framework.py 124.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
70
    'in_dygraph_mode',
71
]
Y
Yu Yang 已提交
72

Q
qiaolongfei 已提交
73 74 75 76
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
77 78
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
79 80
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
81 82


L
lujun 已提交
83
def in_dygraph_mode():
L
lujun 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
97
    return _dygraph_tracer_ is not None
98 99


L
lujun 已提交
100 101
def _dygraph_tracer():
    return _dygraph_tracer_
102

W
Wu Yi 已提交
103

M
minqiyang 已提交
104
def _current_expected_place():
L
lujun 已提交
105
    return _dygraph_current_expected_place_
M
minqiyang 已提交
106 107


S
sneaxiy 已提交
108 109 110 111 112
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
L
lujun 已提交
113
    """
S
add doc  
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
133 134 135 136 137 138 139

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
154
    """
S
add doc  
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
167 168 169 170 171 172 173

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
174 175 176 177 178 179
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
180
    """
S
add doc  
sneaxiy 已提交
181 182 183 184 185 186 187 188 189 190 191 192
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
193 194 195 196 197 198 199 200 201

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
202 203 204 205 206 207 208
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
235
@signature_safe_contextmanager
236 237 238 239 240 241 242 243 244 245 246 247
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
248

249 250 251 252 253 254 255 256 257 258 259
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
279 280 281
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
282 283 284 285


def grad_var_name(var_name):
    """
286 287
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
288 289 290
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
291

292
def convert_np_dtype_to_dtype_(np_dtype):
293 294
    """
    Convert the data type in numpy to the data type in Paddle
295

296
    Args:
297
        np_dtype(np.dtype): the data type in numpy.
298

299 300
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
301 302

    """
303 304
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
305
        return core.VarDesc.VarType.FP32
306
    elif dtype == np.float64:
307
        return core.VarDesc.VarType.FP64
308
    elif dtype == np.float16:
309
        return core.VarDesc.VarType.FP16
310
    elif dtype == np.int32:
311
        return core.VarDesc.VarType.INT32
312
    elif dtype == np.int16:
313
        return core.VarDesc.VarType.INT16
314
    elif dtype == np.int64:
315
        return core.VarDesc.VarType.INT64
316
    elif dtype == np.bool:
317
        return core.VarDesc.VarType.BOOL
318 319
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
320 321
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
322 323
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
324
    else:
M
minqiyang 已提交
325
        raise ValueError("Not supported numpy dtype %s" % dtype)
326 327 328


def dtype_is_floating(dtype):
329 330 331
    """
    Check the data type is floating or not.
    Args:
332
        dtype(np.dtype|core.VarDesc.VarType): data type.
333 334 335 336 337
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
338
    if not isinstance(dtype, core.VarDesc.VarType):
339 340
        dtype = convert_np_dtype_to_dtype_(dtype)

341 342 343 344
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
345 346


Y
Yang Yang(Tony) 已提交
347
def _debug_string_(proto, throw_on_error=True):
348 349 350 351 352 353 354 355 356 357 358
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
359
    error_fields = list()
Y
Yang Yang(Tony) 已提交
360
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
361 362
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
363 364 365
    return proto.__str__()


X
Xin Pan 已提交
366
class Variable(object):
367
    """
368 369 370
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
371
    two variables in different blocks could have the same name.
372

373 374
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
375

376
    Most of a Variable's member variables can be setted to be None. It mean
377
    it is not available or will be specified later.
378 379

    Args:
380
        block(Block): The block that the variable belongs to.
381 382
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
383 384
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
385
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
386
            Some kinds of variable do not contain shape, just set it to None.
387 388 389
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
390
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
391
            series data.
392
            Default: None
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
415 416
    """

