pybind.cc 130.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_cache.h"
35
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
39
#include "paddle/fluid/framework/io/fs.h"
40
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
41
#include "paddle/fluid/framework/ir/generate_pass.h"
42
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
43 44 45
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
46
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/op_info.h"
48
#include "paddle/fluid/framework/op_registry.h"
49
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
50
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
52
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
53
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
54
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/framework/selected_rows.h"
56
#include "paddle/fluid/framework/tensor_util.h"
57
#include "paddle/fluid/framework/trainer.h"
58
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
59
#include "paddle/fluid/framework/version.h"
H
hong 已提交
60
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
61
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
62
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
63
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
64
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
65
#include "paddle/fluid/operators/py_func_op.h"
66
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
67
#include "paddle/fluid/platform/cpu_info.h"
68
#include "paddle/fluid/platform/device_context.h"
69
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/platform/enforce.h"
71
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
72
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
73 74
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
75
#include "paddle/fluid/pybind/cuda_streams_py.h"
76
#include "paddle/fluid/pybind/io.h"
77
#include "paddle/utils/none.h"
78 79 80
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
81
#include "paddle/fluid/pybind/box_helper_py.h"
82
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
83
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
84
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
85
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
86
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
87
#include "paddle/fluid/pybind/generator_py.h"
88
#include "paddle/fluid/pybind/global_value_getter_setter.h"
89
#include "paddle/fluid/pybind/gloo_context_py.h"
90
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
91
#include "paddle/fluid/pybind/heter_wrapper_py.h"
92
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
93
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
94
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
95
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
96
#include "paddle/fluid/pybind/pybind_boost_headers.h"
97

98
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
99
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
100
#endif
101
#include "paddle/fluid/framework/data_type.h"
102 103
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
104
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
105
#include "paddle/fluid/pybind/tensor_py.h"
106
#include "paddle/fluid/string/to_string.h"
107 108
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
109
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
110
#endif
111
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
112
#include "paddle/fluid/platform/cuda_profiler.h"
113
#endif
Y
Yi Wang 已提交
114
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
115 116
#endif

117 118
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
119
#include "paddle/fluid/platform/npu_profiler.h"
120 121
#endif

122
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
123
#include "paddle/fluid/platform/xpu/xpu_info.h"
124 125
#endif

Y
Yanghello 已提交
126 127 128 129
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
130
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
131 132 133
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
134 135
#include "pybind11/stl.h"

136
DECLARE_bool(use_mkldnn);
137

Q
Qiao Longfei 已提交
138 139
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
140 141 142
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
143

144
namespace paddle {
145
namespace pybind {
146
bool IsCompiledWithCUDA() {
147 148 149 150 151 152 153 154 155
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
156 157 158 159 160 161
  return false;
#else
  return true;
#endif
}

162 163 164 165 166 167 168 169
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

170 171 172 173 174 175 176 177
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

178 179 180 181 182 183 184 185
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

186 187 188 189 190 191 192 193
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

194 195 196 197 198 199 200 201
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

202 203 204 205 206 207 208 209 210 211 212
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

213 214 215 216 217 218 219 220 221 222 223
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
242 243 244
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
245
      {"NPU", &platform::is_npu_place},
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

285
bool IsCompiledWithBrpc() {
286
#ifndef PADDLE_WITH_DISTRIBUTE
287 288
  return false;
#endif
289
  return true;
290 291
}

Y
update  
Yancey1989 已提交
292
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
293
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
294 295 296 297 298 299
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
300 301 302 303 304 305 306 307 308 309
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
332 333 334
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
348 349
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
350 351
    }
    vec_res.emplace_back(
352
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
353 354 355 356 357 358 359 360 361 362 363 364
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
365 366
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
367 368 369 370 371 372 373 374 375 376 377 378
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
379 380 381
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
382 383 384 385
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
386 387
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
388 389 390 391
  }
  return vec_res;
}

