pybind.cc 135.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/selected_rows.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/fluid/pybind/io.h"
79
#include "paddle/utils/none.h"
80 81 82
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
83
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
84
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
85
#include "paddle/fluid/pybind/box_helper_py.h"
86
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
90
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
91
#include "paddle/fluid/pybind/generator_py.h"
92
#include "paddle/fluid/pybind/global_value_getter_setter.h"
93
#include "paddle/fluid/pybind/gloo_context_py.h"
94
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
95
#include "paddle/fluid/pybind/heter_wrapper_py.h"
96
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
97
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
98
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
99
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
100
#include "paddle/fluid/pybind/pybind_boost_headers.h"
101

102
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
103
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
104
#endif
105
#include "paddle/fluid/framework/data_type.h"
106 107
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
108
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
109
#include "paddle/fluid/pybind/tensor_py.h"
110
#include "paddle/fluid/string/to_string.h"
111 112
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
113
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
114
#endif
115
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
116
#include "paddle/fluid/platform/cuda_profiler.h"
117
#endif
Y
Yi Wang 已提交
118
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
119 120
#endif

121 122
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
123
#include "paddle/fluid/platform/npu_profiler.h"
124 125
#endif

126
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
127
#include "paddle/fluid/platform/xpu/xpu_info.h"
128 129
#endif

130 131
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
132 133 134 135
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
136
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
137 138 139
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
140 141
#include "pybind11/stl.h"

142
DECLARE_bool(use_mkldnn);
143

Q
Qiao Longfei 已提交
144 145
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
146 147 148
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
149

150
namespace paddle {
151
namespace pybind {
152
bool IsCompiledWithCUDA() {
153 154 155 156 157 158 159 160 161
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
162 163 164 165 166 167
  return false;
#else
  return true;
#endif
}

168 169 170 171 172 173 174 175
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

176 177 178 179 180 181 182 183
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

184 185 186 187 188 189 190 191
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

192 193 194 195 196 197 198 199
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

200 201 202 203 204 205 206 207
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

208 209 210 211 212 213 214 215 216 217 218
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

219 220 221 222 223 224 225 226 227 228 229
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
265 266 267
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
268
      {"NPU", &platform::is_npu_place},
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

308
bool IsCompiledWithBrpc() {
309
#ifndef PADDLE_WITH_DISTRIBUTE
310 311
  return false;
#endif
312
  return true;
313 314
}

Y
update  
Yancey1989 已提交
315
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
316
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
317 318 319 320 321 322
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
323 324 325 326 327 328 329 330 331 332
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
355 356 357
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
371 372
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
373 374
    }
    vec_res.emplace_back(
375
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
376 377 378 379 380 381 382 383 384 385 386 387
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
388 389
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
390 391 392 393 394 395 396 397 398 399 400 401
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
402 403 404
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
405 406 407 408
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
409 410
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
411 412 413 414
  }
  return vec_res;
}

415 416 417 418 419 420 421 422
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
423 424
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
425 426 427 428 429 430 431 432 433 434 435 436 437
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
438 439 440
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
441 442 443 444 445
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
446 447 448 449 450
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
451 452
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
453 454 455
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
456 457 458 459 460 461 462 463 464
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
465 466
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
467 468 469 470 471
  }

  return;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

509 510 511 512 513 514
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

515 516
  BindCudaStream(&m);

Y
Yu Yang 已提交
517 518 519
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
520
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
521

522 523
  AssertStaticGraphAndDygraphGradMakerNoDiff();

524
  m.doc() = "C++ core of PaddlePaddle";
525

526 527 528 529
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

530
  BindException(&m);
Y
Yu Yang 已提交
531

532 533
  m.def("set_num_threads", &platform::SetNumThreads);

534 535
  m.def("disable_signal_handler", &DisableSignalHandler);

536
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
537 538 539
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
540 541 542 543
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

544 545 546 547 548 549 550 551 552 553 554 555 556
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
      .def("reset", &platform::CUDAGraph::Reset);
#endif

Z
Zeng Jinle 已提交
557 558 559 560
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
561 562 563
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
564 565 566 567 568 569

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
570 571
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
572
    framework::Tensor tensor;
6
633WHU 已提交
573