Y
Yu Yang 已提交
417 418
    def __init__(self,
                 block,
Y
Yu Yang 已提交
419
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
420 421 422 423
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
424
                 capacity=None,
Q
QI JUN 已提交
425
                 persistable=None,
F
fengjiayi 已提交
426
                 error_clip=None,
Y
Yu Yang 已提交
427
                 stop_gradient=False,
F
fengjiayi 已提交
428
                 is_data=False,
Y
Yu Yang 已提交
429
                 **kwargs):
Y
Yu Yang 已提交
430 431
        self.block = block
        if name is None:
Y
Yu Yang 已提交
432
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
433

Y
Yu Yang 已提交
434
        if dtype is not None:
435
            if not isinstance(dtype, core.VarDesc.VarType):
436
                dtype = convert_np_dtype_to_dtype_(dtype)
437

L
lujun 已提交
438
        if in_dygraph_mode():
M
minqiyang 已提交
439
            # record vars in tracer rather than blocks
M
minqiyang 已提交
440 441
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
442 443 444
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
445 446
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
447
            if persistable:
L
lujun 已提交
448
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
449
            self.op = None
M
minqiyang 已提交
450
        else:
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
523
            self.block.vars[name] = self
524
            self.op = None
525
            self._stop_gradient = stop_gradient
526
            self.is_data = is_data
Y
Yu Yang 已提交
527

528
    def numpy(self):
M
minqiyang 已提交
529
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
530
        return np.array(new_ivar.value().get_tensor())
531

532 533
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
534
        if backward_strategy is None:
535 536
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
537 538 539

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
540

541
    def gradient(self):
542 543
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
544

545
    def clear_gradient(self):
X
Xin Pan 已提交
546
        self._ivar._clear_gradient()
X
Xin Pan 已提交
547

548
    def __str__(self):
Y
Yang Yang(Tony) 已提交
549 550
        return self.to_string(True)

F
update  
fengjiayi 已提交
551
    def to_string(self, throw_on_error, with_details=False):
552 553 554 555
        """
        Get debug string.

        Args:
556 557
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
558
            with_details(bool): more details about variables and parameters
559 560
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
561

562 563
        Returns:
            str: The debug string.
564
        """
L
lujun 已提交
565
        if in_dygraph_mode():
L
lujun 已提交
566
            # TODO(panyx0718): add more dygraph debug info.
567 568 569
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
570

F
update  
fengjiayi 已提交
571 572
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
573
        protostr = self.desc.serialize_to_string()
574
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
575 576 577 578
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
579 580
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
581
        return res_str
582 583 584

    __repr__ = __str__

585
    def set_desc(self, input):
586 587 588 589 590 591 592 593 594
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
595 596
        self.desc = input

597
    @property
598
    def stop_gradient(self):
L
lujun 已提交
599
        if in_dygraph_mode():
M
minqiyang 已提交
600 601
            return self._ivar.stop_gradient
        else:
602
            return self._stop_gradient
603

604 605
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
606
        if in_dygraph_mode():
M
minqiyang 已提交
607
            self._ivar.stop_gradient = s
608
        else:
609
            self._stop_gradient = s
610

611 612
    @property
    def persistable(self):
L
lujun 已提交
613
        if in_dygraph_mode():
614 615 616
            return self._ivar.persistable
        else:
            return self.desc.persistable()
617

Y
Yu Yang 已提交
618 619
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
620
        if in_dygraph_mode():
621 622 623
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
624

Y
Yu Yang 已提交
625 626
    @property
    def name(self):
L
lujun 已提交
627
        if in_dygraph_mode():
628 629 630
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
631

T
typhoonzero 已提交
632 633
    @name.setter
    def name(self, new_name):
L
lujun 已提交
634
        if in_dygraph_mode():
635 636 637
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
638

Y
Yu Yang 已提交
639 640 641
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
642
        if in_dygraph_mode():
643 644 645
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
646 647

    @property
F
fengjiayi 已提交
648
    def dtype(self):
L
lujun 已提交
649
        if in_dygraph_mode():
650 651 652
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
653 654 655

