framework.py 192.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'ComplexVariable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
Y
Youwei Song 已提交
183
    This function checks whether the program runs in dynamic graph mode or not.
184 185 186 187 188
    Starting with paddle2.0, the dynamic graph mode the default mode.

    **Note**:
        ``paddle.in_dynamic_mode`` is the alias of ``fluid.in_dygraph_mode``, and
        ``paddle.in_dynamic_mode`` is recommended to use.
L
lujun 已提交
189 190

    Returns:
Y
Youwei Song 已提交
191
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
192 193 194 195

    Examples:
        .. code-block:: python

196
            import paddle
L
lujun 已提交
197

198 199 200
            print(paddle.in_dynamic_mode())  # True
            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False
L
lujun 已提交
201
    """
L
lujun 已提交
202
    return _dygraph_tracer_ is not None
203 204


205 206 207
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
208
        ), "We don't support %s in imperative mode" % func.__name__
209 210 211 212 213 214 215 216
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
217
        ), "We Only support %s in dynamic mode, please call 'paddle.disable_static()' to enter dynamic mode." % func.__name__
218 219 220 221 222
        return func(*args, **kwargs)

    return __impl__


223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


258 259
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
260
fake_interface_only = wrap_decorator(_fake_interface_only_)
261 262


L
lujun 已提交
263 264
def _dygraph_tracer():
    return _dygraph_tracer_
265

W
Wu Yi 已提交
266

M
minqiyang 已提交
267
def _current_expected_place():
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
            _global_expected_place_ = core.CUDAPlace(0)
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
288 289


L
Leo Chen 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
307
def _cpu_num():
308
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
309 310 311 312 313 314 315 316
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
317
        os.environ['CPU_NUM'] = str(1)
318
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
319 320 321 322 323 324 325 326 327 328
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
329 330


331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
361
def cuda_places(device_ids=None):
L
lujun 已提交
362
    """
363 364 365 366 367
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
368 369

    If :code:`device_ids` is None, environment variable of
370
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
371 372 373
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
374
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
375 376

    If :code:`device_ids` is not None, it should be the device
377
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
378 379 380
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
381 382
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
383 384

    Returns:
385
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
386 387 388 389

    Examples:
        .. code-block:: python

390
            import paddle.fluid as fluid
L
lujun 已提交
391 392 393
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
394 395 396
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
397
        device_ids = _cuda_ids()
S
sneaxiy 已提交
398 399 400 401 402 403
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
404
    """
405
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
406 407 408
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
409 410
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
411 412
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
413

414 415
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
416 417

    Returns:
418
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
419 420 421 422

    Examples:
        .. code-block:: python

423
            import paddle.fluid as fluid
L
lujun 已提交
424 425 426
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
427 428 429 430 431 432
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
433
    """
434
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
435 436 437

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
438 439 440 441
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
442

443 444
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
445 446

    Returns:
447
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
448 449 450 451

    Examples:
        .. code-block:: python

452
            import paddle.fluid as fluid
L
lujun 已提交
453 454 455 456 457
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
458 459 460
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
461 462
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
463 464


465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
491
@signature_safe_contextmanager
492 493
def name_scope(prefix=None):
    """
494 495
    :api_attr: Static Graph

496 497
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
498 499 500
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
501 502

    Args:
T
Tao Luo 已提交
503
        prefix(str, optional): prefix. Default is none.
504 505 506

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
507

508
          import paddle.fluid as fluid
509
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
510 511 512 513 514 515
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
516
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
517
                f = fluid.layers.pow(d, 2.0)
518
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
538 539
    """
    # TODO(panyx0718): Only [0-9a-z].
540
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
541 542 543
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
544
        assert prefix, "namescope prefix can not be empty."
545 546
        global _name_scope
        _name_scope = _name_scope.child(prefix)
547 548 549 550
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
551 552 553 554 555 556 557 558 559 560 561 562


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
563 564 565
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
566 567 568 569


def grad_var_name(var_name):
    """
570 571
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
572 573 574
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
575

576
def convert_np_dtype_to_dtype_(np_dtype):
577 578
    """
    Convert the data type in numpy to the data type in Paddle
579

580
    Args:
581
        np_dtype(np.dtype): the data type in numpy.
582

583 584
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
585 586

    """
587 588
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
589
        return core.VarDesc.VarType.FP32
590
    elif dtype == np.float64:
591
        return core.VarDesc.VarType.FP64
592
    elif dtype == np.float16:
593
        return core.VarDesc.VarType.FP16
594
    elif dtype == np.int32:
595
        return core.VarDesc.VarType.INT32
596
    elif dtype == np.int16:
597
        return core.VarDesc.VarType.INT16
598
    elif dtype == np.int64:
599
        return core.VarDesc.VarType.INT64
600
    elif dtype == np.bool:
601
        return core.VarDesc.VarType.BOOL
602 603
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
604 605
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
606 607
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
608
    else:
M
minqiyang 已提交
609
        raise ValueError("Not supported numpy dtype %s" % dtype)
610 611 612


def dtype_is_floating(dtype):
613 614 615
    """
    Check the data type is floating or not.
    Args:
616
        dtype(np.dtype|core.VarDesc.VarType): data type.
617 618 619 620 621
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
622
    if not isinstance(dtype, core.VarDesc.VarType):
623 624
        dtype = convert_np_dtype_to_dtype_(dtype)

625 626 627 628
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
629 630


Y
Yang Yang(Tony) 已提交
631
def _debug_string_(proto, throw_on_error=True):
632 633 634 635 636 637 638 639 640 641 642
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
643
    error_fields = list()
Y
Yang Yang(Tony) 已提交
644
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
645 646
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
647 648 649
    return proto.__str__()


650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
707
    target_block = default_main_program().current_block()
708 709 710 711 712 713 714 715 716 717 718

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
719
            })
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
759
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
760
                fill_constant([1], 1, force_cpu=True, out=temp_1)
761
                temp_end = target_block.create_var(dtype=slice_item.dtype)
762
                target_block.append_op(
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
802

803
    # starts
L
Leo Chen 已提交
804
    if contain_var(slice_start):
805 806 807 808 809 810 811 812
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
813 814 815 816
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
817 818 819 820 821 822 823
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
824 825 826
    else:
        attrs['ends'] = slice_end

827 828
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
829
        if contain_var(slice_step):
830 831 832 833 834 835 836
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
837 838
        else:
            attrs['strides'] = slice_step
839 840 841 842 843 844
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
845
        slice_out_var = target_block.create_var(
846 847 848
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

849
        target_block.append_op(
850 851 852 853 854 855 856
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
857
        strided_slice_out_var = target_block.create_var(
858 859 860
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
861
        target_block.append_op(
862 863 864 865 866 867 868 869
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
870
        reverse_out_var = target_block.create_var(
871 872 873
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
874
        target_block.append_op(
875 876 877 878 879 880 881 882 883 884 885
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
886
class Variable(object):
887
    """
J
Jiabin Yang 已提交
888
    **Notes**:
889
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
890

891 892
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
893 894 895
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
896
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
897 898
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
899

900
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
901
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
902

T
tianshuo78520a 已提交
903
    Most of a Variable's member variables can be set to be None. It mean
904
    it is not available or will be specified later.
905

906
    Examples:
907 908
        In Static Graph Mode:

909 910
        .. code-block:: python

911
            import paddle.fluid as fluid
912
            cur_program = fluid.Program()
913 914 915 916
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
917
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
918 919 920 921 922 923 924 925 926

