985
        for p in other.iter_parameters():
2986 2987 2988
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2989 2990
                # if the Parameter is pruned, v may be None
                continue
2991
            assert isinstance(v, Variable)
2992
            new_p = None
L
Leo Chen 已提交
2993 2994
            if in_dygraph_mode():
                new_p = ParamBase(
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3006 3007
                new_p = Parameter(
                    block=self,
3008 3009 3010
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3011 3012
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3013 3014 3015 3016 3017 3018
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3019 3020
            self.vars[new_p.name] = new_p

3021
    def _clone_variable(self, var, force_persistable=True):
3022 3023
        """
        Clone a variable into current block.
3024

3025 3026
        Args:
            var: the variable to be cloned.
3027 3028 3029
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3030 3031

        Returns:
3032
            Variable: the new  variable cloned from 'var' in current block.
3033 3034
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3035 3036 3037 3038 3039
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3040 3041
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3042
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3043 3044 3045 3046 3047 3048
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3049
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3050 3051
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3052 3053 3054 3055 3056 3057 3058
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3059
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3060 3061
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3062
        return ret_var
3063

Y
Yu Yang 已提交
3064

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3160
    def remove_input_by_id(self, node_id):
3161 3162 3163 3164 3165 3166
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3167
        self.node.remove_input(node_id)
3168

3169
    def remove_input(self, node):
3170 3171 3172 3173
        """
        Remove a node from inputs.

        Args:
3174
            node(IrNode): the node being removed.
3175
        """
3176
        self.node.remove_input(node.node)
3177

3178
    def append_input(self, node):
3179 3180 3181 3182
        """
        Append a node in inputs.

        Args:
3183
            node(IrNode): the node being appended.
3184
        """
3185
        self.node.append_input(node.node)
3186 3187 3188 3189 3190 3191 3192 3193

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3194
    def remove_output_by_id(self, node_id):
3195 3196 3197 3198 3199 3200
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3201
        self.node.remove_output(node_id)
3202

3203
    def remove_output(self, node):
3204 3205 3206 3207
        """
        Remove a node from outputs.

        Args:
3208
            node(IrNode): the node being removed.
3209
        """
3210
        self.node.remove_output(node.node)
3211

3212
    def append_output(self, node):
3213 3214 3215 3216
        """
        Append a node in outputs.

        Args:
3217
            node(IrNode): the node being appended.
3218
        """
3219
        self.node.append_output(node.node)
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3267
            "The node variable description can not be None."
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3278
            "The node variable description can not be None."
3279 3280
        return self.node.var().persistable()

3281 3282 3283 3284 3285 3286 3287 3288
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3289
            "The node variable description can not be None."
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3300
            "The node variable description can not be None."
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3311
            "The node variable description can not be None."
3312 3313
        return self.node.var().shape()

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3361
            "The node operator description can not be None."
3362 3363
        self.node.op()._rename_input(old_input_name, new_input_name)

3364 3365 3366 3367 3368 3369 3370 3371 3372
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3373
            "The node operator description can not be None."
3374 3375
        self.node.op()._rename_output(old_output_name, new_output_name)

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3387
            "The node operator description can not be None."
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3401
            "The node operator description can not be None."
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3412
            "The node operator description can not be None."
3413 3414
        return self.node.op().set_type(new_type)

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3430
            "The node operator description can not be None."
3431 3432 3433 3434
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3435
                all(isinstance(v, Block) for v in val):
3436 3437
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3438
                isinstance(val, core.ProgramDesc):
3439 3440 3441 3442
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3443 3444 3445 3446 3447 3448 3449 3450
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3451
            "The node operator description can not be None."
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3462
            "The node operator description can not be None."
3463 3464
        return self.node.op().output_arg_names()

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3486 3487
class IrGraph(object):
    """
3488
    Python IrGraph. Beneath it is a core.Graph, which is used for
3489
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3490 3491
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3492 3493 3494 3495
    """

    def __init__(self, graph, for_test=False):
        """
3496 3497
        Construct an IrGraph using core.Graph.

3498 3499 3500 3501 3502 3503 3504 3505 3506
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3507 3508 3509 3510
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3511 3512 3513
        Warns:
            The method only clones the graph structure, not its attributes.