392 393 394 395 396 397 398 399
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
400 401
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
402 403 404 405 406 407 408 409 410 411 412 413 414
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
415 416 417
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
418 419 420 421 422
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
423 424 425 426 427
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
428 429
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
430 431 432
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
433 434 435 436 437 438 439 440 441
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
442 443
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
444 445 446 447 448
  }

  return;
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

486 487 488 489 490 491
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

492 493
  BindCudaStream(&m);

Y
Yu Yang 已提交
494 495 496
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
497
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
498

499 500
  AssertStaticGraphAndDygraphGradMakerNoDiff();

501
  m.doc() = "C++ core of PaddlePaddle";
502

503 504 505 506
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

507
  BindException(&m);
Y
Yu Yang 已提交
508

509 510
  m.def("set_num_threads", &platform::SetNumThreads);

511 512
  m.def("disable_signal_handler", &DisableSignalHandler);

513
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
514 515 516
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
517 518 519 520 521 522 523 524
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
525 526 527
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
528 529 530 531 532 533

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
534 535
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
536
    framework::Tensor tensor;
6
633WHU 已提交
537 538 539 540

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
541
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
542 543 544 545 546 547
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
548

549 550 551 552 553 554
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

555 556 557 558 559 560
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
561 562
  });

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
588 589 590 591 592 593
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
594
  m.def(
S
sneaxiy 已提交
595
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
596 597 598 599
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
600 601 602
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
619 620 621
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
622
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
623

624
  m.def("_set_fuse_parameter_group_size",
625
        &paddle::framework::ir::SetFuseParameterGroupsSize);
626
  m.def("_set_fuse_parameter_memory_size",
627
        &paddle::framework::ir::SetFuseParameterMemorySize);
628

S
sneaxiy 已提交
629 630 631
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

632 633
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

634 635 636
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

637
  BindImperative(&m);
638

639 640 641
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
642
      .def("_is_initialized",
643
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
644
      .def("_get_dims",
645
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
646
      .def("_set_dims",
647
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
648
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
649
           })
Y
yuyang18 已提交
650
      .def("_set_layout",
651
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
652 653
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
654
      .def("_alloc_float",
655
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
656
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
657
           })
658
      .def("_alloc_float",
659
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
660 661
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
662
      .def("_alloc_float",
663
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
664
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
665
           })
666 667 668 669
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
670
      .def("_alloc_double",
671
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
672 673
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
674
      .def("_alloc_int",
675
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
676
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
677
           })
678
      .def("_alloc_int",
679
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
680 681
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
682
      .def("_alloc_int",
683
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
684
             self.mutable_data<int>(place);
Q
qijun 已提交
685
           })
Y
yuyang18 已提交
686
      .def("_alloc_int",
687 688
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
689 690
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
691
      .def("_alloc_float",
692 693
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
694 695
             self.mutable_data<float>(place);
           })
696
      .def("_mutable_data",
697
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
698 699 700
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
701
      .def("_mutable_data",
702
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
703 704 705
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
706
      .def("_mutable_data",
707
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
708 709 710 711
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
712
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
713 714 715
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
716
      .def("_clear", &framework::Tensor::clear)
717 718 719 720 721
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
722
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
723
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
724 725
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
726
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
727
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
728 729
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
730
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
731 732
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
733 734 735 736
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
737
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
738
          LoDTensor is to be set.
739 740
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
754

755 756 757
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
774
      .def("_to_dlpack",
775
           [](framework::Tensor &self) {
6
633WHU 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
796 797 798 799
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
800 801
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
802
      .def("_layout",
803 804 805 806
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
807
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
808
      .def("__str__", [](const framework::Tensor &self) {
809 810 811 812
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
813

L
Leo Chen 已提交
814
  // TODO(cql): add reference: en_user_guide_lod_tensor
815
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
890 891 892 893 894 895 896

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
897 898

        )DOC")
899 900
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
901 902 903 904 905 906 907 908 909
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
910 911
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
912 913 914 915
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
916 917
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
918
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
919
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
920 921
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
922 923 924
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
925
      .def("set_lod",
926
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
927
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
928
             LoD new_lod;
929 930
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
931 932
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
933 934
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
935
             self.set_lod(new_lod);
S
sneaxiy 已提交
936 937 938 939 940
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
941 942 943 944
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
945 946 947 948 949 950 951 952 953 954