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

927 928
    """

Y
Yu Yang 已提交
929 930
    def __init__(self,
                 block,
Y
Yu Yang 已提交
931
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
932 933 934 935
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
936
                 capacity=None,
Q
QI JUN 已提交
937
                 persistable=None,
F
fengjiayi 已提交
938
                 error_clip=None,
Y
Yu Yang 已提交
939
                 stop_gradient=False,
F
fengjiayi 已提交
940
                 is_data=False,
H
Huihuang Zheng 已提交
941
                 need_check_feed=False,
H
hong 已提交
942
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
943
                 **kwargs):
Y
Yu Yang 已提交
944 945
        self.block = block
        if name is None:
Y
Yu Yang 已提交
946
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
947

Y
Yu Yang 已提交
948
        if dtype is not None:
949
            if not isinstance(dtype, core.VarDesc.VarType):
950
                dtype = convert_np_dtype_to_dtype_(dtype)
951

H
hong 已提交
952 953
        self.belong_to_optimizer = belong_to_optimizer

954 955 956 957 958
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
959

960 961 962
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
963

964 965 966 967 968 969 970
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
971

972
        if shape is not None:
973
            if is_new_var:
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1015

1016 1017
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1018

1019 1020 1021 1022 1023 1024 1025
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1026

1027 1028 1029 1030
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1031

1032
    @fake_interface_only
1033 1034
    def detach(self):
        """
J
Jiabin Yang 已提交
1035
        **Notes**:
T
tianshuo78520a 已提交
1036
            **This API is ONLY available in Dygraph mode**
1037

1038
        Returns a new Variable, detached from the current graph.
1039

1040
        Returns:
J
Jiabin Yang 已提交
1041
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1042

1043

1044 1045 1046 1047 1048
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1049
                from paddle.fluid.dygraph import Linear
1050 1051 1052 1053
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1054
                    linear = Linear(32, 64)
1055
                    data = to_variable(data)
1056
                    x = linear(data)
1057 1058 1059
                    y = x.detach()

        """
1060
        pass
1061

1062
    @fake_interface_only
1063
    def numpy(self):
1064
        """
J
Jiabin Yang 已提交
1065
        **Notes**:
T
tianshuo78520a 已提交
1066
            **This API is ONLY available in Dygraph mode**
1067

J
Jiabin Yang 已提交
1068
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1069 1070 1071 1072 1073

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1074
            ndarray: dtype is same as current Variable
1075 1076 1077 1078 1079 1080

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1081
                from paddle.fluid.dygraph import Linear
1082 1083 1084 1085
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1086
                    linear = Linear(32, 64)
1087
                    data = to_variable(data)
1088
                    x = linear(data)
1089 1090 1091
                    print(x.numpy())

        """
1092
        pass
1093

1094
    @fake_interface_only
1095 1096
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1097
        **Notes**:
T
tianshuo78520a 已提交
1098
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1110
                from paddle.fluid.dygraph import Linear
1111 1112
                import numpy as np

1113
                data = np.ones([3, 1024], dtype='float32')
1114
                with fluid.dygraph.guard():
1115
                    linear = fluid.dygraph.Linear(1024, 4)
1116
                    t = to_variable(data)
1117
                    linear(t)  # call with default weight
1118
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1119 1120
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1121 1122

        """
1123
        pass
1124

1125
    @fake_interface_only
1126
    def backward(self, retain_graph=False):
1127
        """
J
Jiabin Yang 已提交
1128
        **Notes**:
T
tianshuo78520a 已提交
1129
            **This API is ONLY available in Dygraph mode**
1130

1131
        Run backward of current Graph which starts from current Tensor.
1132

J
Jiabin Yang 已提交
1133
        Args:
1134 1135 1136 1137
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1138

J
Jiabin Yang 已提交
1139 1140
        Returns:
            NoneType: None
1141 1142 1143 1144 1145

        Examples:
            .. code-block:: python

                import numpy as np
1146 1147
                import paddle
                paddle.disable_static()
1148 1149

                x = np.ones([2, 2], np.float32)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
                loss = paddle.reduce_sum(ret)
                loss.backward()
1160 1161

        """
1162
        pass
1163

1164
    @fake_interface_only
1165
    def gradient(self):
1166
        """
J
Jiabin Yang 已提交
1167
        **Notes**:
T
tianshuo78520a 已提交
1168
            **This API is ONLY available in Dygraph mode**
1169 1170 1171

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1172
        Returns:
1173
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1174 1175 1176 1177 1178 1179 1180

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1181
                # example1: return ndarray
1182 1183 1184 1185 1186 1187 1188 1189 1190
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1191
                    loss2.backward()
1192 1193
                    print(loss2.gradient())

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1207
        """
1208
        pass
1209

1210
    @fake_interface_only
1211
    def clear_gradient(self):
1212
        """
J
Jiabin Yang 已提交
1213
        **Notes**:
T
tianshuo78520a 已提交
1214
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1215 1216

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1217

J
Jiabin Yang 已提交
1218
        Clear  (set to ``0`` ) the Gradient of Current Variable
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1237
                    loss2.backward()
1238 1239 1240 1241 1242
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1243
        pass
X
Xin Pan 已提交
1244

1245
    def __str__(self):
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1290

F
update  
fengjiayi 已提交
1291
    def to_string(self, throw_on_error, with_details=False):
1292 1293 1294
        """
        Get debug string.

J
Jiabin Yang 已提交
1295 1296 1297 1298 1299
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1300

1301 1302
        Returns:
            str: The debug string.
1303 1304 1305 1306 1307

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1308

1309 1310 1311 1312 1313
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1314
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1315
                print("=============with detail===============")
1316
                print(new_variable.to_string(True, True))
1317
        """
F
update  
fengjiayi 已提交
1318 1319
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1320
        protostr = self.desc.serialize_to_string()
1321
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1322 1323 1324 1325
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1326 1327 1328
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1329
        return res_str
1330 1331 1332

    __repr__ = __str__

1333
    @property
1334
    def stop_gradient(self):
J
Jiabin Yang 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1350 1351
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1352 1353 1354
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1355 1356
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1357 1358 1359 1360
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1361
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1362 1363
                assert (out1.gradient() == 0).all()
        """
1364
        return self._stop_gradient
1365

1366 1367
    @stop_gradient.setter
    def stop_gradient(self, s):
1368
        self._stop_gradient = s
1369

1370 1371
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1393
        return self.desc.persistable()
1394

Y
Yu Yang 已提交
1395 1396
    @persistable.setter
    def persistable(self, p):
1397
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1398

Y
Yu Yang 已提交
1399 1400
    @property
    def name(self):
J
Jiabin Yang 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1417
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1439 1440
    @name.setter
    def name(self, new_name):
1441
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1442

Y
Yu Yang 已提交
1443 1444
    @property
    def shape(self):
J
Jiabin Yang 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1462
        # convert to tuple, make it as same as numpy API.
1463
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1464 1465

    @property
F
fengjiayi 已提交
1466
    def dtype(self):
J
Jiabin Yang 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1483
        return self.desc.dtype()
Y
Yu Yang 已提交
1484 1485 1486

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1508 1509 1510
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1511
        return self.desc.lod_level()
Y
Yu Yang 已提交
1512

Y
Yu Yang 已提交
1513 1514
    @property
    def type(self):
J
Jiabin Yang 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1531
        return self.desc.type()
Y
Yu Yang 已提交
1532