3514 3515 3516
        Returns:
            IrGraph: A new and duplicated graph.
        """
3517
        g = self.graph.clone()
3518 3519
        return IrGraph(g, self._for_test)

3520
    def is_test(self):
3521 3522 3523
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3524 3525
        return self._for_test

W
WangZhen 已提交
3526
    def all_nodes(self):
3527 3528 3529
        """
        Return all nodes included in the graph as a set.
        """
3530
        return {IrNode(node) for node in self.graph.nodes()}
3531

3532
    def all_var_nodes(self):
3533 3534 3535
        """
        Return all variable nodes included in the graph as a set.
        """
3536
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3537

3538
    def all_persistable_nodes(self):
3539 3540 3541
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3542 3543 3544 3545 3546
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3547
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3548

3549
    def all_op_nodes(self):
3550 3551 3552
        """
        Return all operator nodes included in the graph as a set.
        """
3553
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3554

3555
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3567
            IrVarNode: the created persistable variable node.
3568
        """
3569 3570 3571 3572 3573
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3574
        return IrVarNode(self.graph.create_var_node(var_desc))
3575 3576

    def create_var_node(self, name, var_type, shape, var_dtype):
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3588
            IrVarNode: the created variable node.
3589 3590
        """

3591 3592 3593 3594
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3595
        return IrVarNode(self.graph.create_var_node(var_desc))
3596

3597 3598 3599 3600 3601 3602
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3603
    def create_var_node_from_desc(self, var_desc):
3604 3605 3606 3607 3608 3609 3610 3611
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3612
            IrVarNode: the created variable node.
3613
        """
3614
        return IrVarNode(self.graph.create_var_node(var_desc))
3615 3616

    def create_op_node(self, op_type, attrs, inputs, outputs):
3617 3618 3619 3620 3621 3622 3623
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3624
            outputs(dict): the outputs of the operator node.
3625 3626

        Returns:
3627
            IrOpNode: the created operator node.
3628
        """
3629 3630
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3631
        for attr, value in six.iteritems(attrs):
3632
            self._update_desc_attr(op_desc, attr, value)
3633
        for input_name, var_nodes in six.iteritems(inputs):
3634 3635 3636 3637
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3638
        for output_name, var_nodes in six.iteritems(outputs):
3639 3640 3641 3642
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3643
        return IrOpNode(self.graph.create_op_node(op_desc))
3644 3645

    def create_op_node_from_desc(self, op_desc):
3646 3647 3648 3649 3650 3651 3652
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3653
            IrOpNode: the created operator node.
3654
        """
3655
        return IrOpNode(self.graph.create_op_node(op_desc))
3656 3657

    def update_input_link(self, old_input_node, new_input_node, op_node):
3658 3659 3660 3661
        """
        Update the input's link of a operator node.

        Args:
3662 3663 3664
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3665
        """
3666
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3667 3668
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3669 3670 3671 3672
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3673
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3674

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3685 3686
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3687 3688 3689 3690 3691 3692
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3693
    def link_to(self, node_in, node_out):
3694 3695 3696 3697
        """
        Connect two nodes.

        Args:
3698 3699
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3700
        """
3701
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3702
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3703 3704
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3705 3706

    def safe_remove_nodes(self, remove_nodes):
3707 3708 3709 3710 3711 3712 3713
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3714
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3715 3716 3717 3718
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3719 3720
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3721

Z
Zhen Wang 已提交
3722 3723 3724 3725 3726 3727 3728 3729
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3730
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3731 3732 3733 3734
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3735
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3736 3737 3738
                        ]
                    else:
                        var_nodes[each_var_name].append(
3739 3740
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3741 3742
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3743
    def has_circle(self):
3744 3745 3746 3747 3748 3749
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3750 3751 3752
        return core.has_circle(self.graph)

    def graph_num(self):
3753 3754 3755 3756 3757 3758
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3759 3760 3761
        return core.graph_num(self.graph)

    def topology_sort(self):
3762 3763 3764
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3765
        Notes: the `graph` can not contain a circle.
3766 3767

        Returns:
Z
Zhen Wang 已提交
3768
            list(IrNode): nodes in topology order.
3769
        """
3770
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3771
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3772 3773

    def build_adjacency_list(self):
3774 3775 3776 3777
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3778
            dict{IrNode: set(IrNode)}: the adjacency list.
3779
        """
3780 3781 3782 3783 3784
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3785