S
Siming Dai 已提交
574
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
575 576
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
577
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
578
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
579 580 581 582 583
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
584

585 586 587 588 589 590
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

591 592 593 594 595 596
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
597 598
  });

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
624 625 626 627 628 629
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
630
  m.def(
S
sneaxiy 已提交
631
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
632 633 634 635
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
636 637 638
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
655 656 657
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
658
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
659

660
  m.def("_set_fuse_parameter_group_size",
661
        &paddle::framework::ir::SetFuseParameterGroupsSize);
662
  m.def("_set_fuse_parameter_memory_size",
663
        &paddle::framework::ir::SetFuseParameterMemorySize);
664

S
sneaxiy 已提交
665 666 667
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

668 669
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

670 671 672
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

673
  BindImperative(&m);
674

675 676 677
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
678
      .def("_is_initialized",
679
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
680
      .def("_get_dims",
681
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
682
      .def("_set_dims",
683
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
684
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
685
           })
Y
yuyang18 已提交
686
      .def("_set_layout",
687
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
688 689
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
690
      .def("_alloc_float",
691
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
692
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
693
           })
694
      .def("_alloc_float",
695
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
696 697
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
698
      .def("_alloc_float",
699
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
700
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
701
           })
702 703 704 705
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
706
      .def("_alloc_double",
707
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
708 709
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
710
      .def("_alloc_int",
711
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
712
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
713
           })
714
      .def("_alloc_int",
715
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
716 717
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
718
      .def("_alloc_int",
719
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
720
             self.mutable_data<int>(place);
Q
qijun 已提交
721
           })
Y
yuyang18 已提交
722
      .def("_alloc_int",
723 724
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
725 726
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
727
      .def("_alloc_float",
728 729
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
730 731
             self.mutable_data<float>(place);
           })
732
      .def("_mutable_data",
733
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
734 735 736
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
737
      .def("_mutable_data",
738
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
739 740 741
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
742
      .def("_mutable_data",
743
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
744 745 746 747
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
748
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
749 750 751
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
752
      .def("_clear", &framework::Tensor::clear)
753 754 755 756 757
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
758 759 760 761 762 763 764 765 766 767 768
      .def("_copy_from",
           [](framework::Tensor &self, const framework::Tensor &other,
              const platform::Place &place, int64_t batch_size) {
             if (batch_size < 0) {
               framework::TensorCopy(other, place, &self);
             } else {
               auto sliced = other.Slice(0, batch_size);
               framework::TensorCopy(sliced, place, &self);
             }
           },
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
769
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
770
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
771 772
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
773
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
774
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
775 776
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
777
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
778 779
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
780 781 782 783
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
784
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
785
          LoDTensor is to be set.
786 787
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
801

802 803 804
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
821
      .def("_to_dlpack",
822
           [](framework::Tensor &self) {
6
633WHU 已提交
823
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
824
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
842 843 844 845
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
846 847
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
848
      .def("_layout",
849 850 851 852
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
853
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
854
      .def("__str__", [](const framework::Tensor &self) {
855 856 857 858
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
859

L
Leo Chen 已提交
860
  // TODO(cql): add reference: en_user_guide_lod_tensor
861
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
936 937 938 939 940 941 942

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
943 944

        )DOC")
945 946
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
947 948 949 950 951 952 953 954 955
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
956 957
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
958 959 960 961
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
962 963
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
964
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
965
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
966 967
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
968 969 970
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
971
      .def("set_lod",
972
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
973
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
974
             LoD new_lod;
975 976
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
977 978
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
979 980
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
981
             self.set_lod(new_lod);
S
sneaxiy 已提交
982 983 984 985 986
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
987 988 989 990
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
991 992 993 994 995 996 997 998 999 1000

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1001
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1002
           )DOC")
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1014 1015
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1016 1017 1018 1019 1020
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1021
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1022 1023
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1024
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1025

L
Leo Chen 已提交
1026
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1027
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1028
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1029 1030