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
955
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
956
           )DOC")
957 958 959 960 961 962 963 964 965 966 967
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
968 969
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
970 971 972 973 974
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
975
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
976 977
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
978
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
979

L
Leo Chen 已提交
980
           For example, if recursive_sequence_lengths=[[2, 3]], which means
981
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
982
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
983 984

           Args:
L
Leo Chen 已提交
985 986 987 988
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
989 990 991 992 993 994 995 996 997 998

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
999 1000
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1001
           )DOC")
1002 1003 1004 1005 1006 1007 1008 1009
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1010 1011 1012 1013 1014
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1015 1016
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1027
           )DOC")
G
gongweibao 已提交
1028
      // Set above comments of set_lod.
1029 1030 1031 1032 1033 1034 1035 1036
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1037 1038
           },
           R"DOC(
L
Leo Chen 已提交
1039 1040
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1041 1042

           Returns:
L
Leo Chen 已提交
1043
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1055 1056 1057 1058 1059 1060 1061 1062
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1063
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1064 1065

           Returns:
L
Leo Chen 已提交
1066
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1078 1079 1080 1081 1082 1083 1084
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1085
           )DOC")
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1104
#ifdef _WIN32
1105
      });
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1156

Q
qijun 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1168 1169
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1170 1171
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1172 1173
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1174
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1175 1176 1177 1178 1179 1180
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1181
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1182
      .def("rows", [](SelectedRows &self) {
1183 1184 1185 1186 1187
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1188
      });
Q
qijun 已提交
1189

1190
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1191 1192 1193

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1194
      .def(py::init<>())
1195
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1196
      .def("set_int",
1197 1198
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1199 1200 1201 1202 1203 1204 1205
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1206
      .def("get_tensor",
1207 1208
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1209 1210
           },
           py::return_value_policy::reference)
1211 1212 1213 1214
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1215 1216 1217
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1218 1219 1220 1221 1222
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1223 1224 1225
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1226 1227 1228
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1229
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1230 1231 1232 1233 1234
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1235
#endif
Y
Refine  
Yu Yang 已提交
1236 1237
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1238 1239 1240 1241
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1242 1243
             return self.GetMutable<framework::ReaderHolder>();
           },
1244
           py::return_value_policy::reference)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1256 1257 1258 1259
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1260

S
sneaxiy 已提交
1261
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1262

S
sneaxiy 已提交
1263
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1277
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1278 1279 1280 1281 1282 1283
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1284 1285
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1286
      .def("var",
1287
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1288
             return self.Var(name);
Y
Yu Yang 已提交
1289
           },
S
sneaxiy 已提交
1290 1291
           py::arg("name"),
           R"DOC(
1292
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1293

1294
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1295
           current scope, the variable would be created. Otherwise,
1296
           return the existing variable.
S
sneaxiy 已提交
1297 1298

           Args:
1299 1300
               name (str): the variable name.

S
sneaxiy 已提交
1301
           Returns:
1302
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1303 1304 1305 1306
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1307
           Find variable named :code:`name` in the current scope or
1308
           its parent scope. Return None if not found. 
1309

S
sneaxiy 已提交
1310 1311
           Args:
               name (str): the variable name.
1312

S
sneaxiy 已提交
1313
           Returns:
1314
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1315
           )DOC",
1316
           py::return_value_policy::reference)
1317
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1318 1319 1320 1321 1322 1323
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1324
           py::return_value_policy::reference)
S
sneaxiy 已提交
1325 1326 1327
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1328 1329
           )DOC")
      .def("_kids", &Scope::kids);
1330

S
sneaxiy 已提交
1331 1332 1333 1334 1335 1336
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1337 1338
        R"DOC(
        Create a new scope.
1339