3786 3787 3788 3789 3790 3791 3792 3793
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3794
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3795 3796 3797 3798 3799
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3800 3801 3802
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3803
                                          + ' -o ' + pdf_save_path, shell=True)
3804 3805 3806 3807 3808
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3809
        remove_ctr_vars = set()
3810
        if remove_ctr_var:
3811
            for node in self.all_var_nodes():
3812 3813 3814
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3815 3816
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3817 3818
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3819 3820 3821 3822 3823 3824
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3825 3826 3827 3828
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3829 3830
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3831 3832 3833 3834 3835 3836 3837
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3838 3839 3840
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3841
        WARN: When the graph includes backward operator nodes, the
3842 3843 3844 3845 3846 3847
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3848
        convert_pass = core.get_pass('graph_to_program_pass')
3849 3850
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3851 3852 3853 3854
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3882
class Program(object):
D
dzhwinter 已提交
3883
    """
3884 3885
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3886
    it will contain nested block.
3887

J
Jiabin Yang 已提交
3888 3889 3890
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3891

J
Jiabin Yang 已提交
3892
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3893
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3894 3895 3896 3897 3898 3899 3900
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3901 3902 3903 3904
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3905 3906

    Returns:
J
Jiabin Yang 已提交
3907
        Program: An empty Program.
D
dzhwinter 已提交
3908 3909

    Examples:
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3923 3924 3925

    """

3926 3927
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3928 3929
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3930 3931
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3932
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3933
        self.__op_role_var = []
T
tangwei12 已提交
3934

3935 3936
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3937
        self._is_distributed = False
3938
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3939
        self._is_chief = False
3940 3941 3942
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3943
        self._endpoints = []
3944 3945 3946
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3947
        self._trainers_endpoints = []
3948
        # the distributed lookup table names
T
tangwei12 已提交
3949
        self._distributed_lookup_table = None
3950 3951 3952

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3953 3954
        self._use_lamb = False

3955 3956 3957
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3958

3959 3960 3961
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3962
        self._program_config = None
3963

H
hutuxian 已提交
3964 3965 3966
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3967 3968 3969
        # appending gradients times
        self._appending_grad_times = 0

3970 3971 3972 3973
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

3974 3975 3976
        # compiled program, i.e. Graph
        self._graph = None

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4004
    @property
4005
    def _op_role(self):
Y
yuyang18 已提交
4006 4007 4008 4009 4010 4011 4012 4013
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4014
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4015 4016 4017 4018
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4019 4020
        return self._current_role

4021 4022
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4023 4024 4025
        self._current_role = role

    @property
4026
    def _op_role_var(self):
Y
yuyang18 已提交
4027
        """
4028
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4029

4030
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4031 4032 4033

        Notes: This is a very low-level API. Users should not use it directly.
        """
4034
        return self.__op_role_var
Y
yuyang18 已提交
4035

4036
    @signature_safe_contextmanager
4037 4038 4039 4040 4041
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4042 4043 4044 4045
        try:
            yield
        finally:
            self._current_role = tmp_role
4046

S
rename  
sneaxiy 已提交
4047
    @signature_safe_contextmanager
W
Wu Yi 已提交
4048
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4049 4050 4051 4052 4053 4054 4055
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4056
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4057 4058 4059

        Examples:

4060
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4061
            >>> p, g = backward(...)
W
Wu Yi 已提交
4062
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4063 4064
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4065
        tmp_role = self._current_role
4066
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4067

Y
yuyang18 已提交
4068 4069
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4070
        self.__op_role_var = [
4071 4072 4073
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4074 4075 4076 4077 4078
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4079

S
rename  
sneaxiy 已提交
4080
    @signature_safe_contextmanager
X
Xin Pan 已提交
4081
    def _lr_schedule_guard(self, is_with_opt=False):
4082 4083 4084 4085 4086 4087 4088
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4089 4090 4091 4092
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4093 4094 4095

        Examples:

4096
            >>> import paddle.fluid as fluid
4097 4098 4099 4100
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4101 4102

        tmp_role = self._current_role
4103
        tmp_var = self.__op_role_var
4104

4105 4106
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4107 4108
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4109
        # TODO(typhoonzero): how to set target learning rate var
4110
        self.__op_role_var = []
4111 4112 4113 4114 4115
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4116