    @property
    def lod_level(self):
L
lujun 已提交
656
        # TODO(minqiyang): Support lod_level in dygraph mode
657
        return self.desc.lod_level()
Y
Yu Yang 已提交
658

Y
Yu Yang 已提交
659 660
    @property
    def type(self):
L
lujun 已提交
661
        if in_dygraph_mode():
662 663 664
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
665

W
Wu Yi 已提交
666
    def _set_error_clip(self, error_clip):
667 668 669 670 671 672 673 674 675
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
676 677
        self.error_clip = error_clip

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
765
    def _cloneVar(self, copy=False):
766 767 768 769 770
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
771
                stop_gradient=self.stop_gradient, )
772 773 774 775
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
776
        new_var = self._cloneVar()
777 778 779 780 781 782 783 784 785 786
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
787
        new_var = self._cloneVar()
788 789 790 791 792 793 794 795 796 797
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
798
                return self._cloneVar(True)
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
817
                return self._cloneVar(True)
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
W
wopeizl 已提交
840 841 842 843 844 845
            fixedSize = True
            for i in range(len(self.shape)):
                if self.shape[i] == -1:
                    fixedSize = False
                    break

846
            newitem = self._reconstructSliceinfo(item) or item
W
wopeizl 已提交
847 848
            if fixedSize:
                check, info = self._detectContinuesSlice(newitem)
849
                if check:
W
wopeizl 已提交
850 851 852 853 854 855 856 857
                    starts = info[0]
                    ends = info[1]
                    axes = [i for i in range(len(starts))]
                    return self._sliceVar(axes, starts, ends)
                else:
                    new_var = self
                    for index, o in enumerate(newitem):
                        new_var = new_var._sliceAndConcatVar(o, index)
858 859 860 861 862 863 864 865
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
866

F
fengjiayi 已提交
867 868 869
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
870

871 872
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
873 874 875 876
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
877
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
878 879 880 881 882
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
883 884 885 886
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
887 888 889 890 891 892 893 894 895
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
896
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
897 898 899 900 901 902
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
903 904 905 906 907 908 909 910
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
911 912
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
913 914
        return self.op_proto_map[type]

915 916 917 918
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
919
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
920 921
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
922 923
        }

F
fengjiayi 已提交
924

X
Xin Pan 已提交
925
class Operator(object):
926
    """
927 928 929 930 931 932 933
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
934
        type(str): The type of operator. Default None.
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
955
        Block.append_op or Block._prepend_op instead.
956 957 958 959 960 961 962 963 964 965

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
966
    """
967
    OP_WITHOUT_KERNEL_SET = {
968 969 970
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
971
    }
972

Y
Yu Yang 已提交
973 974
    def __init__(self,
                 block,
Y
Yu Yang 已提交
975
                 desc,
Y
Yu Yang 已提交
976 977 978
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
979
                 attrs=None):
L
lujun 已提交
980
        if in_dygraph_mode():
981 982
            if type is None:
                raise ValueError(
983
                    "`type` to initialized an Operator can not be None.")
984
            self.iop = core.OpBase(type)
M
minqiyang 已提交
985
            self.previous_ops = []
M
minqiyang 已提交
986

M
minqiyang 已提交
987
            self.attrs = attrs if attrs else {}
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1002
                )] = self.block.program._op_role
1003 1004 1005

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1006 1007
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1082
                        if not in_dygraph_mode():
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1102
    def _has_kernel(self, op_type):
1103 1104
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1105
    def to_string(self, throw_on_error):
1106
        """
1107 1108
        Get debug string.

