framework.py 175.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
    'device_guard',
55
]
Y
Yu Yang 已提交
56

Q
qiaolongfei 已提交
57 58 59 60
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
61 62
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
63 64
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
65
_current_device = None
66 67


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
175
def in_dygraph_mode():
L
lujun 已提交
176
    """
Y
Youwei Song 已提交
177
    This function checks whether the program runs in dynamic graph mode or not.
178 179 180
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
181 182

    Returns:
Y
Youwei Song 已提交
183
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
184 185 186 187

    Examples:
        .. code-block:: python

188
            import paddle.fluid as fluid
L
lujun 已提交
189

190 191 192 193
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
194
    """
L
lujun 已提交
195
    return _dygraph_tracer_ is not None
196 197


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
220 221
def _dygraph_tracer():
    return _dygraph_tracer_
222

W
Wu Yi 已提交
223

M
minqiyang 已提交
224
def _current_expected_place():
L
lujun 已提交
225
    return _dygraph_current_expected_place_
M
minqiyang 已提交
226 227


L
Leo Chen 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
245
def _cpu_num():
246
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
247 248 249 250 251 252 253 254
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
255
        os.environ['CPU_NUM'] = str(1)
256
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
257 258 259 260 261 262 263 264 265 266
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
267 268


C
chengduo 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
284
def cuda_places(device_ids=None):
L
lujun 已提交
285
    """
286 287 288 289 290
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
291 292

    If :code:`device_ids` is None, environment variable of
293
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
294 295 296
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
297
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
298 299

    If :code:`device_ids` is not None, it should be the device
300
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
301 302 303
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
304 305
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
306 307

    Returns:
308
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
309 310 311 312

    Examples:
        .. code-block:: python

313
            import paddle.fluid as fluid
L
lujun 已提交
314 315 316
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
317 318 319
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
320
        device_ids = _cuda_ids()
S
sneaxiy 已提交
321 322 323 324 325 326
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
327
    """
328
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
329 330 331
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
332 333
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
334 335
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
336

337 338
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
339 340

    Returns:
341
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
342 343 344 345

    Examples:
        .. code-block:: python

346
            import paddle.fluid as fluid
L
lujun 已提交
347 348 349
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
350 351 352 353 354 355
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
356
    """
357
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
358 359 360

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
361 362 363 364
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
365

366 367
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
368 369

    Returns:
370
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
371 372 373 374

    Examples:
        .. code-block:: python

375
            import paddle.fluid as fluid
L
lujun 已提交
376 377 378 379 380
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
381 382 383
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
384 385
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
386 387


388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
414
@signature_safe_contextmanager
415 416 417 418
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
419 420 421
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
422 423

    Args:
T
Tao Luo 已提交
424
        prefix(str, optional): prefix. Default is none.
425 426 427

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
428

429
          import paddle.fluid as fluid
430
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
431 432 433 434 435 436
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
437
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
438
                f = fluid.layers.pow(d, 2.0)
439
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
459 460
    """
    # TODO(panyx0718): Only [0-9a-z].
461
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
462 463 464
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
465
        assert prefix, "namescope prefix can not be empty."
466 467 468 469
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
470 471 472 473 474 475 476 477 478 479 480 481


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
482 483 484
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
485 486 487 488


def grad_var_name(var_name):
    """
489 490
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
491 492 493
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
494

495
def convert_np_dtype_to_dtype_(np_dtype):
496 497
    """
    Convert the data type in numpy to the data type in Paddle
498

499
    Args:
500
        np_dtype(np.dtype): the data type in numpy.
501

502 503
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
504 505

    """
506 507
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
508
        return core.VarDesc.VarType.FP32
509
    elif dtype == np.float64:
510
        return core.VarDesc.VarType.FP64
511
    elif dtype == np.float16:
512
        return core.VarDesc.VarType.FP16
513
    elif dtype == np.int32:
514
        return core.VarDesc.VarType.INT32
515
    elif dtype == np.int16:
516
        return core.VarDesc.VarType.INT16
517
    elif dtype == np.int64:
518
        return core.VarDesc.VarType.INT64
519
    elif dtype == np.bool:
520
        return core.VarDesc.VarType.BOOL
521 522
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
523 524
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
525 526
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
527
    else:
M
minqiyang 已提交
528
        raise ValueError("Not supported numpy dtype %s" % dtype)
529 530 531


def dtype_is_floating(dtype):
532 533 534
    """
    Check the data type is floating or not.
    Args:
535
        dtype(np.dtype|core.VarDesc.VarType): data type.
536 537 538 539 540
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
541
    if not isinstance(dtype, core.VarDesc.VarType):
542 543
        dtype = convert_np_dtype_to_dtype_(dtype)

544 545 546 547
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
548 549


Y
Yang Yang(Tony) 已提交
550
def _debug_string_(proto, throw_on_error=True):
551 552 553 554 555 556 557 558 559 560 561
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
562
    error_fields = list()
Y
Yang Yang(Tony) 已提交
563
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
564 565
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
566 567 568
    return proto.__str__()


569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():

            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
722

723
    # starts
L
Leo Chen 已提交
724
    if contain_var(slice_start):
725 726 727 728 729 730 731 732
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
733 734 735 736
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
737 738 739 740 741 742 743
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
744 745 746
    else:
        attrs['ends'] = slice_end

747 748
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
749
        if contain_var(slice_step):
750 751 752 753 754 755 756
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
757 758
        else:
            attrs['strides'] = slice_step
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
806
class Variable(object):
807
    """
J
Jiabin Yang 已提交
808
    **Notes**:
809
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
810

811 812
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
813 814 815
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
816
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
817 818
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
819

820
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
821
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
822

T
tianshuo78520a 已提交
823
    Most of a Variable's member variables can be set to be None. It mean
824
    it is not available or will be specified later.
825

826
    Examples:
827 828
        In Static Graph Mode:

829 830
        .. code-block:: python

831
            import paddle.fluid as fluid
832
            cur_program = fluid.Program()
833 834 835 836
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
837
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
838 839 840 841 842 843 844 845 846

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

847 848
    """

Y
Yu Yang 已提交
849 850
    def __init__(self,
                 block,
Y
Yu Yang 已提交
851
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
852 853 854 855
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
856
                 capacity=None,
Q
QI JUN 已提交
857
                 persistable=None,
F
fengjiayi 已提交
858
                 error_clip=None,
Y
Yu Yang 已提交
859
                 stop_gradient=False,
F
fengjiayi 已提交
860
                 is_data=False,
H
Huihuang Zheng 已提交
861
                 need_check_feed=False,
H
hong 已提交
862
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
863
                 **kwargs):
Y
Yu Yang 已提交
864 865
        self.block = block
        if name is None:
Y
Yu Yang 已提交
866
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
867

Y
Yu Yang 已提交
868
        if dtype is not None:
869
            if not isinstance(dtype, core.VarDesc.VarType):
870
                dtype = convert_np_dtype_to_dtype_(dtype)
871