S
sneaxiy 已提交
1340 1341 1342
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1343 1344
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1345 1346
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1347 1348
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1349 1350 1351 1352
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1353 1354
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1355 1356
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1357 1358 1359
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1360 1361
    return ret_values;
  });
1362 1363 1364 1365 1366 1367 1368 1369
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1370
              res = op_checker->GetDefaultAttrsMap();
1371 1372 1373 1374
            }
          }
          return res;
        });
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1391 1392 1393
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1394 1395 1396 1397 1398
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1399 1400 1401
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1416
  m.def("prune", [](const ProgramDesc &origin,
1417
                    const std::set<std::string> &feeded_var_names,
1418
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1419
    ProgramDesc prog_with_targets(origin);
1420

1421
    for (const auto &t : targets) {
1422
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1423
    }
1424
    proto::ProgramDesc pruned_desc;
1425 1426 1427 1428
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1429
  });
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1447 1448 1449 1450
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1451 1452 1453
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1454 1455
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1456

Q
qijun 已提交
1457
  // clang-format off
Y
Yu Yang 已提交
1458
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1459 1460
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1461
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1462 1463
                    return new paddle::platform::CPUDeviceContext();
                  })
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1488
      .def_static("create",
D
dzhwinter 已提交
1489
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1490
                      -> paddle::platform::DeviceContext* {
1491
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1492 1493 1494 1495
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1496
#else
Q
qijun 已提交
1497
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1498
#endif
C
chengduoZH 已提交
1499 1500 1501 1502
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1503
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1504 1505 1506 1507
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1508 1509 1510 1511
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1512
// clang-format on
1513
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1514 1515
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1516
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1517 1518 1519 1520 1521

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1522
    The memory of CUDAPlace with different dev_id is not accessible.
1523 1524 1525 1526 1527 1528 1529 1530
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1531 1532 1533 1534

    Examples:
        .. code-block:: python

1535 1536 1537
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1538

1539
        )DOC")
S
sneaxiy 已提交
1540 1541
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1542
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1567 1568
             new (&self) platform::CUDAPlace(dev_id);
#else
1569 1570 1571 1572 1573 1574 1575 1576 1577
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1578 1579
#endif
           })
1580
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1581 1582
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1583 1584 1585 1586
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1587
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1588
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1589 1590
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1591 1592 1593
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1594
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1595
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1642
#ifdef PADDLE_WITH_XPU
1643 1644 1645 1646 1647 1648 1649
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1650 1651 1652
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1653
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1654
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1655
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1656 1657 1658 1659
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1660
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1661 1662
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1663
#endif
1664

1665
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1666
    CPUPlace is a descriptor of a device.
1667
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1668 1669 1670 1671

    Examples:
        .. code-block:: python

1672 1673
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1674

1675
        )DOC")
1676
      .def(py::init<>())
S
sneaxiy 已提交
1677 1678
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1679
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1680
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1681 1682 1683 1684
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1685
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1686
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1687

1688
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1689 1690 1691 1692 1693 1694
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1695 1696 1697 1698

    Examples:
        .. code-block:: python

1699 1700
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1701

1702
        )DOC")
S
sneaxiy 已提交
1703
      .def("__init__",
S
sneaxiy 已提交
1704
           [](platform::CUDAPinnedPlace &self) {
1705
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1706 1707 1708
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1709
#endif
S
sneaxiy 已提交
1710
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1711
           })
S
sneaxiy 已提交
1712 1713 1714 1715
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1716 1717
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1718 1719
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1720 1721 1722 1723
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1724
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1725 1726
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1769
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1784 1785
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1786 1787
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1788 1789
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1790 1791 1792 1793
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1794
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1795
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1796
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1797 1798
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1799 1800
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1801 1802
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1803 1804
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1805 1806 1807 1808
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1809 1810
      .def("gpu_device_id",
           [](platform::Place &self) {
1811
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1812
           })
1813 1814 1815 1816
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1817 1818 1819 1820
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1821 1822
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1823 1824 1825 1826
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1827 1828 1829 1830
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1831
      .def("set_place",
D
dzhwinter 已提交
1832
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1833
             self = gpu_place;
C
chengduoZH 已提交
1834
           })
1835 1836 1837 1838 1839
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1840 1841 1842 1843
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1844 1845
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1846