4117
    def __str__(self):
Y
yuyang18 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4166
            program_str += '\n'
4167
        return program_str
Y
Yang Yang(Tony) 已提交
4168

F
fengjiayi 已提交
4169 4170 4171
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4172

J
Jiabin Yang 已提交
4173 4174 4175
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4176

J
Jiabin Yang 已提交
4177
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4178

H
haowang101779990 已提交
4179
        Returns:
J
Jiabin Yang 已提交
4180
            str: The debug string describe current Program.
Y
yuyang18 已提交
4181 4182

        Raises:
J
Jiabin Yang 已提交
4183
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4184

4185 4186 4187 4188 4189 4190
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4191 4192
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4193
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4194
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4195
                print("program string without detail: {}".format(prog_string))
4196
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4197
        """
4198 4199 4200 4201 4202 4203 4204 4205 4206
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4207 4208 4209 4210 4211 4212
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4213 4214
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4215 4216
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4217

W
Wu Yi 已提交
4218
    def _get_desc(self):
Y
yuyang18 已提交
4219 4220 4221 4222 4223 4224 4225
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4226 4227
        return self.desc

X
version  
Xin Pan 已提交
4228 4229 4230
    def _version(self):
        return self.desc._version()

4231
    def clone(self, for_test=False):
Y
yuyang18 已提交
4232
        """
4233
        **Notes**:
J
Jiabin Yang 已提交
4234 4235 4236 4237
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4238
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4239

4240
        Create a new Program with forward content of original one when ``for_test=True``.
4241
        Create a new Program as same as the original one when ``for_test=False``.
4242

J
Jiabin Yang 已提交
4243
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4244 4245 4246
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4247

4248 4249
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4250 4251
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4252
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4253

J
Jiabin Yang 已提交
4254
        For Example:
4255
          ::
L
Luo Tao 已提交
4256

4257 4258 4259 4260 4261 4262 4263 4264
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4265

J
Jiabin Yang 已提交
4266
        Args:
4267

4268 4269
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4270

J
Jiabin Yang 已提交
4271
        Returns:
4272
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4273

Y
yuyang18 已提交
4274 4275 4276

        Examples:

J
Jiabin Yang 已提交
4277
        **Notes: The Program's order maybe different after** :code:`clone` **and
4278
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4279
        example we give you an simple method** :code:`print_prog(program)` **to
4280
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4281
        after** :code:`clone`:
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4318 4319 4320

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4321 4322 4323 4324 4325 4326 4327 4328 4329
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4330
                            test_program = train_program.clone(for_test=True)
4331
                    print_prog(test_program)
J
Jiabin Yang 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4363 4364
                    
                    def network():
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4379 4380 4381
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4382
                    # the test startup program is not used.
4383
                    with fluid.program_guard(test_program_2, startup_program_2):
4384
                        with fluid.unique_name.guard():
4385 4386
                            avg_loss = network()
                    print_prog(test_program_2)
4387 4388

        The two code snippets above will generate and print same programs.
4389
        """
4390 4391 4392 4393 4394

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4395
        pruned_origin_block_id_map = None
4396
        if for_test:
4397 4398 4399 4400 4401 4402 4403 4404 4405
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4406
        else:
4407
            p = Program()
G
gongweibao 已提交
4408 4409
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4410
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4411 4412 4413
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4414 4415

            p._current_role = self._current_role
4416
            p.__op_role_var = self.__op_role_var
4417
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4418

4419 4420
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4421
            p._sync_with_cpp()
4422

W
Wu Yi 已提交
4423
        p._copy_param_info_from(self)
4424
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4425
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4426
        return p
4427

4428
    def _prune(self, targets):
Y
yuyang18 已提交
4429 4430 4431 4432 4433 4434 4435 4436
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4437
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4438 4439 4440 4441
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4442
        """
4443
        return self._prune_with_input([], targets)
4444 4445

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4446
        """
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4457
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4458 4459 4460 4461 4462 4463
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4464 4465 4466 4467
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4468 4469
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4470 4471
        if not isinstance(targets, list):
            targets = [targets]
4472 4473 4474

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4475 4476 4477
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4478

4479 4480 4481 4482
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4483 4484 4485
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4486
                else:
4487 4488 4489
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4490 4491 4492 4493 4494 4495 4496 4497

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4514 4515 4516 4517 4518 4519 4520 4521
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4522