W
Wu Yi 已提交
1533
    def _set_error_clip(self, error_clip):
1534 1535 1536 1537 1538 1539 1540 1541 1542
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1543 1544
        self.error_clip = error_clip

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1585
            raise ValueError("slice step can not be zero")
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1661
    def _cloneVar(self, copy=False):
1662 1663
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1664 1665
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1666 1667 1668 1669
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1670
        new_var = self._cloneVar()
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1681
        new_var = self._cloneVar()
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1692
                return self._cloneVar(True)
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1711
                return self._cloneVar(True)
1712
            index = int(item)
1713
            if (index > 0 and index >= self.shape[axis]) \
1714 1715 1716 1717 1718 1719 1720
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1721
        return _getitem_impl_(self, item)
1722

Y
Yu Yang 已提交
1723

F
fengjiayi 已提交
1724 1725 1726
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1727

1728 1729
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1730 1731 1732 1733
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1734
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1735 1736 1737 1738
        ret_values.append(op_proto)
    return ret_values


1739 1740
class ComplexVariable(object):
    """
1741 1742
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1743 1744 1745
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1746
        **The constructor of ComplexTensor should not be invoked directly.**
1747

1748
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1749 1750

    Args:
1751 1752
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1753 1754 1755 1756
    
    Examples:
        .. code-block:: python

1757
            import paddle
1758 1759
            import numpy as np

1760 1761 1762 1763 1764 1765 1766 1767
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1768 1769
    """

1770 1771 1772 1773 1774
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1821 1822 1823
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1824 1825 1826 1827

    __repr__ = __str__


F
fengjiayi 已提交
1828
class OpProtoHolder(object):
1829 1830 1831 1832
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1842
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1843 1844 1845 1846 1847 1848
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1849 1850 1851 1852 1853 1854 1855 1856
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1857 1858
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1859 1860
        return self.op_proto_map[type]

1861 1862 1863 1864 1865 1866
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1867 1868 1869 1870
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1871
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1872
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1873 1874
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1875 1876
        }

F
fengjiayi 已提交
1877

X
Xin Pan 已提交
1878
class Operator(object):
1879
    """
1880 1881 1882 1883 1884 1885 1886
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1887
        type(str): The type of operator. Default None.
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1908
        Block.append_op or Block._prepend_op instead.
1909 1910 1911 1912

    Examples:
        .. code-block:: python

1913
            import paddle.fluid as fluid
1914
            cur_program = fluid.Program()
1915 1916 1917 1918 1919
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1920
    """
1921
    OP_WITHOUT_KERNEL_SET = {
1922 1923
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1924 1925
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1926
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1927
    }
1928

Y
Yu Yang 已提交
1929 1930
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1931
                 desc,
Y
Yu Yang 已提交
1932 1933 1934
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1935
                 attrs=None):
L
lujun 已提交
1936
        if in_dygraph_mode():
1937 1938
            if type is None:
                raise ValueError(
1939
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1940
            self._type = type
M
minqiyang 已提交
1941
            self.attrs = attrs if attrs else {}
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1956
                )] = self.block.program._op_role
1957 1958 1959

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1960 1961
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1962 1963 1964 1965 1966 1967 1968 1969

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1970
                    "`type` to initialized an Operator can not be None.")
1971 1972
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1973 1974 1975 1976 1977 1978 1979
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1980 1981 1982 1983 1984 1985 1986

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2018
                        if not isinstance(in_args, (list, tuple)):
2019 2020 2021 2022 2023 2024
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2025
                        for index, arg in enumerate(in_args):
2026 2027 2028 2029
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2030
                            elif isinstance(arg, (Variable, core.VarBase)):
2031
                                in_arg_names.append(cpt.to_text(arg.name))
2032
                            else:
2033 2034 2035 2036
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2037 2038
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2065
                        if not in_dygraph_mode():
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2085
    def _has_kernel(self, op_type):
2086 2087
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2088
    def to_string(self, throw_on_error):
2089
        """
2090 2091
        Get debug string.

2092
        Args:
2093 2094
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2095

2096 2097
        Returns:
            str: The debug string.
2098 2099

        """
2100
        protostr = self.desc.serialize_to_string()
2101
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2102 2103
        return _debug_string_(proto, throw_on_error)

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2197
    def __str__(self):
2198
        return self._to_readable_code()
2199 2200 2201

    __repr__ = __str__

F
fengjiayi 已提交
2202 2203
    @property
    def type(self):
2204
        return self.desc.type()
F
fengjiayi 已提交
2205 2206

    def input(self, name):
2207
        """
2208
        Get the input arguments according to the input parameter name.
2209

2210 2211
        Args:
            name(str): The input parameter name.
2212

2213 2214 2215
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2216
        """
F
fengjiayi 已提交
2217 2218
        return self.desc.input(name)

W
Wu Yi 已提交
2219
    def _rename_input(self, old_name, new_name):
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2230
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2231

W
Wu Yi 已提交
2232
    def _rename_output(self, old_name, new_name):
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2243
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2244

F
fengjiayi 已提交
2245 2246 2247 2248
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2249 2250 2251 2252 2253 2254 2255 2256
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2257
    def output(self, name):
2258
        """
2259
        Get output arguments by the output parameter name.
2260

2261 2262
        Args:
            name(str): The output parameter name.
2263

2264 2265 2266
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2267
        """
F
fengjiayi 已提交
2268 2269 2270 2271 2272 2273
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2274 2275 2276 2277 2278 2279 2280 2281
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2282
    def has_attr(self, name):
2283
        """
2284 2285
        Whether this Operator has the attribute with name or not.

2286
        Args:
2287
            name(str): the attribute name.
2288

2289 2290
        Returns:
            bool: True if has this attribute.
2291 2292

        """
F
fengjiayi 已提交
2293 2294 2295
        return self.desc.has_attr(name)

    def attr_type(self, name):
2296
        """
2297
        Get the type of attribute by attribute's name.
2298

2299 2300
        Args:
            name(str): the attribute name.
2301

2302 2303
        Returns:
            core.AttrType: the attribute type.
2304
        """
F
fengjiayi 已提交
2305 2306
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2307
    def _set_attr(self, name, val):
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2318 2319
        self._update_desc_attr(name, val)

2320 2321 2322
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2334 2335
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2336 2337
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2338
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2339 2340 2341 2342
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2343
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2344

F
fengjiayi 已提交
2345 2346 2347 2348 2349
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2350
        """
2351 2352
        Get the attribute by name.

2353
        Args:
2354
            name(str): the attribute name.
2355

2356 2357
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2358 2359
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2360
        return self.desc.attr(name)
Y
Yu Yang 已提交
2361

W
Wu Yi 已提交
2362
    def _block_attr_id(self, name):
2363
        """
G
gongweibao 已提交
2364
        Get the block attribute's id by name.
2365

2366 2367
        Args:
            name(str): the attribute name.
2368

2369 2370
        Returns:
            int: the block index.
2371
        """
W
Wu Yi 已提交
2372
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2373

W
Wu Yi 已提交
2374
    def _block_attr(self, name):
G
gongweibao 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2385
        id = self._block_attr_id(name)
G
gongweibao 已提交
2386 2387 2388
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2389
    def _blocks_attr(self, name):
G
gongweibao 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2400
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2401 2402 2403 2404 2405
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2406
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2417
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2418

J
JiayiFeng 已提交
2419
    def all_attrs(self):
F
fengjiayi 已提交
2420
        """
2421 2422 2423
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2424
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2425 2426 2427 2428
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2429 2430
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2431
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2432 2433 2434
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2435
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2436 2437 2438 2439
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2440 2441
        return attr_map

2442 2443 2444
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2445 2446 2447 2448

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2449 2450 2451
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2452 2453 2454 2455 2456 2457 2458 2459

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2460 2461
            return False

2462 2463 2464 2465 2466 2467
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2468

Y
Yu Yang 已提交
2469
class Block(object):
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2484
        use `Program._create_block()` to create a block.
2485 2486 2487 2488

    Examples:
        .. code-block:: python

2489 2490 2491
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2492 2493 2494 2495 2496 2497 2498 2499 2500
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2501
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2502
        self.desc = program.desc.block(idx)
2503
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2504
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2505
        self.program = program
2506
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2507

2508
    def __str__(self):
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2555

F
fengjiayi 已提交
2556 2557
    def to_string(self, throw_on_error, with_details=False):
        """
2558 2559
        Get debug string.