           Args:
L
Leo Chen 已提交
1031 1032 1033 1034
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1045 1046
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1047
           )DOC")
1048 1049 1050 1051 1052 1053 1054 1055
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1056 1057 1058 1059 1060
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1061 1062
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1073
           )DOC")
G
gongweibao 已提交
1074
      // Set above comments of set_lod.
1075 1076 1077 1078 1079 1080 1081 1082
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1083 1084
           },
           R"DOC(
L
Leo Chen 已提交
1085 1086
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1087 1088

           Returns:
L
Leo Chen 已提交
1089
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1101 1102 1103 1104 1105 1106 1107 1108
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1109
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1110 1111

           Returns:
L
Leo Chen 已提交
1112
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1124 1125 1126 1127 1128 1129 1130
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1131
           )DOC")
1132 1133 1134 1135 1136 1137
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
L
Leo Chen 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146
      .def("_as_type",
           [](const LoDTensor &self,
              paddle::framework::proto::VarType::Type type) {
             LoDTensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1159
#ifdef _WIN32
1160
      });
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1211

Q
qijun 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1223 1224
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1225 1226
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1227 1228
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1229
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1230 1231 1232 1233 1234 1235
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1236
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1237
      .def("rows", [](SelectedRows &self) {
1238 1239 1240 1241 1242
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1243
      });
Q
qijun 已提交
1244

1245
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1246 1247 1248

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1249
      .def(py::init<>())
1250
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1251
      .def("set_int",
1252 1253
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1254 1255 1256 1257 1258 1259 1260
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1261
      .def("get_tensor",
1262 1263
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1264 1265
           },
           py::return_value_policy::reference)
1266 1267 1268 1269
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1282 1283 1284
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1285 1286 1287 1288 1289
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1290 1291 1292
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1293 1294 1295
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1296
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1297 1298 1299 1300 1301
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1302
#endif
Y
Refine  
Yu Yang 已提交
1303 1304
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1305 1306 1307 1308
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1309 1310
             return self.GetMutable<framework::ReaderHolder>();
           },
1311
           py::return_value_policy::reference)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1323 1324 1325 1326
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1327

S
sneaxiy 已提交
1328
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1329

S
sneaxiy 已提交
1330
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1344
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1345 1346 1347 1348 1349 1350
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1351 1352
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1353
      .def("var",
1354
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1355
             return self.Var(name);
Y
Yu Yang 已提交
1356
           },
S
sneaxiy 已提交
1357 1358
           py::arg("name"),
           R"DOC(
1359
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1360

1361
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1362
           current scope, the variable would be created. Otherwise,
1363
           return the existing variable.
S
sneaxiy 已提交
1364 1365

           Args:
1366 1367
               name (str): the variable name.

S
sneaxiy 已提交
1368
           Returns:
1369
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1370 1371 1372 1373
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1374
           Find variable named :code:`name` in the current scope or
1375
           its parent scope. Return None if not found. 
1376

S
sneaxiy 已提交
1377 1378
           Args:
               name (str): the variable name.
1379

S
sneaxiy 已提交
1380
           Returns:
1381
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1382
           )DOC",
1383
           py::return_value_policy::reference)
1384
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1385 1386 1387 1388 1389 1390
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1391
           py::return_value_policy::reference)
S
sneaxiy 已提交
1392 1393 1394
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1395 1396
           )DOC")
      .def("_kids", &Scope::kids);
1397

S
sneaxiy 已提交
1398 1399 1400 1401 1402 1403
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1404 1405
        R"DOC(
        Create a new scope.
1406

S
sneaxiy 已提交
1407 1408 1409
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1410 1411
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1412 1413
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1414 1415
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1416 1417 1418 1419
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1420 1421
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1422 1423
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1424 1425 1426
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1427 1428
    return ret_values;
  });
1429 1430 1431 1432 1433 1434 1435 1436
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1437
              res = op_checker->GetDefaultAttrsMap();
1438 1439 1440 1441
            }
          }
          return res;
        });
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1458 1459 1460
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1461 1462 1463 1464 1465
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1466 1467 1468
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1483
  m.def("prune", [](const ProgramDesc &origin,
1484
                    const std::set<std::string> &feeded_var_names,
1485
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1486
    ProgramDesc prog_with_targets(origin);
1487

1488
    for (const auto &t : targets) {
1489
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1490
    }
1491
    proto::ProgramDesc pruned_desc;
1492 1493 1494 1495
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1496
  });
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1514 1515 1516 1517
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1518 1519 1520
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1521 1522
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1523