4523
        res = Program()
4524 4525 4526
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4527 4528 4529
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4530
        res._sync_with_cpp()
4531 4532 4533 4534 4535

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4536 4537
        return res

X
Xin Pan 已提交
4538
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4539
        """
F
fengjiayi 已提交
4540 4541 4542 4543 4544
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4545
        3. change the :code:`is_test`
Y
yuyang18 已提交
4546 4547 4548
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4549
        Args:
X
Xin Pan 已提交
4550 4551
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4552

Y
yuyang18 已提交
4553 4554 4555 4556 4557 4558
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4559
        res = Program()
4560
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4561 4562 4563 4564

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4565
        if prune_read_op:
4566 4567 4568 4569 4570 4571 4572 4573 4574
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4575
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4576 4577

        # change all `is_test` attributes to True
M
minqiyang 已提交
4578
        for i in six.moves.range(res.desc.num_blocks()):
4579
            block = res.desc.block(i)
M
minqiyang 已提交
4580
            for j in six.moves.range(block.op_size()):
4581 4582
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4583
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4584 4585 4586
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4587
        res._sync_with_cpp()
4588 4589
        return res

4590 4591
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4592
        """
J
Jiabin Yang 已提交
4593 4594 4595 4596
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4597

4598 4599
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4600

J
Jiabin Yang 已提交
4601
        Args:
Y
yuyang18 已提交
4602

J
Jiabin Yang 已提交
4603
            binary_str_type (str): the binary prootbuf string.
4604

J
Jiabin Yang 已提交
4605 4606
        Returns:
            Program: A deserialized Program.
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4629
        """
4630 4631
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4632
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4633
        p._sync_with_cpp()
4634
        return p
Y
Yu Yang 已提交
4635

4636
    @staticmethod
4637
    def _construct_from_desc(desc):
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4653 4654
    @property
    def random_seed(self):
Y
yuyang18 已提交
4655
        """
J
Jiabin Yang 已提交
4656
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4657 4658
        the random seed from random device.

J
Jiabin Yang 已提交
4659 4660 4661 4662
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4663

4664 4665 4666 4667 4668 4669 4670 4671

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4672
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4673 4674 4675
                print(random_seed)
                ## 0
                ## the default random seed is 0
4676 4677

                # Here we need to set random seed before we use fluid.layers.dropout
4678
                prog.random_seed = 1
4679 4680
                z_var = fluid.layers.dropout(x_var, 0.7)

4681
                print(prog.random_seed)
4682 4683
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4684
        """
D
dzhwinter 已提交
4685 4686
        return self._seed

Q
qiaolongfei 已提交
4687 4688
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4689
        """
4690 4691
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4692 4693 4694 4695
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4696

4697 4698 4699 4700 4701 4702 4703 4704 4705

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4706 4707


Y
yuyang18 已提交
4708
        """
Q
qiaolongfei 已提交
4709 4710
        return self.desc.num_blocks()

D
dzhwinter 已提交
4711 4712 4713
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4714 4715 4716
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4717 4718
        self._seed = seed

Y
Yu Yang 已提交
4719
    def __repr__(self):
4720
        return self.__str__()
4721

Y
Yu Yang 已提交
4722
    def global_block(self):
Y
yuyang18 已提交
4723
        """
J
Jiabin Yang 已提交
4724 4725
        **Notes**:
            **This API has no effect in Dygraph mode**
4726 4727 4728

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4729 4730
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4731

4732 4733 4734 4735 4736 4737 4738 4739 4740

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4741

Y
yuyang18 已提交
4742
        """
Y
Yu Yang 已提交
4743 4744
        return self.blocks[0]

Q
Qiao Longfei 已提交
4745
    def block(self, index):
Y
yuyang18 已提交
4746
        """
J
Jiabin Yang 已提交
4747 4748
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4749

4750 4751
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4752 4753
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4754

J
Jiabin Yang 已提交
4755 4756
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4757 4758 4759 4760 4761 4762 4763 4764 4765

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4766
        """
Q
Qiao Longfei 已提交
4767 4768
        return self.blocks[index]

Y
Yu Yang 已提交
4769
    def current_block(self):
Y
yuyang18 已提交
4770
        """
J
Jiabin Yang 已提交
4771 4772
        **Notes**:
            **This API has no effect in Dygraph mode**
4773