H
hong 已提交
872 873
        self.belong_to_optimizer = belong_to_optimizer

874 875 876 877 878
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
879

880 881 882
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
883

884 885 886 887 888 889 890
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
891

892
        if shape is not None:
893
            if is_new_var:
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
935

936 937
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
938

939 940 941 942 943 944 945
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
946

947 948 949 950
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
951

952
    @dygraph_only
953 954
    def detach(self):
        """
J
Jiabin Yang 已提交
955
        **Notes**:
T
tianshuo78520a 已提交
956
            **This API is ONLY available in Dygraph mode**
957

958
        Returns a new Variable, detached from the current graph.
959

960
        Returns:
J
Jiabin Yang 已提交
961
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
962

963

964 965 966 967 968
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
969
                from paddle.fluid.dygraph import Linear
970 971 972 973
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
974
                    linear = Linear(32, 64)
975
                    data = to_variable(data)
976
                    x = linear(data)
977 978 979
                    y = x.detach()

        """
980
        pass
981

982
    @dygraph_only
983
    def numpy(self):
984
        """
J
Jiabin Yang 已提交
985
        **Notes**:
T
tianshuo78520a 已提交
986
            **This API is ONLY available in Dygraph mode**
987

J
Jiabin Yang 已提交
988
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
989 990 991 992 993

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
994
            ndarray: dtype is same as current Variable
995 996 997 998 999 1000

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1001
                from paddle.fluid.dygraph import Linear
1002 1003 1004 1005
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1006
                    linear = Linear(32, 64)
1007
                    data = to_variable(data)
1008
                    x = linear(data)
1009 1010 1011
                    print(x.numpy())

        """
1012
        pass
1013

1014 1015 1016
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1017
        **Notes**:
T
tianshuo78520a 已提交
1018
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1030
                from paddle.fluid.dygraph import Linear
1031 1032
                import numpy as np

1033
                data = np.ones([3, 1024], dtype='float32')
1034
                with fluid.dygraph.guard():
1035
                    linear = fluid.dygraph.Linear(1024, 4)
1036
                    t = to_variable(data)
1037
                    linear(t)  # call with default weight
1038
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1039 1040
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1041 1042

        """
1043
        pass
1044

1045
    @dygraph_only
1046
    def backward(self, backward_strategy=None):
1047
        """
J
Jiabin Yang 已提交
1048
        **Notes**:
T
tianshuo78520a 已提交
1049
            **This API is ONLY available in Dygraph mode**
1050 1051 1052

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1053 1054
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1055

J
Jiabin Yang 已提交
1056 1057
        Returns:
            NoneType: None
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1070 1071
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1072 1073 1074 1075 1076 1077 1078 1079 1080
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1081
        pass
1082

1083
    @dygraph_only
1084
    def gradient(self):
1085
        """
J
Jiabin Yang 已提交
1086
        **Notes**:
T
tianshuo78520a 已提交
1087
            **This API is ONLY available in Dygraph mode**
1088 1089 1090

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1091
        Returns:
1092
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1093 1094 1095 1096 1097 1098 1099

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1100
                # example1: return ndarray
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1128
        """
1129
        pass
1130

1131
    @dygraph_only
1132
    def clear_gradient(self):
1133
        """
J
Jiabin Yang 已提交
1134
        **Notes**:
T
tianshuo78520a 已提交
1135
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1136 1137

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1138

J
Jiabin Yang 已提交
1139
        Clear  (set to ``0`` ) the Gradient of Current Variable
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1166
        pass
X
Xin Pan 已提交
1167

1168
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1169 1170
        return self.to_string(True)

F
update  
fengjiayi 已提交
1171
    def to_string(self, throw_on_error, with_details=False):
1172 1173 1174
        """
        Get debug string.

J
Jiabin Yang 已提交
1175 1176 1177 1178 1179
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1180

1181 1182
        Returns:
            str: The debug string.
1183 1184 1185 1186 1187

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1188

1189 1190 1191 1192 1193
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1194
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1195
                print("=============with detail===============")
1196
                print(new_variable.to_string(True, True))
1197
        """
L
lujun 已提交
1198
        if in_dygraph_mode():
1199
            return
1200

F
update  
fengjiayi 已提交
1201 1202
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1203
        protostr = self.desc.serialize_to_string()
1204
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1205 1206 1207 1208
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1209 1210 1211
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1212
        return res_str
1213 1214 1215

    __repr__ = __str__

1216
    @property
1217
    def stop_gradient(self):
J
Jiabin Yang 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1233 1234
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1235 1236 1237
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1238 1239
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1240 1241 1242 1243
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1244
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1245 1246
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1247
        if in_dygraph_mode():
1248
            pass
M
minqiyang 已提交
1249
        else:
1250
            return self._stop_gradient
1251

1252 1253
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1254
        if in_dygraph_mode():
1255
            pass
1256
        else:
1257
            self._stop_gradient = s
1258

1259 1260
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1282
        if in_dygraph_mode():
1283
            pass
1284 1285
        else:
            return self.desc.persistable()
1286

Y
Yu Yang 已提交
1287 1288
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1289
        if in_dygraph_mode():
1290 1291 1292
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1293 1294
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1295

Y
Yu Yang 已提交
1296 1297
    @property
    def name(self):
J
Jiabin Yang 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1314
        if in_dygraph_mode():
1315
            pass
1316 1317
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1339 1340
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1341
        if in_dygraph_mode():
1342
            pass
1343 1344
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1345

Y
Yu Yang 已提交
1346 1347
    @property
    def shape(self):
J
Jiabin Yang 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1365
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1366
        if in_dygraph_mode():
1367
            pass
1368 1369
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1370 1371

    @property
F
fengjiayi 已提交
1372
    def dtype(self):
J
Jiabin Yang 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1389
        if in_dygraph_mode():
1390
            pass
1391 1392
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1393 1394

    @property
1395
    @dygraph_not_support
Y
Yu Yang 已提交
1396
    def lod_level(self):
J
Jiabin Yang 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1418
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1419 1420
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1421 1422 1423 1424

        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1425
        return self.desc.lod_level()
Y
Yu Yang 已提交
1426

Y
Yu Yang 已提交
1427 1428
    @property
    def type(self):
J
Jiabin Yang 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1445
        if in_dygraph_mode():
1446
            pass
1447 1448
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1449

W
Wu Yi 已提交
1450
    def _set_error_clip(self, error_clip):
1451 1452 1453 1454 1455 1456 1457 1458 1459
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1460 1461
        self.error_clip = error_clip