1109
        Args:
1110 1111
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1112

1113 1114
        Returns:
            str: The debug string.
1115 1116

        """
1117
        protostr = self.desc.serialize_to_string()
1118
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1119 1120 1121 1122
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1123 1124 1125

    __repr__ = __str__

F
fengjiayi 已提交
1126 1127
    @property
    def type(self):
L
lujun 已提交
1128
        if in_dygraph_mode():
1129 1130 1131
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1132 1133

    def input(self, name):
1134
        """
1135
        Get the input arguments according to the input parameter name.
1136

1137 1138
        Args:
            name(str): The input parameter name.
1139

1140 1141 1142
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1143
        """
F
fengjiayi 已提交
1144 1145
        return self.desc.input(name)

W
Wu Yi 已提交
1146
    def _rename_input(self, old_name, new_name):
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1157
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1158

W
Wu Yi 已提交
1159
    def _rename_output(self, old_name, new_name):
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1170
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1171

F
fengjiayi 已提交
1172 1173 1174 1175
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1176 1177 1178 1179 1180 1181 1182 1183
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1184
    def output(self, name):
1185
        """
1186
        Get output arguments by the output parameter name.
1187

1188 1189
        Args:
            name(str): The output parameter name.
1190

1191 1192 1193
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1194
        """
F
fengjiayi 已提交
1195 1196 1197 1198 1199 1200
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1201 1202 1203 1204 1205 1206 1207 1208
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1209
    def has_attr(self, name):
1210
        """
1211 1212
        Whether this Operator has the attribute with name or not.

1213
        Args:
1214
            name(str): the attribute name.
1215

1216 1217
        Returns:
            bool: True if has this attribute.
1218 1219

        """
F
fengjiayi 已提交
1220 1221 1222
        return self.desc.has_attr(name)

    def attr_type(self, name):
1223
        """
1224
        Get the type of attribute by attribute's name.
1225

1226 1227
        Args:
            name(str): the attribute name.
1228

1229 1230
        Returns:
            core.AttrType: the attribute type.
1231
        """
F
fengjiayi 已提交
1232 1233
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1234
    def _set_attr(self, name, val):
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1245 1246
        self._update_desc_attr(name, val)

1247 1248 1249
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1261 1262
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1263 1264
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1265
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1266 1267 1268 1269
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1270
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1271

F
fengjiayi 已提交
1272 1273 1274 1275 1276
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1277
        """
1278 1279
        Get the attribute by name.

1280
        Args:
1281
            name(str): the attribute name.
1282

1283 1284
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1285 1286
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1287
        return self.desc.attr(name)
Y
Yu Yang 已提交
1288

W
Wu Yi 已提交
1289
    def _block_attr_id(self, name):
1290
        """
G
gongweibao 已提交
1291
        Get the block attribute's id by name.
1292

1293 1294
        Args:
            name(str): the attribute name.
1295

1296 1297
        Returns:
            int: the block index.
1298
        """
W
Wu Yi 已提交
1299
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1300

W
Wu Yi 已提交
1301
    def _block_attr(self, name):
G
gongweibao 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1312
        id = self._block_attr_id(name)
G
gongweibao 已提交
1313 1314 1315
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1316
    def _blocks_attr(self, name):
G
gongweibao 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1327
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1328 1329 1330 1331 1332
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1333
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1344
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1345

J
JiayiFeng 已提交
1346
    def all_attrs(self):
F
fengjiayi 已提交
1347
        """
1348 1349 1350
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1351
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1352 1353 1354 1355
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1356 1357
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1358
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1359 1360 1361
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1362
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1363 1364 1365 1366
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1367 1368
        return attr_map

Y
Yu Yang 已提交
1369

Y
Yu Yang 已提交
1370
class Block(object):
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1385
        use `Program._create_block()` to create a block.
1386 1387 1388 1389

    Examples:
        .. code-block:: python

1390 1391 1392
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1393 1394 1395 1396 1397 1398 1399 1400 1401
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1402
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1403
        self.desc = program.desc.block(idx)
1404
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1405
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1406
        self.program = program
1407
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1408

1409
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1410 1411
        return self.to_string(True)

F
fengjiayi 已提交
1412 1413
    def to_string(self, throw_on_error, with_details=False):
        """
1414 1415
        Get debug string.