J
Jiabin Yang 已提交
4774 4775
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4776

J
Jiabin Yang 已提交
4777 4778
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4779

4780 4781 4782 4783 4784 4785 4786 4787
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4788
        """
Y
Yu Yang 已提交
4789 4790
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4791
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4792 4793 4794 4795 4796
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4797

Y
yuyang18 已提交
4798 4799 4800 4801 4802
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4803
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4804 4805 4806
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4807 4808 4809 4810
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4811
    def _rollback(self):
Y
yuyang18 已提交
4812 4813 4814 4815 4816
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4817 4818
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4819
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4830 4831 4832
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4833
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4834

W
Wu Yi 已提交
4835
    def _copy_param_info_from(self, other):
4836
        """
4837
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4838

Y
yuyang18 已提交
4839 4840 4841
        Notes: This is a very low level API. Users should not invoke it
        directly.

4842 4843 4844 4845 4846 4847 4848
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4849 4850 4851
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4852

W
Wu Yi 已提交
4853
        self.global_block()._copy_param_info_from(other.global_block())
4854

4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4866 4867 4868
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4869 4870
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4871
        self._parameters_on_pservers = other._parameters_on_pservers
4872
        self._endpoints = other._endpoints
4873
        self._ps_endpoint = other._ps_endpoint
4874 4875
        self._distributed_lookup_table = other._distributed_lookup_table

4876
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4877 4878
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4879

Y
yuyang18 已提交
4880 4881 4882
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4883 4884
        Args:
            other(Program): Other program
4885 4886 4887 4888
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4889 4890 4891 4892 4893

        Returns:
            None
        """
        if not isinstance(other, Program):
4894 4895 4896
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4897

4898 4899 4900 4901 4902
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4903 4904 4905

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4906 4907
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4908
            for var in list(block.vars.values()):
4909 4910 4911 4912 4913 4914 4915
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4916

4917
    def list_vars(self):
Y
yuyang18 已提交
4918
        """
J
Jiabin Yang 已提交
4919
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4920

J
Jiabin Yang 已提交
4921 4922
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4934
        """
4935
        for each_block in self.blocks:
4936
            for each_var in list(each_block.vars.values()):
4937 4938
                yield each_var

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4997

4998
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4999
class Parameter(Variable):
5000
    """
5001
    Parameter is derived from Variable. A parameter is a persistable
5002
    Variable, and will be updated by optimizers after each iteration.
5003
    The training of a neural network is essentially the updating of
5004 5005
    its parameters.

5006
    Relative to a general Variable, a Parameter has several its own
5007 5008
    member variables:

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5019 5020
    """

5021 5022 5023 5024 5025 5026
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5027 5028 5029 5030 5031
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5032
        if len(shape) == 0:
5033 5034
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5035 5036 5037

        for each in shape:
            if each < 0:
5038 5039 5040
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5041 5042

        Variable.__init__(
5043 5044 5045 5046 5047 5048 5049
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5050 5051 5052 5053
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5054 5055
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5056
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5057

5058 5059
        self.is_distributed = False

F
fengjiayi 已提交
5060
    def __str__(self):
5061
        return self._to_readable_code()
F
fengjiayi 已提交
5062

F
update  
fengjiayi 已提交
5063 5064 5065
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5066

F
update  
fengjiayi 已提交
5067 5068 5069 5070 5071 5072 5073 5074
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5075 5076 5077 5078 5079 5080 5081 5082 5083
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5084 5085 5086 5087 5088 5089
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5090
                               "do_model_average")
F
update  
fengjiayi 已提交
5091
            for attr_name in additional_attr:
5092 5093
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5094 5095
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5096 5097 5098 5099
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5100

5101 5102
class ParamBase(core.VarBase):
    """
5103 5104 5105
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5106 5107 5108
    The training of a neural network is essentially the updating of
    its ParamBase.