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1502
            raise ValueError("slice step can not be zero")
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1578
    def _cloneVar(self, copy=False):
1579 1580
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1581 1582
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1583 1584 1585 1586
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1587
        new_var = self._cloneVar()
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1598
        new_var = self._cloneVar()
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1609
                return self._cloneVar(True)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1628
                return self._cloneVar(True)
1629
            index = int(item)
1630
            if (index > 0 and index >= self.shape[axis]) \
1631 1632 1633 1634 1635 1636 1637
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1638
        return _getitem_impl_(self, item)
1639

Y
Yu Yang 已提交
1640

F
fengjiayi 已提交
1641 1642 1643
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1644

1645 1646
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1647 1648 1649 1650
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1651
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1652 1653 1654 1655 1656
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1657 1658 1659 1660
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1670
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1671 1672 1673 1674 1675 1676
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1677 1678 1679 1680 1681 1682 1683 1684
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1685 1686
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1687 1688
        return self.op_proto_map[type]

1689 1690 1691 1692 1693 1694
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1695 1696 1697 1698
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1699
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1700
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1701 1702
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1703 1704
        }

F
fengjiayi 已提交
1705

X
Xin Pan 已提交
1706
class Operator(object):
1707
    """
1708 1709 1710 1711 1712 1713 1714
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1715
        type(str): The type of operator. Default None.
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1736
        Block.append_op or Block._prepend_op instead.
1737 1738 1739 1740

    Examples:
        .. code-block:: python

1741
            import paddle.fluid as fluid
1742
            cur_program = fluid.Program()
1743 1744 1745 1746 1747
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1748
    """
1749
    OP_WITHOUT_KERNEL_SET = {
1750 1751
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1752 1753
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1754
        'c_sync_comm_stream'
1755
    }
1756

Y
Yu Yang 已提交
1757 1758
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1759
                 desc,
Y
Yu Yang 已提交
1760 1761 1762
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1763
                 attrs=None):
L
lujun 已提交
1764
        if in_dygraph_mode():
1765 1766
            if type is None:
                raise ValueError(
1767
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1768
            self._type = type
M
minqiyang 已提交
1769
            self.attrs = attrs if attrs else {}
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1784
                )] = self.block.program._op_role
1785 1786 1787

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1788 1789
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1790 1791 1792 1793 1794 1795 1796 1797

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1798
                    "`type` to initialized an Operator can not be None.")
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1848
                        for index, arg in enumerate(in_args):
1849 1850 1851 1852
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1853
                            elif isinstance(arg, Variable):
1854
                                in_arg_names.append(cpt.to_text(arg.name))
1855
                            else:
1856 1857 1858 1859
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1860 1861
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1888
                        if not in_dygraph_mode():
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1908
    def _has_kernel(self, op_type):
1909 1910
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1911
    def to_string(self, throw_on_error):
1912
        """
1913 1914
        Get debug string.

1915
        Args:
1916 1917
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1918

1919 1920
        Returns:
            str: The debug string.
1921 1922

        """
1923
        protostr = self.desc.serialize_to_string()
1924
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1925 1926 1927 1928
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1929 1930 1931

    __repr__ = __str__

F
fengjiayi 已提交
1932 1933
    @property
    def type(self):
L
lujun 已提交
1934
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1935
            return self._type
1936 1937
        else:
            return self.desc.type()
F
fengjiayi 已提交
1938 1939

    def input(self, name):
1940
        """
1941
        Get the input arguments according to the input parameter name.
1942

1943 1944
        Args:
            name(str): The input parameter name.
1945

1946 1947 1948
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1949
        """
F
fengjiayi 已提交
1950 1951
        return self.desc.input(name)

W
Wu Yi 已提交
1952
    def _rename_input(self, old_name, new_name):
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1963
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1964

W
Wu Yi 已提交
1965
    def _rename_output(self, old_name, new_name):
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1976
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1977

F
fengjiayi 已提交
1978 1979 1980 1981
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1982 1983 1984 1985 1986 1987 1988 1989
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1990
    def output(self, name):
1991
        """
1992
        Get output arguments by the output parameter name.
1993

1994 1995
        Args:
            name(str): The output parameter name.
1996

1997 1998 1999
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2000
        """
F
fengjiayi 已提交
2001 2002 2003 2004 2005 2006
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2007 2008 2009 2010 2011 2012 2013 2014
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2015
    def has_attr(self, name):
2016
        """
2017 2018
        Whether this Operator has the attribute with name or not.

2019
        Args:
2020
            name(str): the attribute name.
2021

2022 2023
        Returns:
            bool: True if has this attribute.
2024 2025

        """
F
fengjiayi 已提交
2026 2027 2028
        return self.desc.has_attr(name)

    def attr_type(self, name):
2029
        """
2030
        Get the type of attribute by attribute's name.
2031

2032 2033
        Args:
            name(str): the attribute name.
2034

2035 2036
        Returns:
            core.AttrType: the attribute type.
2037
        """
F
fengjiayi 已提交
2038 2039
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2040
    def _set_attr(self, name, val):
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2051 2052
        self._update_desc_attr(name, val)

2053 2054 2055
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2067 2068
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2069 2070
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2071
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2072 2073 2074 2075
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2076
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2077

F
fengjiayi 已提交
2078 2079 2080 2081 2082
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2083
        """
2084 2085
        Get the attribute by name.

2086
        Args:
2087
            name(str): the attribute name.
2088

2089 2090
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2091 2092
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2093
        return self.desc.attr(name)
Y
Yu Yang 已提交
2094

W
Wu Yi 已提交
2095
    def _block_attr_id(self, name):
2096
        """
G
gongweibao 已提交
2097
        Get the block attribute's id by name.
2098

2099 2100
        Args:
            name(str): the attribute name.
2101

2102 2103
        Returns:
            int: the block index.
2104
        """
W
Wu Yi 已提交
2105
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2106

W
Wu Yi 已提交
2107
    def _block_attr(self, name):
G
gongweibao 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2118
        id = self._block_attr_id(name)
G
gongweibao 已提交
2119 2120 2121
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2122
    def _blocks_attr(self, name):
G
gongweibao 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2133
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2134 2135 2136 2137 2138
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2139
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2150
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2151

J
JiayiFeng 已提交
2152
    def all_attrs(self):
F
fengjiayi 已提交
2153
        """
2154 2155 2156
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2157
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2158 2159 2160 2161
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2162 2163
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2164
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2165 2166 2167
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2168
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2169 2170 2171 2172
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2173 2174
        return attr_map

Y
Yu Yang 已提交
2175

Y
Yu Yang 已提交
2176
class Block(object):
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2191
        use `Program._create_block()` to create a block.
2192 2193 2194 2195

    Examples:
        .. code-block:: python

2196 2197 2198
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2199 2200 2201 2202 2203 2204 2205 2206 2207
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2208
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2209
        self.desc = program.desc.block(idx)
2210
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2211
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2212
        self.program = program
2213
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2214

2215
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2216 2217
        return self.to_string(True)

F
fengjiayi 已提交
2218 2219
    def to_string(self, throw_on_error, with_details=False):
        """
2220 2221
        Get debug string.