F
fengjiayi 已提交
2560 2561
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2562
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2563
            with_details(bool): more details about variables and parameters
2564 2565
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2566

2567 2568
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2569 2570 2571 2572
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2573
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2574 2575
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2576
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2577
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2578
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2579
            for op in self.ops:
F
fengjiayi 已提交
2580 2581
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2582 2583 2584
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2585 2586
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2587 2588
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2589 2590 2591

    __repr__ = __str__

Y
Yu Yang 已提交
2592 2593
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2594
        return self.desc.parent
Y
Yu Yang 已提交
2595

Y
Yu Yang 已提交
2596 2597 2598 2599
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2600
    def _set_forward_block_idx(self, idx):
2601 2602 2603 2604 2605 2606 2607 2608 2609
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2610
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2611

2612 2613 2614 2615 2616 2617 2618 2619
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2620 2621
    @property
    def idx(self):
Y
Yu Yang 已提交
2622
        return self.desc.id
Y
Yu Yang 已提交
2623

Q
Qiao Longfei 已提交
2624
    def var(self, name):
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2638
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2639 2640 2641
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2642 2643
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2644
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2645
        return v
Q
Qiao Longfei 已提交
2646

X
Xin Pan 已提交
2647
    def _find_var_recursive(self, name):
2648 2649 2650 2651 2652 2653 2654
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2655
            Variable: the Variable with the giving name. Or None if not found.
2656
        """
Y
Yu Yang 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2681
        return None
Y
Yu Yang 已提交
2682

X
Xin Pan 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2702

Q
Qiao Longfei 已提交
2703
    def all_parameters(self):
2704
        return list(self.iter_parameters())
2705

2706
    def iter_parameters(self):
M
minqiyang 已提交
2707
        return (item[1] for item in six.iteritems(self.vars)
2708
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2709

Y
Yu Yang 已提交
2710
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2711 2712 2713
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2714 2715 2716
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2717
        return var
Y
Yu Yang 已提交
2718

Q
Qiao Longfei 已提交
2719 2720 2721
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2722
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2723 2724
        """
        Rename variable in vars and ops' inputs and outputs
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2737
        """
M
minqiyang 已提交
2738 2739
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2740

T
typhoonzero 已提交
2741
        if not self.has_var(name):
2742
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2743 2744
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2745
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2746 2747 2748 2749 2750 2751
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2752
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2753 2754 2755 2756
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2757
        orig_var_type = v.type
M
minqiyang 已提交
2758
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2759
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2760
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2761
        if var_type == "Parameter":
L
Leo Chen 已提交
2762 2763
            if in_dygraph_mode():
                var = ParamBase(
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2774 2775
                var = Parameter(
                    self,
2776 2777 2778 2779 2780 2781 2782 2783 2784
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2785
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2786 2787
            var = Variable(
                self,
T
typhoonzero 已提交
2788
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2789 2790 2791 2792
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2793
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2794 2795 2796
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2797
        self._sync_with_cpp()
2798
        return var
T
typhoonzero 已提交
2799

W
Wu Yi 已提交
2800 2801
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2802
        self.desc._remove_var(cpt.to_bytes(name))
2803 2804
        del self.vars[name]

Y
Yu Yang 已提交
2805 2806
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2807
        param = None
L
Leo Chen 已提交
2808
        if in_dygraph_mode():
2809
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2810 2811
        else:
            param = Parameter(global_block, *args, **kwargs)
2812
        if 'initializer' in kwargs:
2813 2814 2815 2816 2817

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2818 2819 2820 2821 2822
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2834
                # TODO already inited, do nothing, should log a warning
2835 2836 2837
                pass
            else:
                initializer(param, self)
2838
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2839
        return param
Y
Yu Yang 已提交
2840

Y
Yu Yang 已提交
2841
    def append_op(self, *args, **kwargs):
2842 2843 2844 2845 2846 2847
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2848
        if in_dygraph_mode():
2849
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2850
            type = kwargs.get("type", None)
2851 2852 2853
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2854
                type=type,
M
minqiyang 已提交
2855 2856
                inputs=None,
                outputs=None,
2857
                attrs=attrs)
2858

M
minqiyang 已提交
2859 2860 2861
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2862
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2863 2864

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2865
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2866 2867
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2868
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2869
        else:
2870 2871 2872 2873 2874 2875 2876 2877 2878
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2879
            self.ops.append(op)
M
minqiyang 已提交
2880

2881 2882
        return op

W
Wu Yi 已提交
2883
    def _insert_op(self, index, *args, **kwargs):
2884 2885 2886 2887 2888 2889 2890 2891 2892
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2893 2894
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2895 2896 2897 2898
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2899
    def _remove_op(self, index):
2900 2901 2902 2903 2904 2905 2906 2907 2908
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2909 2910
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2911 2912
        del self.ops[index]

W
Wu Yi 已提交
2913
    def _slice_ops(self, start, end):
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2924
        return self.ops[start:end]
Y
Yancey1989 已提交
2925

W
Wu Yi 已提交
2926
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2927
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2928 2929
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2930
            op = Operator(
J
Jiabin Yang 已提交
2931
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2932

J
Jiabin Yang 已提交
2933
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2934
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2935 2936
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2937
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2938
        else:
2939 2940 2941 2942 2943 2944 2945 2946
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2947
            self.ops.insert(0, op)
2948

Y
Yu Yang 已提交
2949 2950
        return op

W
Wu Yi 已提交
2951
    def _sync_with_cpp(self):
2952
        """
2953 2954
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2955
        """
Q
Qiao Longfei 已提交
2956 2957 2958 2959 2960
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2961
        # sync variables removed from c++ end
2962
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2963
            if not self.desc.find_var(cpt.to_bytes(var)):
2964 2965
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2966
        # sync operators from cpp
2967 2968 2969 2970
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2987 2988 2989 2990 2991

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2992
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2993 2994 2995 2996 2997 2998 2999

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3013 3014 3015 3016
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3017
    def _copy_param_info_from(self, other):
3018
        """
3019 3020
        Copy the information of parameters from the other block.