5109
    Relative to a general Tensor, a ParamBase has several its own
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5152 5153
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5154 5155 5156 5157 5158 5159 5160 5161

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5162
        # self.block = default_main_program().global_block()
5163

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5177
    def __str__(self):
5178
        """
5179
        Convert a ParamBase object to a readable string.
5180

5181
        Returns(str): A readable string.
5182 5183 5184 5185

        Examples:
            .. code-block:: python

5186
                import paddle
5187
                paddle.disable_static()
5188 5189 5190 5191 5192 5193 5194 5195
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5196
                paddle.enable_static()
5197
        """
5198 5199
        return "Parameter containing:\n  {}\n  - stop_gradient: {}".format(
            super(ParamBase, self).__str__(), self.stop_gradient)
5200 5201 5202 5203

    __repr__ = __str__


Y
Yu Yang 已提交
5204
# program is a global instance.
Y
Yu Yang 已提交
5205 5206
_main_program_ = Program()
_startup_program_ = Program()
5207

5208

5209
def default_startup_program():
Y
Yu Yang 已提交
5210
    """
Y
yuyang18 已提交
5211 5212
    Get default/global startup program.

J
Jiabin Yang 已提交
5213 5214 5215
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5216 5217 5218
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5219
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5220

J
Jiabin Yang 已提交
5221
    Returns: current default startup :ref:`api_fluid_Program`
5222

J
Jiabin Yang 已提交
5223
    Returns type: :ref:`api_fluid_Program`
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5239
    """
Y
Yu Yang 已提交
5240
    return _startup_program_
5241

5242

5243
def default_main_program():
Y
Yu Yang 已提交
5244
    """
5245 5246 5247 5248 5249
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5250

5251 5252
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5253
    :code:`default_main_program` when the program is not specified.
5254

5255 5256
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5257
    Returns:
5258
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5259 5260 5261 5262 5263

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5264

5265
            # Sample Network:
5266 5267
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5287
            #print the number of blocks in the program, 1 in this case
5288
            print(fluid.default_main_program().num_blocks)
5289 5290

            #print the description of variable 'image'
5291
            print(fluid.default_main_program().blocks[0].var('image'))
5292

Y
Yu Yang 已提交
5293
    """
Y
Yu Yang 已提交
5294
    return _main_program_
Y
Yu Yang 已提交
5295 5296 5297 5298 5299


def switch_main_program(program):
    """
    Switch the main program to a new program.
5300

Y
Yu Yang 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5315
    Switch the startup program to a new program
Y
Yu Yang 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5328
@signature_safe_contextmanager
Y
Yu Yang 已提交
5329 5330
def program_guard(main_program, startup_program=None):
    """
5331 5332
    :api_attr: Static Graph

5333 5334
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5335
    variables to the new main programs.
5336

G
guofei 已提交
5337 5338 5339 5340 5341 5342 5343
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5344
    Examples:
5345 5346 5347
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5348

5349 5350 5351
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5352
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5353
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5354 5355 5356

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5357

Y
Yu Yang 已提交
5358
    Examples:
5359
       .. code-block:: python
Y
yuyang18 已提交
5360

5361 5362 5363 5364 5365
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5366 5367
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5368
    """
5369 5370
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5371 5372
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5373 5374
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5375
        startup_program = switch_startup_program(startup_program)
5376 5377 5378 5379 5380 5381
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5382 5383


W
Wu Yi 已提交
5384
def _get_var(name, program=None):
X
xuwei06 已提交
5385
    """
Y
yuyang18 已提交
5386
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5387

X
xuwei06 已提交
5388 5389 5390
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5391
        If None, default_global_program() will be used.
X
xuwei06 已提交
5392 5393 5394 5395 5396 5397 5398

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5399
    assert isinstance(program, Program)
X
xuwei06 已提交
5400 5401

    return program.global_block().var(name)
5402 5403


S
rename  
sneaxiy 已提交
5404
@signature_safe_contextmanager
L
lujun 已提交
5405 5406 5407 5408
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5409
    core._switch_tracer(tracer)
M
minqiyang 已提交
5410

5411 5412 5413 5414 5415
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5416 5417


S
rename  
sneaxiy 已提交
5418
@signature_safe_contextmanager
L
lujun 已提交
5419 5420 5421 5422
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5423

5424 5425 5426 5427
    try:
        yield
    finally:
        _dygraph_current_expected_place_ = tmp_place
5428 5429 5430 5431


def load_op_library(lib_filename):
    """
5432 5433
    :api_attr: Static Graph
    
5434 5435 5436
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5437
    Please note, the type of custom operators can't have the same type
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5504 5505 5506 5507 5508
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5509 5510 5511 5512
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5513 5514
    if index:
        device = ":".join([device, index])
5515
    pre_device = switch_device(device)
5516 5517 5518 5519
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value