F
fengjiayi 已提交
2222 2223
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2224
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2225
            with_details(bool): more details about variables and parameters
2226 2227
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2228

2229 2230
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2231 2232 2233 2234
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2235
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2236 2237
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2238
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2239
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2240
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2241
            for op in self.ops:
F
fengjiayi 已提交
2242 2243
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2244 2245 2246
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2247 2248
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2249 2250
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2251 2252 2253

    __repr__ = __str__

Y
Yu Yang 已提交
2254 2255
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2256
        return self.desc.parent
Y
Yu Yang 已提交
2257

Y
Yu Yang 已提交
2258 2259 2260 2261
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2262
    def _set_forward_block_idx(self, idx):
2263 2264 2265 2266 2267 2268 2269 2270 2271
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2272
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2273

2274 2275 2276 2277 2278 2279 2280 2281
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2282 2283
    @property
    def idx(self):
Y
Yu Yang 已提交
2284
        return self.desc.id
Y
Yu Yang 已提交
2285

Q
Qiao Longfei 已提交
2286
    def var(self, name):
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2300
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2301 2302 2303
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2304 2305
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2306
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2307
        return v
Q
Qiao Longfei 已提交
2308

X
Xin Pan 已提交
2309
    def _find_var_recursive(self, name):
2310 2311 2312 2313 2314 2315 2316
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2317
            Variable: the Variable with the giving name. Or None if not found.
2318
        """
Y
Yu Yang 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2343
        return None
Y
Yu Yang 已提交
2344

X
Xin Pan 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2364

Q
Qiao Longfei 已提交
2365
    def all_parameters(self):
2366
        return list(self.iter_parameters())
2367

2368
    def iter_parameters(self):
M
minqiyang 已提交
2369
        return (item[1] for item in six.iteritems(self.vars)
2370
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2371

Y
Yu Yang 已提交
2372
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2373 2374 2375
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2376 2377 2378
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2379
        return var
Y
Yu Yang 已提交
2380

Q
Qiao Longfei 已提交
2381 2382 2383
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2384
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2385 2386
        """
        Rename variable in vars and ops' inputs and outputs
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2399
        """
M
minqiyang 已提交
2400 2401
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2402

T
typhoonzero 已提交
2403
        if not self.has_var(name):
2404
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2405 2406
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2407
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2408 2409 2410 2411 2412 2413 2414
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2415
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2416 2417 2418 2419
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2420
        orig_var_type = v.type
M
minqiyang 已提交
2421
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2422
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2423
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2424
        if var_type == "Parameter":
L
Leo Chen 已提交
2425 2426
            if in_dygraph_mode():
                var = ParamBase(
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    gradient_clip_attr=gradient_clip_attr,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2438 2439
                var = Parameter(
                    self,
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    gradient_clip_attr=gradient_clip_attr,
                    error_clip=error_clip)
T
typhoonzero 已提交
2450
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2451 2452
            var = Variable(
                self,
T
typhoonzero 已提交
2453
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2454 2455 2456 2457
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2458
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2459 2460 2461
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2462
        self._sync_with_cpp()
2463
        return var
T
typhoonzero 已提交
2464

W
Wu Yi 已提交
2465 2466
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2467
        self.desc._remove_var(cpt.to_bytes(name))
2468 2469
        del self.vars[name]

Y
Yu Yang 已提交
2470 2471
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2472
        param = None
L
Leo Chen 已提交
2473
        if in_dygraph_mode():
2474
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2475 2476
        else:
            param = Parameter(global_block, *args, **kwargs)
2477
        if 'initializer' in kwargs:
2478 2479 2480 2481 2482

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2483 2484 2485 2486 2487
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2499
                # TODO already inited, do nothing, should log a warning
2500 2501 2502
                pass
            else:
                initializer(param, self)
2503
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2504
        return param
Y
Yu Yang 已提交
2505

Y
Yu Yang 已提交
2506
    def append_op(self, *args, **kwargs):
2507 2508 2509 2510 2511 2512
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2513
        if in_dygraph_mode():
2514 2515 2516
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2517 2518 2519 2520 2521
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2522

J
Jiabin Yang 已提交
2523 2524
            type = kwargs.get("type", None)

2525 2526 2527
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2528
                type=type,
M
minqiyang 已提交
2529 2530
                inputs=None,
                outputs=None,
2531
                attrs=attrs)
2532

M
minqiyang 已提交
2533 2534 2535
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2536
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2537 2538

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2539
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2540 2541
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2542
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2543
        else:
2544 2545 2546 2547 2548 2549 2550 2551 2552
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2553
            self.ops.append(op)
M
minqiyang 已提交
2554

2555 2556
        return op

W
Wu Yi 已提交
2557
    def _insert_op(self, index, *args, **kwargs):
2558 2559 2560 2561 2562 2563 2564 2565 2566
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2567 2568
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2569 2570 2571 2572
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2573
    def _remove_op(self, index):
2574 2575 2576 2577 2578 2579 2580 2581 2582
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2583 2584
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2585 2586
        del self.ops[index]

W
Wu Yi 已提交
2587
    def _slice_ops(self, start, end):
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2598
        return self.ops[start:end]
Y
Yancey1989 已提交
2599

W
Wu Yi 已提交
2600
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2601
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2602 2603
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2604
            op = Operator(
J
Jiabin Yang 已提交
2605
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2606

J
Jiabin Yang 已提交
2607
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2608
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2609 2610
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2611
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2612
        else:
2613 2614 2615 2616 2617 2618 2619 2620
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2621
            self.ops.insert(0, op)
2622

Y
Yu Yang 已提交
2623 2624
        return op

W
Wu Yi 已提交
2625
    def _sync_with_cpp(self):
2626
        """
2627 2628
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2629
        """
Q
Qiao Longfei 已提交
2630 2631 2632 2633 2634
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2635
        # sync variables removed from c++ end
2636
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2637
            if not self.desc.find_var(cpt.to_bytes(var)):
2638 2639
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2640
        # sync operators from cpp
2641 2642 2643 2644
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2661 2662 2663 2664 2665

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2666
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2667 2668 2669 2670 2671 2672 2673

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2687 2688 2689 2690
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2691
    def _copy_param_info_from(self, other):
2692
        """
2693 2694
        Copy the information of parameters from the other block.