Q
qijun 已提交
1524
  // clang-format off
Y
Yu Yang 已提交
1525
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1526 1527
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1528
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1529 1530
                    return new paddle::platform::CPUDeviceContext();
                  })
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1555
      .def_static("create",
D
dzhwinter 已提交
1556
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1557
                      -> paddle::platform::DeviceContext* {
1558
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1559 1560 1561 1562
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1563
#else
Q
qijun 已提交
1564
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1565
#endif
C
chengduoZH 已提交
1566 1567 1568 1569
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1570
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1571 1572 1573 1574
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1575 1576 1577 1578
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1579
// clang-format on
1580
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1581 1582
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1583
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1584 1585 1586 1587 1588

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1589
    The memory of CUDAPlace with different dev_id is not accessible.
1590 1591 1592 1593 1594 1595 1596 1597
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1598 1599 1600 1601

    Examples:
        .. code-block:: python

1602 1603 1604
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1605

1606
        )DOC")
S
sneaxiy 已提交
1607 1608
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1609
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1634 1635
             new (&self) platform::CUDAPlace(dev_id);
#else
1636 1637 1638 1639 1640 1641 1642 1643 1644
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1645 1646
#endif
           })
1647
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1648 1649
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1650 1651 1652 1653
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1654
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1655
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1656 1657
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1658 1659 1660
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1661
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1662
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1709
#ifdef PADDLE_WITH_XPU
1710 1711 1712 1713 1714 1715 1716
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1717 1718 1719
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1720
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1721
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1722
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1723 1724 1725 1726
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1727
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1728 1729
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
T
taixiurong 已提交
1730 1731 1732 1733 1734 1735 1736 1737
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
1738
#endif
1739

1740
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1741
    CPUPlace is a descriptor of a device.
1742
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1743 1744 1745 1746

    Examples:
        .. code-block:: python

1747 1748
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1749

1750
        )DOC")
1751
      .def(py::init<>())
S
sneaxiy 已提交
1752 1753
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1754
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1755
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1756 1757 1758 1759
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1760
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1761
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1762

1763
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1764 1765 1766 1767 1768 1769
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1770 1771 1772 1773

    Examples:
        .. code-block:: python

1774 1775
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1776

1777
        )DOC")
S
sneaxiy 已提交
1778
      .def("__init__",
S
sneaxiy 已提交
1779
           [](platform::CUDAPinnedPlace &self) {
1780
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1781 1782 1783
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1784
#endif
S
sneaxiy 已提交
1785
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1786
           })
S
sneaxiy 已提交
1787 1788 1789 1790
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1791 1792
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1793 1794
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1795 1796 1797 1798
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1799
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1800 1801
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1844
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1859 1860
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1861 1862
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1863 1864
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1865 1866 1867 1868
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1869
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1870
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1871
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1872 1873
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1874 1875
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1876 1877
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1878 1879
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1880 1881 1882 1883
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1884 1885
      .def("gpu_device_id",
           [](platform::Place &self) {
1886
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1887
           })
1888 1889 1890 1891
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1892 1893 1894 1895
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1896 1897
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1898 1899 1900 1901
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1902 1903 1904 1905
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1906
      .def("set_place",
D
dzhwinter 已提交
1907
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1908
             self = gpu_place;
C
chengduoZH 已提交
1909
           })
1910 1911 1912 1913 1914
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1915 1916 1917 1918
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1919 1920
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1921

Y
Yu Yang 已提交
1922
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
1937
      .def("run",
1938
           [](OperatorBase &self, const Scope &scope,
1939 1940 1941 1942
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1943 1944
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1945 1946 1947 1948
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1949 1950
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1951 1952 1953 1954
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1955 1956
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1957 1958 1959 1960
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1961 1962 1963
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1964
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1965 1966
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1967 1968 1969 1970 1971 1972 1973
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1974 1975
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1976
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1977
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1978 1979 1980 1981
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1982