Y
Yu Yang 已提交
1847
  py::class_<OperatorBase>(m, "Operator")
Z
Zeng Jinle 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1862
      .def("run",
1863
           [](OperatorBase &self, const Scope &scope,
1864 1865 1866 1867
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1868 1869
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1870 1871 1872 1873
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1874 1875
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1876 1877 1878 1879
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1880 1881
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1882 1883 1884 1885
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1886 1887 1888
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1889
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1890 1891
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1892 1893 1894 1895 1896 1897 1898
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1899 1900
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1901
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1902
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1903 1904 1905 1906
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1907

1908 1909 1910
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1911 1912 1913 1914 1915 1916 1917 1918 1919
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1920 1921
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1922
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1923
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1924
      .def("close", &Executor::Close)
1925 1926
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1927 1928
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1929 1930 1931 1932
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1933
             pybind11::gil_scoped_release release;
1934 1935 1936 1937 1938 1939 1940
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1941 1942 1943
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1944
              std::map<std::string, FetchType *> *fetch_targets,
1945 1946 1947 1948 1949 1950 1951 1952
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1953
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1954 1955 1956 1957 1958 1959 1960
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1971
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1972 1973
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1974
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1975 1976
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1977
      });
S
sneaxiy 已提交
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
  py::class_<framework::CostInfo>(m, "CostInfo")
      .def(py::init<>())
      .def("total_time", [](CostInfo &self) { return self.total_time; })
      .def("host_memory_bytes",
           [](CostInfo &self) { return self.host_memory_bytes; })
      .def("device_memory_bytes",
           [](CostInfo &self) { return self.device_memory_bytes; })
      .def("device_total_memory_bytes",
           [](CostInfo &self) { return self.device_total_memory_bytes; });

1989
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
1990 1991 1992
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
1993
           [](StandaloneExecutor &self,
H
hong 已提交
1994
              const std::unordered_map<std::string, py::array> &input_dict,
1995 1996 1997
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;
H
hong 已提交
1998 1999 2000 2001 2002

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2003 2004
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2005 2006
             }

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, framework::Tensor>
                  &input_dict,
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2027 2028 2029 2030
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2031
             }
W
wanghuancoder 已提交
2032
             return py::cast(std::move(ret));
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

             CostInfo cost_info;
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2054 2055
           });

D
dzhwinter 已提交
2056
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2057
  m.def("init_glog", framework::InitGLOG);
2058 2059
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2060
  m.def("init_devices", []() { framework::InitDevices(); });
2061

2062
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2063
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2064
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2065
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2066
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2067
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2068
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2069
  m.def("supports_bfloat16", SupportsBfloat16);
2070
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2071
  m.def("op_supported_infos", OpSupportedInfos);
2072
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2073
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2074 2075 2076
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2096 2097 2098 2099 2100 2101 2102
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2112
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2113 2114 2115 2116 2117
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2118

2119
  m.def("set_feed_variable", framework::SetFeedVariable);
2120 2121 2122 2123 2124
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2125
            return py::cast(BOOST_GET(LoDTensor, var));
2126
          } else {
2127
            return py::cast(BOOST_GET(LoDTensorArray, var));
2128 2129
          }
        });
2130
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2131

X
Xin Pan 已提交
2132 2133
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2134 2135 2136 2137 2138
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2139
  BindGlobalValueGetterSetter(&m);
2140
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2141

Y
Yu Yang 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2151
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2152
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2153 2154 2155

    Examples:
        .. code-block:: python
2156

Z
Zeng Jinle 已提交
2157 2158 2159 2160
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2161 2162
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2163 2164 2165 2166 2167 2168
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2169 2170 2171 2172
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2173 2174 2175
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2176 2177 2178 2179 2180 2181
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2182 2183
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2184 2185 2186 2187 2188 2189
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2212