2695
        Args:
2696 2697 2698 2699 2700
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2701 2702 2703 2704 2705

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2706 2707
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2708
        for p in other.iter_parameters():
2709 2710 2711
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2712
                raise ValueError("_copy_param_info_from should be invoked with "
2713 2714
                                 "same topology")
            assert isinstance(v, Variable)
2715
            new_p = None
L
Leo Chen 已提交
2716 2717
            if in_dygraph_mode():
                new_p = ParamBase(
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    gradient_clip_attr=p.gradient_clip_attr,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2730 2731
                new_p = Parameter(
                    block=self,
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    gradient_clip_attr=p.gradient_clip_attr,
                    error_clip=p.error_clip,
                    name=v.name)
2743 2744
            self.vars[new_p.name] = new_p

2745
    def _clone_variable(self, var, force_persistable=True):
2746 2747
        """
        Clone a variable into current block.
2748

2749 2750
        Args:
            var: the variable to be cloned.
2751 2752 2753
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2754 2755

        Returns:
2756
            Variable: the new  variable cloned from 'var' in current block.
2757 2758
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2759 2760 2761 2762 2763
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2764 2765
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2766
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2767 2768 2769 2770 2771 2772
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2773
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2774 2775
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2776 2777 2778 2779 2780 2781 2782
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2783
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2784 2785
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2786
        return ret_var
2787

Y
Yu Yang 已提交
2788

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2884
    def remove_input_by_id(self, node_id):
2885 2886 2887 2888 2889 2890
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2891
        self.node.remove_input(node_id)
2892

2893
    def remove_input(self, node):
2894 2895 2896 2897
        """
        Remove a node from inputs.

        Args:
2898
            node(IrNode): the node being removed.
2899
        """
2900
        self.node.remove_input(node.node)
2901

2902
    def append_input(self, node):
2903 2904 2905 2906
        """
        Append a node in inputs.

        Args:
2907
            node(IrNode): the node being appended.
2908
        """
2909
        self.node.append_input(node.node)
2910 2911 2912 2913 2914 2915 2916 2917

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2918
    def remove_output_by_id(self, node_id):
2919 2920 2921 2922 2923 2924
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2925
        self.node.remove_output(node_id)
2926

2927
    def remove_output(self, node):
2928 2929 2930 2931
        """
        Remove a node from outputs.

        Args:
2932
            node(IrNode): the node being removed.
2933
        """
2934
        self.node.remove_output(node.node)
2935

2936
    def append_output(self, node):
2937 2938 2939 2940
        """
        Append a node in outputs.

        Args:
2941
            node(IrNode): the node being appended.
2942
        """
2943
        self.node.append_output(node.node)
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
2991
            "The node variable description can not be None."
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3002
            "The node variable description can not be None."
3003 3004
        return self.node.var().persistable()

3005 3006 3007 3008 3009 3010 3011 3012
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3013
            "The node variable description can not be None."
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3024
            "The node variable description can not be None."
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3035
            "The node variable description can not be None."
3036 3037
        return self.node.var().shape()

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3085
            "The node operator description can not be None."
3086 3087
        self.node.op()._rename_input(old_input_name, new_input_name)

3088 3089 3090 3091 3092 3093 3094 3095 3096
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3097
            "The node operator description can not be None."
3098 3099 3100 3101
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3113
            "The node operator description can not be None."
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3127
            "The node operator description can not be None."
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3138
            "The node operator description can not be None."
3139 3140
        return self.node.op().set_type(new_type)

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3156
            "The node operator description can not be None."
3157 3158 3159 3160
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3161
                all(isinstance(v, Block) for v in val):
3162 3163
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3164
                isinstance(val, core.ProgramDesc):
3165 3166 3167 3168
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3169 3170 3171 3172 3173 3174 3175 3176
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3177
            "The node operator description can not be None."
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3188
            "The node operator description can not be None."
3189 3190
        return self.node.op().output_arg_names()

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3212 3213
class IrGraph(object):
    """
3214
    Python IrGraph. Beneath it is a core.Graph, which is used for
3215
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3216 3217
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3218 3219 3220 3221
    """

    def __init__(self, graph, for_test=False):
        """
3222 3223
        Construct an IrGraph using core.Graph.

3224 3225 3226 3227 3228 3229 3230 3231 3232
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3233 3234 3235 3236
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3237 3238 3239
        Warns:
            The method only clones the graph structure, not its attributes.

3240 3241 3242
        Returns:
            IrGraph: A new and duplicated graph.
        """
3243
        g = self.graph.clone()
3244 3245
        return IrGraph(g, self._for_test)

3246
    def is_test(self):
3247 3248 3249
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3250 3251
        return self._for_test

W
WangZhen 已提交
3252
    def all_nodes(self):
3253 3254 3255
        """
        Return all nodes included in the graph as a set.
        """
3256
        return {IrNode(node) for node in self.graph.nodes()}
3257

3258
    def all_var_nodes(self):
3259 3260 3261
        """
        Return all variable nodes included in the graph as a set.
        """
3262
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3263

3264
    def all_persistable_nodes(self):
3265 3266 3267
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3268 3269 3270 3271 3272
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3273
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3274

3275
    def all_op_nodes(self):
3276 3277 3278
        """
        Return all operator nodes included in the graph as a set.
        """
3279
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3280

3281
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3293
            IrVarNode: the created persistable variable node.
3294
        """
3295 3296 3297 3298 3299
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3300
        return IrVarNode(self.graph.create_var_node(var_desc))
3301 3302

    def create_var_node(self, name, var_type, shape, var_dtype):
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3314
            IrVarNode: the created variable node.
3315 3316
        """

3317 3318 3319 3320
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3321
        return IrVarNode(self.graph.create_var_node(var_desc))
3322 3323

    def create_var_node_from_desc(self, var_desc):
3324 3325 3326 3327 3328 3329 3330 3331
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3332
            IrVarNode: the created variable node.
3333
        """
3334
        return IrVarNode(self.graph.create_var_node(var_desc))
3335 3336

    def create_op_node(self, op_type, attrs, inputs, outputs):
3337 3338 3339 3340 3341 3342 3343
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3344
            outputs(dict): the outputs of the operator node.
3345 3346

        Returns:
3347
            IrOpNode: the created operator node.
3348
        """
3349 3350
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3351
        for attr, value in six.iteritems(attrs):
3352
            self._update_desc_attr(op_desc, attr, value)
3353
        for input_name, var_nodes in six.iteritems(inputs):
3354 3355 3356 3357
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3358
        for output_name, var_nodes in six.iteritems(outputs):
3359 3360 3361 3362
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3363
        return IrOpNode(self.graph.create_op_node(op_desc))
3364 3365

    def create_op_node_from_desc(self, op_desc):
3366 3367 3368 3369 3370 3371 3372
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3373
            IrOpNode: the created operator node.
3374
        """
3375
        return IrOpNode(self.graph.create_op_node(op_desc))
3376 3377

    def update_input_link(self, old_input_node, new_input_node, op_node):
3378 3379 3380 3381
        """
        Update the input's link of a operator node.

        Args:
3382 3383 3384
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3385
        """
3386
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3387 3388
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3389 3390 3391 3392
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3393
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3394

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3405 3406
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3407 3408 3409 3410 3411 3412
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3413
    def link_to(self, node_in, node_out):
3414 3415 3416 3417
        """
        Connect two nodes.