3021
        Args:
3022 3023 3024 3025 3026
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3027 3028 3029 3030 3031

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3032 3033
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3034
        for p in other.iter_parameters():
3035 3036 3037
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3038 3039
                # if the Parameter is pruned, v may be None
                continue
3040
            assert isinstance(v, Variable)
3041
            new_p = None
L
Leo Chen 已提交
3042 3043
            if in_dygraph_mode():
                new_p = ParamBase(
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3055 3056
                new_p = Parameter(
                    block=self,
3057 3058 3059
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3060 3061
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3062 3063 3064 3065 3066 3067
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3068 3069
            self.vars[new_p.name] = new_p

3070
    def _clone_variable(self, var, force_persistable=True):
3071 3072
        """
        Clone a variable into current block.
3073

3074 3075
        Args:
            var: the variable to be cloned.
3076 3077 3078
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3079 3080

        Returns:
3081
            Variable: the new  variable cloned from 'var' in current block.
3082 3083
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3084 3085 3086 3087 3088
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3089 3090
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3091
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3092 3093 3094 3095 3096 3097
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3098
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3099 3100
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3101 3102 3103 3104 3105 3106 3107
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3108
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3109 3110
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3111
        return ret_var
3112

Y
Yu Yang 已提交
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3209
    def remove_input_by_id(self, node_id):
3210 3211 3212 3213 3214 3215
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3216
        self.node.remove_input(node_id)
3217

3218
    def remove_input(self, node):
3219 3220 3221 3222
        """
        Remove a node from inputs.

        Args:
3223
            node(IrNode): the node being removed.
3224
        """
3225
        self.node.remove_input(node.node)
3226

3227
    def append_input(self, node):
3228 3229 3230 3231
        """
        Append a node in inputs.

        Args:
3232
            node(IrNode): the node being appended.
3233
        """
3234
        self.node.append_input(node.node)
3235 3236 3237 3238 3239 3240 3241 3242

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3243
    def remove_output_by_id(self, node_id):
3244 3245 3246 3247 3248 3249
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3250
        self.node.remove_output(node_id)
3251

3252
    def remove_output(self, node):
3253 3254 3255 3256
        """
        Remove a node from outputs.

        Args:
3257
            node(IrNode): the node being removed.
3258
        """
3259
        self.node.remove_output(node.node)
3260

3261
    def append_output(self, node):
3262 3263 3264 3265
        """
        Append a node in outputs.

        Args:
3266
            node(IrNode): the node being appended.
3267
        """
3268
        self.node.append_output(node.node)
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3316
            "The node variable description can not be None."
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3327
            "The node variable description can not be None."
3328 3329
        return self.node.var().persistable()

3330 3331 3332 3333 3334 3335 3336 3337
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3338
            "The node variable description can not be None."
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3349
            "The node variable description can not be None."
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3360
            "The node variable description can not be None."
3361 3362
        return self.node.var().shape()

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3410
            "The node operator description can not be None."
3411 3412
        self.node.op()._rename_input(old_input_name, new_input_name)

3413 3414 3415 3416 3417 3418 3419 3420 3421
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3422
            "The node operator description can not be None."
3423 3424
        self.node.op()._rename_output(old_output_name, new_output_name)

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3436
            "The node operator description can not be None."
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3450
            "The node operator description can not be None."
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3461
            "The node operator description can not be None."
3462 3463
        return self.node.op().set_type(new_type)

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3479
            "The node operator description can not be None."
3480 3481 3482 3483
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3484
                all(isinstance(v, Block) for v in val):
3485 3486
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3487
                isinstance(val, core.ProgramDesc):
3488 3489 3490 3491
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3492 3493 3494 3495 3496 3497 3498 3499
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3500
            "The node operator description can not be None."
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3511
            "The node operator description can not be None."
3512 3513
        return self.node.op().output_arg_names()

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3535 3536
class IrGraph(object):
    """
3537
    Python IrGraph. Beneath it is a core.Graph, which is used for
3538
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3539 3540
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3541 3542 3543 3544
    """

    def __init__(self, graph, for_test=False):
        """
3545 3546
        Construct an IrGraph using core.Graph.

3547 3548 3549 3550 3551 3552 3553 3554 3555
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3556 3557 3558 3559
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3560 3561 3562
        Warns:
            The method only clones the graph structure, not its attributes.

3563 3564 3565
        Returns:
            IrGraph: A new and duplicated graph.
        """
3566
        g = self.graph.clone()
3567 3568
        return IrGraph(g, self._for_test)

3569
    def is_test(self):
3570 3571 3572
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3573 3574
        return self._for_test

W
WangZhen 已提交
3575
    def all_nodes(self):
3576 3577 3578
        """
        Return all nodes included in the graph as a set.
        """
3579
        return {IrNode(node) for node in self.graph.nodes()}
3580

3581
    def all_var_nodes(self):
3582 3583 3584
        """
        Return all variable nodes included in the graph as a set.
        """
3585
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3586

3587
    def all_persistable_nodes(self):
3588 3589 3590
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3591 3592 3593 3594 3595
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3596
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3597

3598
    def all_op_nodes(self):
3599 3600 3601
        """
        Return all operator nodes included in the graph as a set.
        """
3602
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3603

3604
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3616
            IrVarNode: the created persistable variable node.
3617
        """
3618 3619 3620 3621 3622
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3623
        return IrVarNode(self.graph.create_var_node(var_desc))
3624 3625

    def create_var_node(self, name, var_type, shape, var_dtype):
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3637
            IrVarNode: the created variable node.
3638 3639
        """

3640 3641 3642 3643
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3644
        return IrVarNode(self.graph.create_var_node(var_desc))
3645

3646 3647 3648 3649 3650 3651
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3652
    def create_var_node_from_desc(self, var_desc):
3653 3654 3655 3656 3657 3658 3659 3660
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3661
            IrVarNode: the created variable node.
3662
        """
3663
        return IrVarNode(self.graph.create_var_node(var_desc))
3664 3665

    def create_op_node(self, op_type, attrs, inputs, outputs):
3666 3667 3668 3669 3670 3671 3672
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3673
            outputs(dict): the outputs of the operator node.
3674 3675

        Returns:
3676
            IrOpNode: the created operator node.
3677
        """
3678 3679
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3680
        for attr, value in six.iteritems(attrs):
3681
            self._update_desc_attr(op_desc, attr, value)
3682
        for input_name, var_nodes in six.iteritems(inputs):
3683 3684 3685 3686
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3687
        for output_name, var_nodes in six.iteritems(outputs):
3688 3689 3690 3691
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3692
        return IrOpNode(self.graph.create_op_node(op_desc))
3693 3694

    def create_op_node_from_desc(self, op_desc):
3695 3696 3697 3698 3699 3700 3701
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3702
            IrOpNode: the created operator node.
3703
        """
3704
        return IrOpNode(self.graph.create_op_node(op_desc))
3705 3706

    def update_input_link(self, old_input_node, new_input_node, op_node):
3707 3708 3709 3710
        """
        Update the input's link of a operator node.

        Args:
3711 3712 3713
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3714
        """
3715
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3716 3717
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3718 3719 3720 3721
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3722
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3723

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3734 3735
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3736 3737 3738 3739 3740 3741
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3742
    def link_to(self, node_in, node_out):
3743 3744 3745 3746
        """
        Connect two nodes.