2213 2214 2215 2216 2217 2218 2219 2220
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2221
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2222 2223
                 res[i] = py::cast(std::move(data));
               } else {
2224
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2240
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2241 2242 2243 2244 2245 2246 2247 2248
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2249
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2250 2251 2252 2253 2254 2255 2256 2257 2258
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2259 2260
        )DOC")
      .def("_move_to_list",
2261
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2262 2263 2264 2265
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2266
                 if (data_is_lod_tensor(self[i][j])) {
2267
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2268 2269
                   tmp[j] = py::cast(std::move(var));
                 } else {
2270
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2271 2272 2273 2274 2275 2276
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2286
  m.def("op_support_gpu", OpSupportGPU);
2287
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2288
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2289
  m.def("cuda_empty_cache", platform::EmptyCache);
D
dangqingqing 已提交
2290

2291
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2292 2293 2294
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2295 2296 2297 2298
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2299
#endif
P
peizhilin 已提交
2300
#endif
Y
Yu Yang 已提交
2301

2302 2303
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2304 2305 2306 2307
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2308
      platform::NPUDeviceGuard guard(devices[i]);
2309 2310 2311 2312
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2333 2334 2335 2336 2337 2338
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2339 2340 2341 2342
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2343
      .value("kAll", platform::ProfilerState::kAll)
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2355
  m.def("set_tracer_option", platform::SetTracerOption);
2356 2357
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2358
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2359
  m.def("reset_profiler", platform::ResetProfiler);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2375
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2376 2377 2378
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2379

2380 2381
  m.def("size_of_dtype", framework::SizeOfType);

2382
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2383 2384
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2385 2386
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2387
#endif  // PADDLE_WITH_CUDA
2388 2389
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2390

2391 2392 2393
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2394 2395
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2396
      .def("has", &ir::Pass::Has)
2397 2398 2399
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2400
           })
2401
      .def(
2402
          "set",
2403 2404 2405
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2406 2407
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2408 2409
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2424 2425
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2426
        self.Apply(graph.get());
F
flame 已提交
2427
      });
2428

X
fix  
Xin Pan 已提交
2429 2430
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2445
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2446

Y
yuyang18 已提交
2447
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2448 2449 2450 2451
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2452 2453 2454
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2455 2456 2457
    Examples:
        .. code-block:: python

2458 2459 2460 2461 2462 2463 2464 2465 2466
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2467

2468 2469
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2470

2471
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2472 2473
          sgd_optimizer.minimize(avg_loss)

2474
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2475 2476
          exec_strategy.num_threads = 4

2477 2478 2479
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2480 2481
        )DOC");

2482 2483 2484 2485
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2486

Y
yuyang18 已提交
2487
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2488 2489 2490 2491 2492
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2493
          },
2494 2495
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2496 2497 2498 2499 2500 2501 2502
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2516
      .def_property(
2517 2518
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2519
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2520 2521 2522
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2523 2524 2525 2526 2527
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2528 2529 2530
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2531 2532
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2533 2534 2535 2536 2537 2538 2539
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2540 2541 2542 2543
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2544
                because the temp variable's shape maybe the same between two iterations.
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2555

2556 2557 2558 2559 2560 2561 2562
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2563
              )DOC")
Q
Qiao Longfei 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2585
              )DOC")
2586 2587 2588 2589 2590 2591 2592 2593
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2594 2595 2596 2597 2598
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2599

Y
yuyang18 已提交
2600
  exec_strategy.def_property(
Y
yuyang18 已提交
2601 2602 2603 2604 2605 2606 2607
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2608 2609
      });

C
chengduo 已提交
2610 2611 2612 2613
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2614 2615 2616
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2617 2618 2619
    Examples:
        .. code-block:: python

2620
            import os
2621 2622 2623 2624
            import paddle
            import paddle.static as static

            paddle.enable_static()
2625

2626 2627
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2628

2629 2630 2631 2632
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2633

2634
            build_strategy = static.BuildStrategy()
2635 2636
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2637 2638
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2639
            program = program.with_data_parallel(loss_name=loss.name,
2640 2641
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2642
)DOC");
Y
yuyang18 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2655
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2656 2657 2658 2659
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2660 2661 2662 2663
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2664
            self.reduce_ = strategy;
C
chengduo 已提交
2665
          },
2666
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2667 2668
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2669
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2670 2671
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2672
                Default is 'AllReduce'.
F
flame 已提交
2673 2674 2675 2676