        Args:
3418 3419
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3420
        """
3421
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3422
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3423 3424
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3425 3426

    def safe_remove_nodes(self, remove_nodes):
3427 3428 3429 3430 3431 3432 3433
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3434
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3435 3436 3437 3438
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3439 3440
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3441

Z
Zhen Wang 已提交
3442 3443 3444 3445 3446 3447 3448 3449
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3450
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3451 3452 3453 3454
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3455
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3456 3457 3458
                        ]
                    else:
                        var_nodes[each_var_name].append(
3459 3460
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3461 3462
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3463
    def has_circle(self):
3464 3465 3466 3467 3468 3469
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3470 3471 3472
        return core.has_circle(self.graph)

    def graph_num(self):
3473 3474 3475 3476 3477 3478
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3479 3480 3481
        return core.graph_num(self.graph)

    def topology_sort(self):
3482 3483 3484
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3485
        Notes: the `graph` can not contain a circle.
3486 3487

        Returns:
Z
Zhen Wang 已提交
3488
            list(IrNode): nodes in topology order.
3489
        """
3490
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3491
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3492 3493

    def build_adjacency_list(self):
3494 3495 3496 3497
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3498
            dict{IrNode: set(IrNode)}: the adjacency list.
3499
        """
3500 3501 3502 3503 3504
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3505

3506 3507 3508 3509 3510 3511 3512 3513
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3514
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3515 3516 3517 3518 3519
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3520 3521 3522
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3523
                                          + ' -o ' + pdf_save_path, shell=True)
3524 3525 3526 3527 3528
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3529
        remove_ctr_vars = set()
3530
        if remove_ctr_var:
3531
            for node in self.all_var_nodes():
3532 3533 3534
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3535 3536
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3537 3538
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3539 3540 3541 3542 3543 3544
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3545 3546 3547 3548
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3549 3550
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3551 3552 3553 3554 3555 3556 3557
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3558 3559 3560
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3561
        WARN: When the graph includes backward operator nodes, the
3562 3563 3564 3565 3566 3567
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3568
        convert_pass = core.get_pass('graph_to_program_pass')
3569 3570
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3571 3572 3573 3574
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3602
class Program(object):
D
dzhwinter 已提交
3603
    """
3604 3605
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3606
    it will contain nested block.
3607

J
Jiabin Yang 已提交
3608 3609 3610
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3611

J
Jiabin Yang 已提交
3612
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3613
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3614 3615 3616 3617 3618 3619 3620
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3621 3622 3623 3624
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3625 3626

    Returns:
J
Jiabin Yang 已提交
3627
        Program: An empty Program.
D
dzhwinter 已提交
3628 3629

    Examples:
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3643 3644 3645

    """

3646 3647
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3648 3649
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3650
        self._seed = 0
Y
yuyang18 已提交
3651
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3652
        self.__op_role_var = []
T
tangwei12 已提交
3653

3654 3655
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3656
        self._is_distributed = False
3657
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3658
        self._is_chief = False
3659 3660 3661
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3662
        self._endpoints = []
3663 3664 3665
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3666
        self._trainers_endpoints = []
3667
        # the distributed lookup table names
T
tangwei12 已提交
3668
        self._distributed_lookup_table = None
3669 3670 3671

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3672 3673
        self._use_lamb = False

3674 3675 3676
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3677

3678 3679 3680
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3681
        self._program_config = None
3682

H
hutuxian 已提交
3683 3684 3685
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3686 3687 3688
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3689
    @property
3690
    def _op_role(self):
Y
yuyang18 已提交
3691 3692 3693 3694 3695 3696 3697 3698
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3699
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3700 3701 3702 3703
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3704 3705
        return self._current_role

3706 3707
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3708 3709 3710
        self._current_role = role

    @property
3711
    def _op_role_var(self):
Y
yuyang18 已提交
3712
        """
3713
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3714

3715
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3716 3717 3718

        Notes: This is a very low-level API. Users should not use it directly.
        """
3719
        return self.__op_role_var
Y
yuyang18 已提交
3720

3721 3722 3723 3724 3725 3726 3727 3728 3729
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3730
    @signature_safe_contextmanager
W
Wu Yi 已提交
3731
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3732 3733 3734 3735 3736 3737 3738
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3739
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3740 3741 3742

        Examples:

3743
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3744
            >>> p, g = backward(...)
W
Wu Yi 已提交
3745
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3746 3747
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3748
        tmp_role = self._current_role
3749
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3750

Y
yuyang18 已提交
3751 3752
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3753
        self.__op_role_var = [
3754 3755 3756
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3757
        yield
3758
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3759
        self._current_role = tmp_role
Y
Yu Yang 已提交
3760

S
rename  
sneaxiy 已提交
3761
    @signature_safe_contextmanager
X
Xin Pan 已提交
3762
    def _lr_schedule_guard(self, is_with_opt=False):
3763 3764 3765 3766 3767 3768 3769
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3770 3771 3772 3773
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3774 3775 3776

        Examples:

3777
            >>> import paddle.fluid as fluid
3778 3779 3780 3781
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3782 3783

        tmp_role = self._current_role
3784
        tmp_var = self.__op_role_var
3785

3786 3787
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3788 3789
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3790
        # TODO(typhoonzero): how to set target learning rate var
3791
        self.__op_role_var = []
3792
        yield
3793
        self.__op_role_var = tmp_var
3794
        self._current_role = tmp_role
3795

3796
    def __str__(self):
Y
yuyang18 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3806 3807
        return self.to_string(True)

F
fengjiayi 已提交
3808 3809 3810
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3811

J
Jiabin Yang 已提交
3812 3813 3814
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3815

J
Jiabin Yang 已提交
3816
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3817

H
haowang101779990 已提交
3818
        Returns:
J
Jiabin Yang 已提交
3819
            str: The debug string describe current Program.
Y
yuyang18 已提交
3820 3821

        Raises:
J
Jiabin Yang 已提交
3822
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3823

3824 3825 3826 3827 3828 3829 3830
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
T
tianshuo78520a 已提交
3831
                print("program string without detail: {}".format(prog_string))
J
Jiabin Yang 已提交
3832
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
T
tianshuo78520a 已提交
3833
                print("program string with detail: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3843 3844
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3845 3846
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3847

W
Wu Yi 已提交
3848
    def _get_desc(self):
Y
yuyang18 已提交
3849 3850 3851 3852 3853 3854 3855
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3856 3857
        return self.desc

X
version  
Xin Pan 已提交
3858 3859 3860
    def _version(self):
        return self.desc._version()

3861
    @dygraph_not_support
3862
    def clone(self, for_test=False):
Y
yuyang18 已提交
3863
        """
3864
        **Notes**:
J
Jiabin Yang 已提交
3865 3866 3867 3868
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3869
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3870

3871 3872
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3873

3874

J
Jiabin Yang 已提交
3875
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3876 3877 3878
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3879