1983 1984 1985
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1986 1987 1988 1989 1990 1991 1992 1993 1994
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1995 1996
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1997
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1998
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1999
      .def("close", &Executor::Close)
2000 2001
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2002 2003
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2004 2005 2006 2007
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2008
             pybind11::gil_scoped_release release;
2009 2010 2011 2012 2013 2014 2015
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2016 2017 2018
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2019
              std::map<std::string, FetchType *> *fetch_targets,
2020 2021 2022 2023 2024 2025 2026 2027
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2028
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2029 2030 2031 2032 2033 2034 2035
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2046
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2047 2048
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2049
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2050 2051
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2052
      });
S
sneaxiy 已提交
2053

2054 2055 2056 2057
  py::class_<framework::CostInfo>(m, "CostInfo")
      .def(py::init<>())
      .def("total_time", [](CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes",
2058
           [](CostInfo &self) { return self.device_memory_bytes; });
2059

2060
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2061 2062 2063
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2064
           [](StandaloneExecutor &self,
H
hong 已提交
2065
              const std::unordered_map<std::string, py::array> &input_dict,
2066
              std::vector<std::string> fetch_names) {
2067
             std::vector<framework::LoDTensor> feed_tensors;
2068
             std::vector<std::string> feed_names;
H
hong 已提交
2069 2070 2071 2072 2073

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2074 2075
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2076 2077
             }

2078 2079 2080 2081 2082 2083 2084 2085 2086
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2087
              const std::unordered_map<std::string, framework::LoDTensor>
2088 2089
                  &input_dict,
              std::vector<std::string> fetch_names) {
2090
             std::vector<framework::LoDTensor> feed_tensors;
2091 2092 2093 2094 2095 2096 2097
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2098 2099 2100 2101
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2102
             }
W
wanghuancoder 已提交
2103
             return py::cast(std::move(ret));
2104 2105 2106 2107
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2108
             std::vector<framework::LoDTensor> feed_tensors;
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

             CostInfo cost_info;
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2125 2126
           });

D
dzhwinter 已提交
2127
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2128
  m.def("init_glog", framework::InitGLOG);
2129 2130
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2131
  m.def("init_devices", []() { framework::InitDevices(); });
2132

2133
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2134
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2135
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2136
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2137
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2138
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2139
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2140
  m.def("supports_bfloat16", SupportsBfloat16);
2141
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2142 2143
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2144
  m.def("op_supported_infos", OpSupportedInfos);
2145
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2146
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2147 2148 2149
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2169 2170 2171 2172 2173 2174 2175
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2185
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2186 2187 2188 2189 2190
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2191

S
Steffy-zxf 已提交
2192 2193 2194 2195 2196 2197
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2198 2199 2200 2201 2202
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2203
            return py::cast(BOOST_GET(LoDTensor, var));
2204
          } else {
2205
            return py::cast(BOOST_GET(LoDTensorArray, var));
2206 2207
          }
        });
2208
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2209

X
Xin Pan 已提交
2210 2211
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2212 2213 2214 2215
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2216
  BindCostModel(&m);
2217
  BindConstValue(&m);
2218
  BindGlobalValueGetterSetter(&m);
2219
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2220
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2221

Y
Yu Yang 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2231
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2232
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2233 2234 2235

    Examples:
        .. code-block:: python
2236

Z
Zeng Jinle 已提交
2237 2238 2239 2240
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2241 2242
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2243 2244 2245 2246 2247 2248
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2249 2250 2251 2252
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2253 2254 2255
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2256 2257 2258 2259 2260 2261
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2262 2263
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2264 2265 2266 2267 2268 2269
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2292