        Args:
3747 3748
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3749
        """
3750
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3751
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3752 3753
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3754 3755

    def safe_remove_nodes(self, remove_nodes):
3756 3757 3758 3759 3760 3761 3762
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3763
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3764 3765 3766 3767
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3768 3769
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3770

Z
Zhen Wang 已提交
3771 3772 3773 3774 3775 3776 3777 3778
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3779
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3780 3781 3782 3783
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3784
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3785 3786 3787
                        ]
                    else:
                        var_nodes[each_var_name].append(
3788 3789
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3790 3791
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3792
    def has_circle(self):
3793 3794 3795 3796 3797 3798
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3799 3800 3801
        return core.has_circle(self.graph)

    def graph_num(self):
3802 3803 3804 3805 3806 3807
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3808 3809 3810
        return core.graph_num(self.graph)

    def topology_sort(self):
3811 3812 3813
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3814
        Notes: the `graph` can not contain a circle.
3815 3816

        Returns:
Z
Zhen Wang 已提交
3817
            list(IrNode): nodes in topology order.
3818
        """
3819
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3820
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3821 3822

    def build_adjacency_list(self):
3823 3824 3825 3826
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3827
            dict{IrNode: set(IrNode)}: the adjacency list.
3828
        """
3829 3830 3831 3832 3833
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3834

3835 3836 3837 3838 3839 3840 3841 3842
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3843
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3844 3845 3846 3847 3848
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3849 3850 3851
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3852
                                          + ' -o ' + pdf_save_path, shell=True)
3853 3854 3855 3856 3857
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3858
        remove_ctr_vars = set()
3859
        if remove_ctr_var:
3860
            for node in self.all_var_nodes():
3861 3862 3863
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3864 3865
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3866 3867
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3868 3869 3870 3871 3872 3873
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3874 3875 3876 3877
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3878 3879
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3880 3881 3882 3883 3884 3885 3886
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3887 3888 3889
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3890
        WARN: When the graph includes backward operator nodes, the
3891 3892 3893 3894 3895 3896
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3897
        convert_pass = core.get_pass('graph_to_program_pass')
3898 3899
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3900 3901 3902 3903
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3931
class Program(object):
D
dzhwinter 已提交
3932
    """
3933 3934
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3935
    it will contain nested block.
3936

J
Jiabin Yang 已提交
3937 3938 3939
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3940

J
Jiabin Yang 已提交
3941
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3942
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3943 3944 3945 3946 3947 3948 3949
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3950 3951 3952 3953
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3954 3955

    Returns:
J
Jiabin Yang 已提交
3956
        Program: An empty Program.
D
dzhwinter 已提交
3957 3958

    Examples:
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3972 3973 3974

    """

3975 3976
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3977 3978
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3979 3980
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3981
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3982
        self.__op_role_var = []
T
tangwei12 已提交
3983

3984 3985
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3986
        self._is_distributed = False
3987
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3988
        self._is_chief = False
3989 3990 3991
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3992
        self._endpoints = []
3993 3994 3995
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3996
        self._trainers_endpoints = []
3997
        # the distributed lookup table names
T
tangwei12 已提交
3998
        self._distributed_lookup_table = None
3999 4000 4001

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4002 4003
        self._use_lamb = False

4004 4005 4006
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4007

4008 4009 4010
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4011
        self._program_config = None
4012

H
hutuxian 已提交
4013 4014 4015
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4016 4017 4018
        # appending gradients times
        self._appending_grad_times = 0

4019 4020 4021 4022
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4023 4024 4025
        # compiled program, i.e. Graph
        self._graph = None

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4053
    @property
4054
    def _op_role(self):
Y
yuyang18 已提交
4055 4056 4057 4058 4059 4060 4061 4062
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4063
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4064 4065 4066 4067
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4068 4069
        return self._current_role

4070 4071
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4072 4073 4074
        self._current_role = role

    @property
4075
    def _op_role_var(self):
Y
yuyang18 已提交
4076
        """
4077
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4078

4079
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4080 4081 4082

        Notes: This is a very low-level API. Users should not use it directly.
        """
4083
        return self.__op_role_var
Y
yuyang18 已提交
4084

4085
    @signature_safe_contextmanager
4086 4087 4088 4089 4090
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4091 4092 4093 4094
        try:
            yield
        finally:
            self._current_role = tmp_role
4095

S
rename  
sneaxiy 已提交
4096
    @signature_safe_contextmanager
W
Wu Yi 已提交
4097
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4098 4099 4100 4101 4102 4103 4104
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4105
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4106 4107 4108

        Examples:

4109
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4110
            >>> p, g = backward(...)
W
Wu Yi 已提交
4111
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4112 4113
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4114
        tmp_role = self._current_role
4115
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4116

Y
yuyang18 已提交
4117 4118
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4119
        self.__op_role_var = [
4120 4121 4122
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4123 4124 4125 4126 4127
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4128

S
rename  
sneaxiy 已提交
4129
    @signature_safe_contextmanager
X
Xin Pan 已提交
4130
    def _lr_schedule_guard(self, is_with_opt=False):
4131 4132 4133 4134 4135 4136 4137
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4138 4139 4140 4141
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4142 4143 4144

        Examples:

4145
            >>> import paddle.fluid as fluid
4146 4147 4148 4149
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4150 4151

        tmp_role = self._current_role
4152
        tmp_var = self.__op_role_var
4153

4154 4155
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4156 4157
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4158
        # TODO(typhoonzero): how to set target learning rate var
4159
        self.__op_role_var = []
4160 4161 4162 4163 4164
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4165

4166
    def __str__(self):
Y
yuyang18 已提交
4167 4168 4169 4170 4171 4172 4173 4174 4175
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4215
            program_str += '\n'
4216
        return program_str
Y
Yang Yang(Tony) 已提交
4217

F
fengjiayi 已提交
4218 4219 4220
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4221

J
Jiabin Yang 已提交
4222 4223 4224
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4225

J
Jiabin Yang 已提交
4226
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4227

H
haowang101779990 已提交
4228
        Returns:
J
Jiabin Yang 已提交
4229
            str: The debug string describe current Program.
Y
yuyang18 已提交
4230 4231

        Raises:
J
Jiabin Yang 已提交
4232
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4233

4234 4235 4236 4237 4238 4239
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4240 4241
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4242
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4243
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4244
                print("program string without detail: {}".format(prog_string))
4245
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4246
        """
4247 4248 4249 4250 4251 4252 4253 4254 4255
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4256 4257 4258 4259 4260 4261
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4262 4263
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4264 4265
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4266

W
Wu Yi 已提交
4267
    def _get_desc(self):
Y
yuyang18 已提交
4268 4269 4270 4271 4272 4273 4274
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4275 4276
        return self.desc

X
version  
Xin Pan 已提交
4277 4278 4279
    def _version(self):
        return self.desc._version()

4280
    def clone(self, for_test=False):
Y
yuyang18 已提交
4281
        """
4282
        **Notes**:
J
Jiabin Yang 已提交
4283 4284 4285 4286
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4287
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4288

4289
        Create a new Program with forward content of original one when ``for_test=True``.
4290
        Create a new Program as same as the original one when ``for_test=False``.
4291

J
Jiabin Yang 已提交
4292
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4293 4294 4295
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4296

4297 4298
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4299 4300
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4301
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4302

J
Jiabin Yang 已提交
4303
        For Example:
4304
          ::
L
Luo Tao 已提交
4305

4306 4307 4308 4309 4310 4311 4312 4313
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4314

J
Jiabin Yang 已提交
4315
        Args:
4316

4317 4318
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4319

J
Jiabin Yang 已提交
4320
        Returns:
4321
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4322

Y
yuyang18 已提交
4323 4324 4325

        Examples:

J
Jiabin Yang 已提交
4326
        **Notes: The Program's order maybe different after** :code:`clone` **and
4327
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4328
        example we give you an simple method** :code:`print_prog(program)` **to
4329
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4330
        after** :code:`clone`:
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4367 4368 4369