Y
yuyang18 已提交
3880
        * Set for_test to False when we want to clone the program for training.
3881
        * Set for_test to True when we want to clone the program for testing.
3882 3883
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3884
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3885

J
Jiabin Yang 已提交
3886 3887
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3888

J
Jiabin Yang 已提交
3889 3890 3891 3892
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3893

J
Jiabin Yang 已提交
3894
        Args:
3895

J
Jiabin Yang 已提交
3896
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3897

J
Jiabin Yang 已提交
3898 3899
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3900

Y
yuyang18 已提交
3901 3902 3903

        Examples:

J
Jiabin Yang 已提交
3904
        **Notes: The Program's order maybe different after** :code:`clone` **and
3905
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3906
        example we give you an simple method** :code:`print_prog(program)` **to
3907
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3908
        after** :code:`clone`:
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3946 3947 3948

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
4016
        """
4017 4018 4019 4020 4021

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4022
        pruned_origin_block_id_map = None
4023
        if for_test:
4024 4025 4026 4027 4028 4029 4030 4031 4032
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4033
        else:
4034
            p = Program()
G
gongweibao 已提交
4035 4036
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4037
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4038 4039 4040
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4041 4042

            p._current_role = self._current_role
4043
            p.__op_role_var = self.__op_role_var
4044
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4045

4046 4047
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4048
            p._sync_with_cpp()
4049

W
Wu Yi 已提交
4050
        p._copy_param_info_from(self)
4051
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4052
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4053
        return p
4054

4055
    def _prune(self, targets):
Y
yuyang18 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4069 4070
        """

4071 4072 4073 4074
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4075 4076
        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
4077

4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4112
        """
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4130 4131 4132 4133
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4134 4135
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4136 4137
        if not isinstance(targets, list):
            targets = [targets]
4138 4139 4140 4141 4142 4143

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

4144 4145 4146 4147
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4148 4149
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
4150
                    # and we need to find the current op that generate this
4151 4152 4153 4154 4155 4156 4157 4158
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

4159
                    t = t.op
4160 4161 4162 4163
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
4164
                else:
4165 4166
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4167 4168 4169

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
4170
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
4171 4172 4173
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4174
        res._sync_with_cpp()
4175 4176
        return res

X
Xin Pan 已提交
4177
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4178
        """
F
fengjiayi 已提交
4179 4180 4181 4182 4183
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4184
        3. change the :code:`is_test`
Y
yuyang18 已提交
4185 4186 4187
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4188
        Args:
X
Xin Pan 已提交
4189 4190
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4191

Y
yuyang18 已提交
4192 4193 4194 4195 4196 4197
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4198
        res = Program()
4199
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4200 4201 4202 4203

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4204
        if prune_read_op:
4205 4206 4207 4208 4209 4210 4211 4212 4213
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4214
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4215 4216

        # change all `is_test` attributes to True
M
minqiyang 已提交
4217
        for i in six.moves.range(res.desc.num_blocks()):
4218
            block = res.desc.block(i)
M
minqiyang 已提交
4219
            for j in six.moves.range(block.op_size()):
4220 4221
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4222
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4223 4224 4225
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4226
        res._sync_with_cpp()
4227 4228
        return res

4229 4230
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4231
        """
J
Jiabin Yang 已提交
4232 4233 4234 4235
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4236

4237 4238
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4239

J
Jiabin Yang 已提交
4240
        Args:
Y
yuyang18 已提交
4241

J
Jiabin Yang 已提交
4242
            binary_str_type (str): the binary prootbuf string.
4243

J
Jiabin Yang 已提交
4244 4245
        Returns:
            Program: A deserialized Program.
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4268
        """
4269 4270
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4271
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4272
        p._sync_with_cpp()
4273
        return p
Y
Yu Yang 已提交
4274

4275
    @staticmethod
4276
    def _construct_from_desc(desc):
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4292 4293
    @property
    def random_seed(self):
Y
yuyang18 已提交
4294
        """
J
Jiabin Yang 已提交
4295
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4296 4297
        the random seed from random device.

J
Jiabin Yang 已提交
4298 4299 4300 4301
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4302

4303 4304 4305 4306 4307 4308 4309 4310

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4311 4312 4313
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4314 4315
                print(random_seed)
                prog.random_seed = 1
4316 4317
                z_var = fluid.layers.dropout(x_var, 0.7)

4318
                print(prog.random_seed)
Y
yuyang18 已提交
4319
        """
D
dzhwinter 已提交
4320 4321
        return self._seed

Q
qiaolongfei 已提交
4322 4323
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4324
        """
4325 4326
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4327 4328 4329 4330
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4331

4332 4333 4334 4335 4336 4337 4338 4339 4340

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4341 4342


Y
yuyang18 已提交
4343
        """
Q
qiaolongfei 已提交
4344 4345
        return self.desc.num_blocks()

D
dzhwinter 已提交
4346 4347 4348 4349 4350 4351
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4352
    def __repr__(self):
4353
        return self.__str__()
4354

Y
Yu Yang 已提交
4355
    def global_block(self):
Y
yuyang18 已提交
4356
        """
J
Jiabin Yang 已提交
4357 4358
        **Notes**:
            **This API has no effect in Dygraph mode**
4359 4360 4361

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4362 4363
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4364

4365 4366 4367 4368 4369 4370 4371 4372 4373

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4374

Y
yuyang18 已提交
4375
        """
Y
Yu Yang 已提交
4376 4377
        return self.blocks[0]

Q
Qiao Longfei 已提交
4378
    def block(self, index):
Y
yuyang18 已提交
4379
        """
J
Jiabin Yang 已提交
4380 4381
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4382

4383 4384
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4385 4386
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4387

J
Jiabin Yang 已提交
4388 4389
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4390 4391 4392 4393 4394 4395 4396 4397 4398

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4399
        """
Q
Qiao Longfei 已提交
4400 4401
        return self.blocks[index]

Y
Yu Yang 已提交
4402
    def current_block(self):
Y
yuyang18 已提交
4403
        """
J
Jiabin Yang 已提交
4404 4405
        **Notes**:
            **This API has no effect in Dygraph mode**
4406

J
Jiabin Yang 已提交
4407 4408
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4409

J
Jiabin Yang 已提交
4410 4411
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4412

4413 4414 4415 4416 4417 4418 4419 4420
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4421
        """
Y
Yu Yang 已提交
4422 4423
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4424
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4425 4426 4427 4428 4429
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4430

Y
yuyang18 已提交
4431 4432 4433 4434 4435
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4436
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4437 4438 4439
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4440 4441 4442 4443
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4444
    def _rollback(self):
Y
yuyang18 已提交
4445 4446 4447 4448 4449
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4450 4451
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4452
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4463 4464 4465
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4466
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4467

W
Wu Yi 已提交
4468
    def _copy_param_info_from(self, other):
4469
        """
4470
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4471

Y
yuyang18 已提交
4472 4473 4474
        Notes: This is a very low level API. Users should not invoke it
        directly.