2293 2294 2295 2296 2297 2298 2299 2300
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2301
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2302 2303
                 res[i] = py::cast(std::move(data));
               } else {
2304
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2320
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2321 2322 2323 2324 2325 2326 2327 2328
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2329
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2330 2331 2332 2333 2334 2335 2336 2337 2338
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2339 2340
        )DOC")
      .def("_move_to_list",
2341
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2342 2343 2344 2345
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2346
                 if (data_is_lod_tensor(self[i][j])) {
2347
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2348 2349
                   tmp[j] = py::cast(std::move(var));
                 } else {
2350
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2351 2352 2353 2354 2355 2356
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2366
  m.def("op_support_gpu", OpSupportGPU);
2367
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2368
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2369 2370 2371 2372 2373 2374 2375 2376
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
      .def_readonly("name", &gpuDeviceProp::name)
      .def_readonly("major", &gpuDeviceProp::major)
      .def_readonly("minor", &gpuDeviceProp::minor)
      .def_readonly("is_multi_gpu_board", &gpuDeviceProp::isMultiGpuBoard)
      .def_readonly("is_integrated", &gpuDeviceProp::integrated)
      .def_readonly("multi_processor_count",
                    &gpuDeviceProp::multiProcessorCount)
      .def_readonly("total_memory", &gpuDeviceProp::totalGlobalMem)
      .def("__repr__", [](const gpuDeviceProp &gpu_device_prop) {
        std::ostringstream stream;
        stream << "_gpuDeviceProperties(name='" << gpu_device_prop.name
               << "', major=" << gpu_device_prop.major
               << ", minor=" << gpu_device_prop.minor << ", total_memory="
               << gpu_device_prop.totalGlobalMem / (1024 * 1024)
               << "MB, multi_processor_count="
               << gpu_device_prop.multiProcessorCount << ")";
        return stream.str();
      });
D
dangqingqing 已提交
2402

2403
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2404 2405 2406
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2407 2408 2409 2410
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2411
#endif
P
peizhilin 已提交
2412
#endif
Y
Yu Yang 已提交
2413

2414 2415
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2416 2417 2418 2419
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2420
      platform::NPUDeviceGuard guard(devices[i]);
2421 2422 2423 2424
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2445 2446 2447 2448 2449 2450
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2451 2452 2453 2454
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2455
      .value("kAll", platform::ProfilerState::kAll)
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2467
  m.def("set_tracer_option", platform::SetTracerOption);
2468 2469
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2470
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2471
  m.def("reset_profiler", platform::ResetProfiler);
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2487
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2488 2489 2490
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2491

2492 2493
  m.def("size_of_dtype", framework::SizeOfType);

2494
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2495 2496
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2497 2498
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2499
#endif  // PADDLE_WITH_CUDA
2500 2501
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2502

2503 2504 2505
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2506 2507
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2508
      .def("has", &ir::Pass::Has)
2509 2510 2511
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2512
           })
2513
      .def(
2514
          "set",
2515 2516 2517
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2518 2519
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2520 2521
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2536 2537
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2538
        self.Apply(graph.get());
F
flame 已提交
2539
      });
2540

X
fix  
Xin Pan 已提交
2541 2542
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2557
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2558
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2559 2560 2561 2562
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2563 2564 2565
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2566 2567 2568
    Examples:
        .. code-block:: python

2569 2570 2571 2572 2573 2574 2575 2576 2577
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2578

2579 2580
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2581

2582
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2583 2584
          sgd_optimizer.minimize(avg_loss)

2585
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2586 2587
          exec_strategy.num_threads = 4

2588 2589 2590
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2591 2592
        )DOC");

2593 2594 2595 2596
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2597

Y
yuyang18 已提交
2598
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2599 2600 2601 2602 2603
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2604
          },
2605 2606
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2607 2608 2609 2610 2611 2612 2613
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2627
      .def_property(
2628 2629
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2630
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2631 2632 2633
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2634 2635 2636 2637 2638
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2639 2640 2641
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2642 2643
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2644 2645 2646 2647 2648 2649 2650
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2651 2652 2653 2654
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2655
                because the temp variable's shape maybe the same between two iterations.
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2666

2667 2668 2669 2670 2671 2672 2673
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2674
              )DOC")
Q
Qiao Longfei 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2696
              )DOC")
2697 2698 2699 2700 2701 2702 2703 2704
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2705 2706 2707 2708 2709
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2710

Y
yuyang18 已提交
2711
  exec_strategy.def_property(
Y
yuyang18 已提交
2712 2713 2714 2715 2716 2717 2718
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2719 2720
      });

C
chengduo 已提交
2721 2722 2723 2724
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2725 2726 2727
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2728 2729 2730
    Examples:
        .. code-block:: python