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4370 4371 4372 4373 4374 4375 4376 4377 4378
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4379
                            test_program = train_program.clone(for_test=True)
4380
                    print_prog(test_program)
J
Jiabin Yang 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4412 4413
                    
                    def network():
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4428 4429 4430
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4431
                    # the test startup program is not used.
4432
                    with fluid.program_guard(test_program_2, startup_program_2):
4433
                        with fluid.unique_name.guard():
4434 4435
                            avg_loss = network()
                    print_prog(test_program_2)
4436 4437

        The two code snippets above will generate and print same programs.
4438
        """
4439 4440 4441 4442 4443

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4444
        pruned_origin_block_id_map = None
4445
        if for_test:
4446 4447 4448 4449 4450 4451 4452 4453 4454
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4455
        else:
4456
            p = Program()
G
gongweibao 已提交
4457 4458
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4459
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4460 4461 4462
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4463 4464

            p._current_role = self._current_role
4465
            p.__op_role_var = self.__op_role_var
4466
            p._appending_grad_times = self._appending_grad_times
4467 4468
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4469

4470 4471
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4472
            p._sync_with_cpp()
4473

W
Wu Yi 已提交
4474
        p._copy_param_info_from(self)
4475
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4476
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4477
        return p
4478

4479
    def _prune(self, targets):
Y
yuyang18 已提交
4480 4481 4482 4483 4484 4485 4486 4487
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4488
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4489 4490 4491 4492
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4493
        """
4494
        return self._prune_with_input([], targets)
4495 4496

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4497
        """
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4508
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4509 4510 4511 4512 4513 4514
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4515 4516 4517 4518
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4519 4520
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4521 4522
        if not isinstance(targets, list):
            targets = [targets]
4523 4524 4525

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4526 4527 4528
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4529

4530 4531 4532 4533
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4534 4535 4536
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4537
                else:
4538 4539 4540
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4541 4542 4543 4544 4545 4546 4547 4548

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4565 4566 4567 4568 4569 4570 4571 4572
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4573

4574
        res = Program()
4575 4576 4577
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4578 4579 4580
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4581
        res._sync_with_cpp()
4582 4583 4584 4585 4586

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4587 4588
        return res

X
Xin Pan 已提交
4589
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4590
        """
F
fengjiayi 已提交
4591 4592 4593 4594 4595
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4596
        3. change the :code:`is_test`
Y
yuyang18 已提交
4597 4598 4599
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4600
        Args:
X
Xin Pan 已提交
4601 4602
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4603

Y
yuyang18 已提交
4604 4605 4606 4607 4608 4609
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4610
        res = Program()
4611
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4612 4613 4614 4615

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4616
        if prune_read_op:
4617 4618 4619 4620 4621 4622 4623 4624 4625
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4626
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4627 4628

        # change all `is_test` attributes to True
M
minqiyang 已提交
4629
        for i in six.moves.range(res.desc.num_blocks()):
4630
            block = res.desc.block(i)
M
minqiyang 已提交
4631
            for j in six.moves.range(block.op_size()):
4632 4633
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4634
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4635 4636 4637
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4638
        res._sync_with_cpp()
4639 4640
        return res

4641 4642
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4643
        """
J
Jiabin Yang 已提交
4644 4645 4646 4647
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4648

4649 4650
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4651

J
Jiabin Yang 已提交
4652
        Args:
Y
yuyang18 已提交
4653

J
Jiabin Yang 已提交
4654
            binary_str_type (str): the binary prootbuf string.
4655

J
Jiabin Yang 已提交
4656 4657
        Returns:
            Program: A deserialized Program.
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4680
        """
4681 4682
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4683
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4684
        p._sync_with_cpp()
4685
        return p
Y
Yu Yang 已提交
4686

4687
    @staticmethod
4688
    def _construct_from_desc(desc):
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4704 4705
    @property
    def random_seed(self):
Y
yuyang18 已提交
4706
        """
J
Jiabin Yang 已提交
4707
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4708 4709
        the random seed from random device.

J
Jiabin Yang 已提交
4710 4711 4712 4713
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4714

4715 4716 4717 4718 4719 4720 4721 4722

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4723
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4724 4725 4726
                print(random_seed)
                ## 0
                ## the default random seed is 0
4727 4728

                # Here we need to set random seed before we use fluid.layers.dropout
4729
                prog.random_seed = 1
4730 4731
                z_var = fluid.layers.dropout(x_var, 0.7)

4732
                print(prog.random_seed)
4733 4734
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4735
        """
D
dzhwinter 已提交
4736 4737
        return self._seed

Q
qiaolongfei 已提交
4738 4739
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4740
        """
4741 4742
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4743 4744 4745 4746
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4747

4748 4749 4750 4751 4752 4753 4754 4755 4756

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4757 4758


Y
yuyang18 已提交
4759
        """
Q
qiaolongfei 已提交
4760 4761
        return self.desc.num_blocks()

D
dzhwinter 已提交
4762 4763 4764
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4765 4766 4767
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4768 4769
        self._seed = seed

Y
Yu Yang 已提交
4770
    def __repr__(self):
4771
        return self.__str__()
4772

Y
Yu Yang 已提交
4773
    def global_block(self):
Y
yuyang18 已提交
4774
        """
J
Jiabin Yang 已提交
4775 4776
        **Notes**:
            **This API has no effect in Dygraph mode**
4777 4778 4779

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4780 4781
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4782

4783 4784 4785 4786 4787 4788 4789 4790 4791

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4792

Y
yuyang18 已提交
4793
        """
Y
Yu Yang 已提交
4794 4795
        return self.blocks[0]

Q
Qiao Longfei 已提交
4796
    def block(self, index):
Y
yuyang18 已提交
4797
        """
J
Jiabin Yang 已提交
4798 4799
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4800

4801 4802
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4803 4804
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4805

J
Jiabin Yang 已提交
4806 4807
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4808 4809 4810 4811 4812 4813 4814 4815 4816

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4817
        """
Q
Qiao Longfei 已提交
4818 4819
        return self.blocks[index]

Y
Yu Yang 已提交
4820
    def current_block(self):
Y
yuyang18 已提交
4821
        """
J
Jiabin Yang 已提交
4822 4823
        **Notes**:
            **This API has no effect in Dygraph mode**
4824

J
Jiabin Yang 已提交
4825 4826
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4827

J
Jiabin Yang 已提交
4828 4829
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4830

4831 4832 4833 4834 4835 4836 4837 4838
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4839
        """
Y
Yu Yang 已提交
4840 4841
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4842
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4843 4844 4845 4846 4847
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4848

Y
yuyang18 已提交
4849 4850 4851 4852 4853
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4854
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4855 4856 4857
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4858 4859 4860 4861
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4862
    def _rollback(self):
Y
yuyang18 已提交
4863 4864 4865 4866 4867
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4868 4869
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4870
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4881 4882 4883
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4884
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4885

W
Wu Yi 已提交
4886
    def _copy_param_info_from(self, other):
4887
        """
4888
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4889

Y
yuyang18 已提交
4890 4891 4892
        Notes: This is a very low level API. Users should not invoke it
        directly.