4475 4476 4477 4478 4479 4480 4481
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4482
            raise TypeError("_copy_param_info_from should be invoked with "
4483 4484
                            "Program")

W
Wu Yi 已提交
4485
        self.global_block()._copy_param_info_from(other.global_block())
4486

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4502
        self._parameters_on_pservers = other._parameters_on_pservers
4503
        self._endpoints = other._endpoints
4504
        self._ps_endpoint = other._ps_endpoint
4505 4506
        self._distributed_lookup_table = other._distributed_lookup_table

4507
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4508 4509
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4510

Y
yuyang18 已提交
4511 4512 4513
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4514 4515
        Args:
            other(Program): Other program
4516 4517 4518 4519
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4520 4521 4522 4523 4524

        Returns:
            None
        """
        if not isinstance(other, Program):
4525
            raise TypeError("_copy_data_info_from should be invoked with "
F
fengjiayi 已提交
4526 4527
                            "Program")

4528 4529 4530 4531 4532
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4533 4534 4535

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4536 4537
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4538
            for var in list(block.vars.values()):
4539 4540 4541 4542 4543 4544 4545
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4546

4547
    @dygraph_not_support
4548
    def list_vars(self):
Y
yuyang18 已提交
4549
        """
J
Jiabin Yang 已提交
4550
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4551

J
Jiabin Yang 已提交
4552 4553
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4565
        """
4566
        for each_block in self.blocks:
4567
            for each_var in list(each_block.vars.values()):
4568 4569
                yield each_var

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
    @dygraph_not_support
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4629

4630
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4631
class Parameter(Variable):
4632
    """
4633
    Parameter is derived from Variable. A parameter is a persistable
4634
    Variable, and will be updated by optimizers after each iteration.
4635
    The training of a neural network is essentially the updating of
4636 4637
    its parameters.

4638
    Relative to a general Variable, a Parameter has several its own
4639 4640
    member variables:

4641 4642 4643 4644 4645 4646 4647 4648
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
T
tianshuo78520a 已提交
4649
        gradient_clip_attr(BaseGradientClipAttr): The gradient clip strategy
4650 4651 4652
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4653 4654
    """

4655 4656 4657 4658 4659 4660
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4661 4662 4663 4664 4665
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4666
        if len(shape) == 0:
4667 4668
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4669 4670 4671

        for each in shape:
            if each < 0:
4672 4673 4674
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4675 4676

        Variable.__init__(
4677 4678 4679 4680 4681 4682 4683
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4684 4685 4686 4687
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4688 4689
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4690
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4691

W
wanghaoshuang 已提交
4692
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4693

4694 4695
        self.is_distributed = False

F
fengjiayi 已提交
4696 4697 4698
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4699 4700 4701
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4702

F
update  
fengjiayi 已提交
4703 4704 4705 4706 4707 4708 4709 4710
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4711 4712 4713 4714 4715 4716 4717 4718 4719
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4720 4721 4722 4723 4724 4725
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4726
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4727
            for attr_name in additional_attr:
4728 4729
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4730 4731
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4732 4733 4734 4735
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4736

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
T
tianshuo78520a 已提交
4755
        gradient_clip_attr(BaseGradientClipAttr): The gradient clip strategy
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
            which will be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

4801
        # self.block = default_main_program().global_block()
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
4840
# program is a global instance.
Y
Yu Yang 已提交
4841 4842
_main_program_ = Program()
_startup_program_ = Program()
4843

4844

4845
def default_startup_program():
Y
Yu Yang 已提交
4846
    """
Y
yuyang18 已提交
4847 4848
    Get default/global startup program.

J
Jiabin Yang 已提交
4849 4850 4851
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4852 4853 4854
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4855
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4856

J
Jiabin Yang 已提交
4857
    Returns: current default startup :ref:`api_fluid_Program`
4858

J
Jiabin Yang 已提交
4859
    Returns type: :ref:`api_fluid_Program`
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4875
    """
Y
Yu Yang 已提交
4876
    return _startup_program_
4877

4878

4879
def default_main_program():
Y
Yu Yang 已提交
4880
    """
4881 4882 4883 4884 4885
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4886

4887 4888
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4889
    :code:`default_main_program` when the program is not specified.
4890

4891 4892
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4893
    Returns:
4894
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4895 4896 4897 4898 4899

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4900

4901
            # Sample Network:
4902 4903
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4923
            #print the number of blocks in the program, 1 in this case
4924
            print(fluid.default_main_program().num_blocks)
4925 4926

            #print the description of variable 'image'
4927
            print(fluid.default_main_program().blocks[0].var('image'))
4928

Y
Yu Yang 已提交
4929
    """
Y
Yu Yang 已提交
4930
    return _main_program_
Y
Yu Yang 已提交
4931 4932 4933 4934 4935


def switch_main_program(program):
    """
    Switch the main program to a new program.
4936

Y
Yu Yang 已提交
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4951
    Switch the startup program to a new program
Y
Yu Yang 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4964
@signature_safe_contextmanager
Y
Yu Yang 已提交
4965 4966
def program_guard(main_program, startup_program=None):
    """
4967 4968
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4969
    variables to the new main programs.
4970

G
guofei 已提交
4971 4972 4973 4974 4975 4976 4977
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4978
    Examples:
4979 4980 4981
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4982

4983 4984 4985
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4986
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4987
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4988 4989 4990

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4991

Y
Yu Yang 已提交
4992
    Examples:
4993
       .. code-block:: python
Y
yuyang18 已提交
4994

4995 4996 4997 4998 4999
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5000 5001
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
5014 5015


W
Wu Yi 已提交
5016
def _get_var(name, program=None):
X
xuwei06 已提交
5017
    """
Y
yuyang18 已提交
5018
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5019

X
xuwei06 已提交
5020 5021 5022
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5023
        If None, default_global_program() will be used.
X
xuwei06 已提交
5024 5025 5026 5027 5028 5029 5030

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5031
    assert isinstance(program, Program)
X
xuwei06 已提交
5032 5033

    return program.global_block().var(name)
5034 5035


S
rename  
sneaxiy 已提交
5036
@signature_safe_contextmanager
L
lujun 已提交
5037 5038 5039 5040
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5041
    core._switch_tracer(tracer)
M
minqiyang 已提交
5042

5043
    yield
P
Paddle CI 已提交
5044

5045
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5046
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5047 5048


S
rename  
sneaxiy 已提交
5049
@signature_safe_contextmanager
L
lujun 已提交
5050 5051 5052 5053
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5054

5055
    yield
M
minqiyang 已提交
5056

L
lujun 已提交
5057
    _dygraph_current_expected_place_ = tmp_place
5058 5059 5060 5061 5062 5063 5064


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5065
    Please note, the type of custom operators can't have the same type
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
    yield
    switch_device(pre_device)