2731
            import os
2732 2733 2734 2735
            import paddle
            import paddle.static as static

            paddle.enable_static()
2736

2737 2738
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2739

2740 2741 2742 2743
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2744

2745
            build_strategy = static.BuildStrategy()
2746 2747
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2748 2749
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2750
            program = program.with_data_parallel(loss_name=loss.name,
2751 2752
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2753
)DOC");
Y
yuyang18 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2766
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2767 2768 2769 2770
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2771 2772 2773 2774
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2775
            self.reduce_ = strategy;
C
chengduo 已提交
2776
          },
2777
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2778 2779
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2780
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2781 2782
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2783
                Default is 'AllReduce'.
F
flame 已提交
2784 2785 2786 2787

                Examples:
                    .. code-block:: python

2788 2789 2790 2791 2792 2793 2794
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2795
                  )DOC")
Y
yuyang18 已提交
2796 2797 2798 2799 2800
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2801 2802 2803 2804
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2805
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2806
          },
2807
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2808
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2809 2810
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2811
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2812 2813 2814 2815

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2816 2817
                        import numpy
                        import os
2818 2819 2820 2821
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2822 2823

                        use_cuda = True
2824 2825
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2826 2827

                        # NOTE: If you use CPU to run the program, you need
2828
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2829 2830 2831 2832 2833 2834
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2835
                            places = static.cpu_places()
C
chengduo 已提交
2836
                        else:
2837
                            places = static.cuda_places()
C
chengduo 已提交
2838

2839 2840 2841 2842
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2843

2844
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2845

2846
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2847
                        build_strategy.gradient_scale_strategy = \
2848 2849 2850
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2851
                                          loss_name=loss.name, build_strategy=build_strategy,
2852
                                          places=places)
C
chengduo 已提交
2853 2854 2855 2856 2857 2858

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2859 2860
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2861
                   )DOC")
Y
yuyang18 已提交
2862 2863 2864 2865
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2866 2867 2868 2869
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2870
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2871
          },
2872
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2873
                writing the SSA Graph to file in the form of graphviz.
2874
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2875 2876 2877 2878

                Examples:
                    .. code-block:: python

2879 2880 2881 2882
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2883

2884 2885
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2886
                    )DOC")
S
sneaxiy 已提交
2887 2888 2889 2890 2891 2892
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2893 2894 2895 2896
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2897 2898
            self.enable_sequential_execution_ = b;
          },
2899 2900
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2901 2902 2903 2904

                Examples:
                    .. code-block:: python

2905 2906 2907 2908 2909 2910
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2911 2912
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2913 2914 2915 2916 2917 2918
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2919 2920 2921 2922
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2923 2924
            self.remove_unnecessary_lock_ = b;
          },
2925 2926
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2927 2928 2929 2930

                Examples:
                    .. code-block:: python

2931 2932 2933 2934 2935 2936
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2937 2938
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2939 2940 2941 2942
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2943
#ifdef WIN32
2944
            PADDLE_THROW(platform::errors::Unavailable(
2945
                "Distribution mode is not supported on Windows platform."));
2946
#endif
2947 2948
            self.num_trainers_ = num_trainers;
          })
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2961 2962 2963 2964 2965 2966
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2967 2968 2969 2970 2971 2972
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2973
      .def_property("use_hierarchical_allreduce",
2974 2975 2976 2977 2978 2979
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2980
      .def_property("hierarchical_allreduce_inter_nranks",
2981 2982 2983 2984 2985 2986 2987
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2988 2989 2990 2991 2992 2993
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2994 2995 2996 2997
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2998 2999
            self.fuse_elewise_add_act_ops_ = b;
          },
3000
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3001
                to fuse elementwise_add_op and activation_op,
3002
                it may make the execution faster. Default is False.
F
flame 已提交
3003 3004 3005 3006

                Examples:
                    .. code-block:: python

3007 3008 3009 3010 3011 3012
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3013 3014
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3015 3016 3017 3018
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3019
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3020
                              platform::errors::PreconditionNotMet(
3021 3022
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3032 3033 3034 3035 3036 3037
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3038 3039
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3065 3066 3067 3068
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3069
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3070
                              platform::errors::PreconditionNotMet(
3071 3072
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3083 3084 3085 3086 3087 3088
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3089 3090
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3091 3092 3093 3094 3095 3096
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3097 3098 3099 3100
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3101 3102
            self.fuse_relu_depthwise_conv_ = b;
          },
3103
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3104 3105 3106
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3107
                Default is False.
F
flame 已提交
3108 3109 3110 3111