4893 4894 4895 4896 4897 4898 4899
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4900 4901 4902
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4903

W
Wu Yi 已提交
4904
        self.global_block()._copy_param_info_from(other.global_block())
4905

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4917 4918 4919
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4920 4921
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4922
        self._parameters_on_pservers = other._parameters_on_pservers
4923
        self._endpoints = other._endpoints
4924
        self._ps_endpoint = other._ps_endpoint
4925 4926
        self._distributed_lookup_table = other._distributed_lookup_table

4927
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4928 4929
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4930

Y
yuyang18 已提交
4931 4932 4933
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4934 4935
        Args:
            other(Program): Other program
4936 4937 4938 4939
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4940 4941 4942 4943 4944

        Returns:
            None
        """
        if not isinstance(other, Program):
4945 4946 4947
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4948

4949 4950 4951 4952 4953
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4954 4955 4956

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4957 4958
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4959
            for var in list(block.vars.values()):
4960 4961 4962 4963 4964 4965 4966
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4967

4968
    def list_vars(self):
Y
yuyang18 已提交
4969
        """
J
Jiabin Yang 已提交
4970
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4971

J
Jiabin Yang 已提交
4972 4973
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4985
        """
4986
        for each_block in self.blocks:
4987
            for each_var in list(each_block.vars.values()):
4988 4989
                yield each_var

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5048

5049
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5050
class Parameter(Variable):
5051
    """
5052
    Parameter is derived from Variable. A parameter is a persistable
5053
    Variable, and will be updated by optimizers after each iteration.
5054
    The training of a neural network is essentially the updating of
5055 5056
    its parameters.

5057
    Relative to a general Variable, a Parameter has several its own
5058 5059
    member variables:

5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5070 5071
    """

5072 5073 5074 5075 5076 5077
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5078 5079 5080 5081 5082
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5083
        if len(shape) == 0:
5084 5085
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5086 5087 5088

        for each in shape:
            if each < 0:
5089 5090 5091
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5092 5093

        Variable.__init__(
5094 5095 5096 5097 5098 5099 5100
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5101 5102 5103 5104
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5105 5106
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5107
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5108

5109 5110
        self.is_distributed = False

F
fengjiayi 已提交
5111
    def __str__(self):
5112
        return self._to_readable_code()
F
fengjiayi 已提交
5113

F
update  
fengjiayi 已提交
5114 5115 5116
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5117

F
update  
fengjiayi 已提交
5118 5119 5120 5121 5122 5123 5124 5125
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5126 5127 5128 5129 5130 5131 5132 5133 5134
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5135 5136 5137 5138 5139 5140
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5141
                               "do_model_average")
F
update  
fengjiayi 已提交
5142
            for attr_name in additional_attr:
5143 5144
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5145 5146
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5147 5148 5149 5150
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5151

5152 5153
class ParamBase(core.VarBase):
    """
5154 5155 5156
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5157 5158 5159
    The training of a neural network is essentially the updating of
    its ParamBase.

5160
    Relative to a general Tensor, a ParamBase has several its own
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5203 5204
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5205 5206 5207 5208 5209 5210 5211 5212

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5213
        # self.block = default_main_program().global_block()
5214

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5228
    def __str__(self):
5229
        """
5230
        Convert a ParamBase object to a readable string.
5231

5232
        Returns(str): A readable string.
5233 5234 5235 5236

        Examples:
            .. code-block:: python

5237
                import paddle
5238
                paddle.disable_static()
5239 5240 5241 5242 5243 5244 5245 5246
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5247
                paddle.enable_static()
5248
        """
5249 5250
        return "Parameter containing:\n  {}\n  - stop_gradient: {}".format(
            super(ParamBase, self).__str__(), self.stop_gradient)
5251 5252 5253 5254

    __repr__ = __str__


Y
Yu Yang 已提交
5255
# program is a global instance.
Y
Yu Yang 已提交
5256 5257
_main_program_ = Program()
_startup_program_ = Program()
5258

5259

5260
def default_startup_program():
Y
Yu Yang 已提交
5261
    """
Y
yuyang18 已提交
5262 5263
    Get default/global startup program.

J
Jiabin Yang 已提交
5264 5265 5266
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5267 5268 5269
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5270
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5271

J
Jiabin Yang 已提交
5272
    Returns: current default startup :ref:`api_fluid_Program`
5273

J
Jiabin Yang 已提交
5274
    Returns type: :ref:`api_fluid_Program`
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5290
    """
Y
Yu Yang 已提交
5291
    return _startup_program_
5292

5293

5294
def default_main_program():
Y
Yu Yang 已提交
5295
    """
5296 5297 5298 5299 5300
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5301

5302 5303
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5304
    :code:`default_main_program` when the program is not specified.
5305

5306 5307
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5308
    Returns:
5309
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5310 5311 5312 5313 5314

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5315

5316
            # Sample Network:
5317 5318
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5338
            #print the number of blocks in the program, 1 in this case
5339
            print(fluid.default_main_program().num_blocks)
5340 5341

            #print the description of variable 'image'
5342
            print(fluid.default_main_program().blocks[0].var('image'))
5343

Y
Yu Yang 已提交
5344
    """
Y
Yu Yang 已提交
5345
    return _main_program_
Y
Yu Yang 已提交
5346 5347 5348 5349 5350


def switch_main_program(program):
    """
    Switch the main program to a new program.
5351

Y
Yu Yang 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5366
    Switch the startup program to a new program
Y
Yu Yang 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5379
@signature_safe_contextmanager
Y
Yu Yang 已提交
5380 5381
def program_guard(main_program, startup_program=None):
    """
5382 5383
    :api_attr: Static Graph

5384 5385
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5386
    variables to the new main programs.
5387

G
guofei 已提交
5388 5389 5390 5391 5392 5393 5394
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5395
    Examples:
5396 5397 5398
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5399

5400 5401 5402
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5403
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5404
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5405 5406 5407

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5408

Y
Yu Yang 已提交
5409
    Examples:
5410
       .. code-block:: python
Y
yuyang18 已提交
5411

5412 5413 5414 5415 5416
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5417 5418
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5419
    """
5420 5421
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5422 5423
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5424 5425
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5426
        startup_program = switch_startup_program(startup_program)
5427 5428 5429 5430 5431 5432
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5433 5434


W
Wu Yi 已提交
5435
def _get_var(name, program=None):
X
xuwei06 已提交
5436
    """
Y
yuyang18 已提交
5437
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5438

X
xuwei06 已提交
5439 5440 5441
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5442
        If None, default_global_program() will be used.
X
xuwei06 已提交
5443 5444 5445 5446 5447 5448 5449

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5450
    assert isinstance(program, Program)
X
xuwei06 已提交
5451 5452

    return program.global_block().var(name)
5453 5454


S
rename  
sneaxiy 已提交
5455
@signature_safe_contextmanager
L
lujun 已提交
5456 5457 5458 5459
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5460
    core._switch_tracer(tracer)
M
minqiyang 已提交
5461

5462 5463 5464 5465 5466
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5467 5468


S
rename  
sneaxiy 已提交
5469
@signature_safe_contextmanager
L
lujun 已提交
5470
def _dygraph_place_guard(place):
5471 5472 5473
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5474

5475 5476 5477
    try:
        yield
    finally:
5478
        _global_expected_place_ = tmp_place
5479 5480 5481 5482


def load_op_library(lib_filename):
    """
5483 5484
    :api_attr: Static Graph
    
5485 5486 5487
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5488
    Please note, the type of custom operators can't have the same type
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5555 5556 5557 5558 5559
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5560 5561 5562 5563
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5564 5565
    if index:
        device = ":".join([device, index])
5566
    pre_device = switch_device(device)
5567 5568 5569 5570
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value