                Examples:
                    .. code-block:: python

2677 2678 2679 2680 2681 2682 2683
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2684
                  )DOC")
Y
yuyang18 已提交
2685 2686 2687 2688 2689
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2690 2691 2692 2693
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2694
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2695
          },
2696
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2697
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2698 2699
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2700
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2701 2702 2703 2704

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2705 2706
                        import numpy
                        import os
2707 2708 2709 2710
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2711 2712

                        use_cuda = True
2713 2714
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2715 2716

                        # NOTE: If you use CPU to run the program, you need
2717
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2718 2719 2720 2721 2722 2723
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2724
                            places = static.cpu_places()
C
chengduo 已提交
2725
                        else:
2726
                            places = static.cuda_places()
C
chengduo 已提交
2727

2728 2729 2730 2731
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2732

2733
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2734

2735
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2736
                        build_strategy.gradient_scale_strategy = \
2737 2738 2739
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2740
                                          loss_name=loss.name, build_strategy=build_strategy,
2741
                                          places=places)
C
chengduo 已提交
2742 2743 2744 2745 2746 2747

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2748 2749
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2750
                   )DOC")
Y
yuyang18 已提交
2751 2752 2753 2754
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2755 2756 2757 2758
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2759
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2760
          },
2761
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2762
                writing the SSA Graph to file in the form of graphviz.
2763
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2764 2765 2766 2767

                Examples:
                    .. code-block:: python

2768 2769 2770 2771
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2772

2773 2774
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2775
                    )DOC")
S
sneaxiy 已提交
2776 2777 2778 2779 2780 2781
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2782 2783 2784 2785
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2786 2787
            self.enable_sequential_execution_ = b;
          },
2788 2789
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2790 2791 2792 2793

                Examples:
                    .. code-block:: python

2794 2795 2796 2797 2798 2799
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2800 2801
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2802 2803 2804 2805 2806 2807
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2808 2809 2810 2811
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2812 2813
            self.remove_unnecessary_lock_ = b;
          },
2814 2815
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2816 2817 2818 2819

                Examples:
                    .. code-block:: python

2820 2821 2822 2823 2824 2825
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2826 2827
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2828 2829 2830 2831
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2832
#ifdef WIN32
2833
            PADDLE_THROW(platform::errors::Unavailable(
2834
                "Distribution mode is not supported on Windows platform."));
2835
#endif
2836 2837
            self.num_trainers_ = num_trainers;
          })
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2850 2851 2852 2853 2854 2855
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2856 2857 2858 2859 2860 2861
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2862
      .def_property("use_hierarchical_allreduce",
2863 2864 2865 2866 2867 2868
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2869
      .def_property("hierarchical_allreduce_inter_nranks",
2870 2871 2872 2873 2874 2875 2876
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2877 2878 2879 2880 2881 2882
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2883 2884 2885 2886
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2887 2888
            self.fuse_elewise_add_act_ops_ = b;
          },
2889
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2890
                to fuse elementwise_add_op and activation_op,
2891
                it may make the execution faster. Default is False.
F
flame 已提交
2892 2893 2894 2895

                Examples:
                    .. code-block:: python

2896 2897 2898 2899 2900 2901
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2902 2903
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2904 2905 2906 2907
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2908
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2909
                              platform::errors::PreconditionNotMet(
2910 2911
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2921 2922 2923 2924 2925 2926
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2927 2928
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2954 2955 2956 2957
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2958
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2959
                              platform::errors::PreconditionNotMet(
2960 2961
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2972 2973 2974 2975 2976 2977
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2978 2979
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2980 2981 2982 2983 2984 2985
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2986 2987 2988 2989
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2990 2991
            self.fuse_relu_depthwise_conv_ = b;
          },
2992
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2993 2994 2995
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2996
                Default is False.
F
flame 已提交
2997 2998 2999 3000