                Examples:
                    .. code-block:: python

3112 3113 3114 3115 3116 3117
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3118 3119
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3120 3121 3122
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3123
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3124 3125
                    },
                    [](BuildStrategy &self, bool b) {
3126 3127 3128 3129
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3130 3131
                      self.fuse_broadcast_ops_ = b;
                    },
3132
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3133 3134 3135 3136
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3137 3138 3139 3140 3141
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3142 3143 3144 3145 3146 3147
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3148 3149
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3150 3151
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3152
                      return self.fuse_all_optimizer_ops_ == true ||
3153
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3154 3155
                    },
                    [](BuildStrategy &self, bool b) {
3156 3157 3158 3159
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3160 3161
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3162 3163 3164 3165
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3166 3167 3168 3169
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3170 3171
            self.sync_batch_norm_ = b;
          },
3172
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3173 3174 3175
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3176 3177
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3178 3179 3180 3181

                Examples:
                    .. code-block:: python

3182 3183 3184 3185 3186 3187
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3188 3189
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3190 3191
      .def_property(
          "memory_optimize",
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3202
              self.memory_optimize_ = paddle::none;
3203 3204 3205
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3206
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3207 3208
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3209 3210
            }
          },
3211
          R"DOC((bool, optional): memory opitimize aims to save total memory
3212
                consumption, set to True to enable it.
3213

3214 3215 3216
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3231 3232 3233
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3234 3235 3236
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3237
              PADDLE_THROW(platform::errors::Unavailable(
3238
                  "Distribution mode is not supported on Windows platform."));
3239 3240 3241 3242 3243
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3244 3245 3246
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3247
      .def_property(
D
dzhwinter 已提交
3248 3249 3250
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3251 3252 3253 3254
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3255 3256
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3257 3258
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3259
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3260
          },
C
chengduo 已提交
3261
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3262 3263 3264 3265 3266 3267 3268
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3269 3270 3271 3272
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3273 3274 3275 3276 3277 3278 3279 3280 3281
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3282 3283 3284 3285 3286 3287
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3288 3289 3290 3291 3292 3293 3294
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3295 3296 3297 3298 3299 3300
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3301
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3302
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3303 3304 3305 3306 3307
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3308

3309 3310 3311 3312 3313 3314
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3315
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3316
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3317
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3318
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3319 3320 3321 3322
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3323 3324 3325 3326 3327
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3328 3329 3330
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3331 3332 3333 3334
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3335 3336
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3337 3338 3339 3340 3341 3342 3343 3344
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3345
               return py::cast(
3346
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3347 3348
             } else {
               return py::cast(std::move(
3349
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3350
             }
3351 3352
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3353

D
dongdaxiang 已提交
3354
  BindFleetWrapper(&m);
3355
  BindIO(&m);
T
Thunderbrook 已提交
3356

T
Thunderbrook 已提交
3357 3358
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3359
#endif
T
Thunderbrook 已提交
3360
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3361
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3362
#endif
3363
  BindGlooWrapper(&m);
H
hutuxian 已提交
3364
  BindBoxHelper(&m);
H
hutuxian 已提交
3365 3366 3367
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3368
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3369
  BindNCCLWrapper(&m);
3370 3371 3372
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3373
#endif
F
flame 已提交
3374 3375
  BindGraph(&m);
  BindNode(&m);
3376
  BindPass(&m);
F
flame 已提交
3377
  BindInferenceApi(&m);
3378
  BindCompatible(&m);
3379
  BindDataset(&m);
Y
yaoxuefeng 已提交
3380
  BindGenerator(&m);
3381 3382 3383
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3384
  BindAscendDevice(&m);
3385
#endif
Y
Yanghello 已提交
3386 3387 3388
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3389

T
tangwei12 已提交
3390
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3391 3392
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3393
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3394 3395
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3396 3397 3398 3399 3400
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3401 3402 3403 3404
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3405
  BindSparseShardingTools(&m);
3406
#endif
L
Luo Tao 已提交
3407
}
3408
}  // namespace pybind
3409
}  // namespace paddle