                Examples:
                    .. code-block:: python

3001 3002 3003 3004 3005 3006
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3007 3008
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3009 3010 3011
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3012
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3013 3014
                    },
                    [](BuildStrategy &self, bool b) {
3015 3016 3017 3018
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3019 3020
                      self.fuse_broadcast_ops_ = b;
                    },
3021
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3022 3023 3024 3025
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3026 3027 3028 3029 3030
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3031 3032 3033 3034 3035 3036
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3037 3038
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3039 3040
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3041
                      return self.fuse_all_optimizer_ops_ == true ||
3042
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3043 3044
                    },
                    [](BuildStrategy &self, bool b) {
3045 3046 3047 3048
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3049 3050
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3051 3052 3053 3054
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3055 3056 3057 3058
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3059 3060
            self.sync_batch_norm_ = b;
          },
3061
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3062 3063 3064
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3065 3066
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3067 3068 3069 3070

                Examples:
                    .. code-block:: python

3071 3072 3073 3074 3075 3076
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3077 3078
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3079 3080
      .def_property(
          "memory_optimize",
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3091
              self.memory_optimize_ = paddle::none;
3092 3093 3094
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3095
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3096 3097
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3098 3099
            }
          },
3100
          R"DOC((bool, optional): memory opitimize aims to save total memory
3101
                consumption, set to True to enable it.
3102

3103 3104 3105
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3120 3121 3122
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3123 3124 3125
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3126
              PADDLE_THROW(platform::errors::Unavailable(
3127
                  "Distribution mode is not supported on Windows platform."));
3128 3129 3130 3131 3132
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3133 3134 3135
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3136
      .def_property(
D
dzhwinter 已提交
3137 3138 3139
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3140 3141 3142 3143
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3144 3145
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3146 3147
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3148
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3149
          },
C
chengduo 已提交
3150
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3151 3152 3153 3154 3155 3156 3157
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3158 3159 3160 3161
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3162 3163 3164 3165 3166 3167 3168 3169 3170
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3171 3172 3173 3174 3175 3176
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3177 3178 3179 3180 3181 3182
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3183
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3184
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3185 3186 3187 3188 3189
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3190

3191 3192 3193 3194 3195 3196
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3197
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3198
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3199
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3200
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3201 3202 3203 3204
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3205 3206 3207 3208 3209
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3210 3211 3212
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3213 3214 3215 3216
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3217 3218
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3219 3220 3221 3222 3223 3224 3225 3226
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3227
               return py::cast(
3228
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3229 3230
             } else {
               return py::cast(std::move(
3231
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3232
             }
3233 3234
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3235

D
dongdaxiang 已提交
3236
  BindFleetWrapper(&m);
3237
  BindIO(&m);
T
Thunderbrook 已提交
3238

T
Thunderbrook 已提交
3239 3240
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3241
#endif
T
Thunderbrook 已提交
3242
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3243
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3244
#endif
3245
  BindGlooWrapper(&m);
H
hutuxian 已提交
3246
  BindBoxHelper(&m);
H
hutuxian 已提交
3247 3248 3249
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3250
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3251
  BindNCCLWrapper(&m);
3252 3253 3254
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3255
#endif
F
flame 已提交
3256 3257
  BindGraph(&m);
  BindNode(&m);
3258
  BindPass(&m);
F
flame 已提交
3259
  BindInferenceApi(&m);
3260
  BindCompatible(&m);
3261
  BindDataset(&m);
Y
yaoxuefeng 已提交
3262
  BindGenerator(&m);
3263 3264 3265
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3266
  BindAscendDevice(&m);
3267
#endif
Y
Yanghello 已提交
3268 3269 3270
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3271

T
tangwei12 已提交
3272
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3273 3274
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3275
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3276 3277
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3278 3279 3280 3281 3282
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3283 3284 3285 3286
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3287
  BindSparseShardingTools(&m);
3288
#endif
L
Luo Tao 已提交
3289
}
3290
}  // namespace pybind
3291
}  // namespace paddle