F
fengjiayi 已提交
1416 1417
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1418
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1419
            with_details(bool): more details about variables and parameters
1420 1421
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1422

1423 1424
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1425 1426 1427 1428
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1429
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1430 1431
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1432
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1433
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1434
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1435
            for op in self.ops:
F
fengjiayi 已提交
1436 1437
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1438 1439 1440
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1441 1442
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1443 1444
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1445 1446 1447

    __repr__ = __str__

Y
Yu Yang 已提交
1448 1449
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1450
        return self.desc.parent
Y
Yu Yang 已提交
1451

Y
Yu Yang 已提交
1452 1453 1454 1455
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1456
    def _set_forward_block_idx(self, idx):
1457 1458 1459 1460 1461 1462 1463 1464 1465
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1466
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1467

Y
Yu Yang 已提交
1468 1469
    @property
    def idx(self):
Y
Yu Yang 已提交
1470
        return self.desc.id
Y
Yu Yang 已提交
1471

Q
Qiao Longfei 已提交
1472
    def var(self, name):
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1486
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1487 1488 1489
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1490 1491
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1492
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1493
        return v
Q
Qiao Longfei 已提交
1494

X
Xin Pan 已提交
1495
    def _find_var_recursive(self, name):
1496 1497 1498 1499 1500 1501 1502
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1503
            Variable: the Variable with the giving name. Or None if not found.
1504
        """
Y
Yu Yang 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1529
        return None
Y
Yu Yang 已提交
1530

X
Xin Pan 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1550

Q
Qiao Longfei 已提交
1551
    def all_parameters(self):
1552
        return list(self.iter_parameters())
1553

1554
    def iter_parameters(self):
M
minqiyang 已提交
1555
        return (item[1] for item in six.iteritems(self.vars)
1556
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1557

Y
Yu Yang 已提交
1558
    def create_var(self, *args, **kwargs):
1559
        var = Variable(block=self, *args, **kwargs)
1560 1561
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1562
        return var
Y
Yu Yang 已提交
1563

Q
Qiao Longfei 已提交
1564 1565 1566
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1567
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1568 1569
        """
        Rename variable in vars and ops' inputs and outputs
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1582
        """
M
minqiyang 已提交
1583 1584
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1585

T
typhoonzero 已提交
1586
        if not self.has_var(name):
1587
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1588 1589
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1590
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1591 1592 1593 1594 1595 1596 1597
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1598
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1599 1600 1601 1602
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1603
        orig_var_type = v.type
M
minqiyang 已提交
1604
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1605
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1606
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1607
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1608 1609 1610 1611
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1612
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1613 1614 1615 1616 1617 1618 1619
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1620
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1621 1622
            var = Variable(
                self,
T
typhoonzero 已提交
1623
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1624 1625 1626 1627
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1628
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1629 1630 1631
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1632
        self._sync_with_cpp()
1633
        return var
T
typhoonzero 已提交
1634

W
Wu Yi 已提交
1635 1636
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1637
        self.desc._remove_var(cpt.to_bytes(name))
1638 1639
        del self.vars[name]

Y
Yu Yang 已提交
1640 1641
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1642
        param = Parameter(global_block, *args, **kwargs)
1643
        if 'initializer' in kwargs:
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1664
        return param
Y
Yu Yang 已提交
1665

Y
Yu Yang 已提交
1666
    def append_op(self, *args, **kwargs):
1667 1668 1669 1670 1671 1672
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1673
        if in_dygraph_mode():
1674 1675 1676 1677 1678
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
                attrs['is_test'] = True

1679 1680 1681 1682
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1683 1684
                inputs=None,
                outputs=None,
1685
                attrs=attrs)
1686

M
minqiyang 已提交
1687 1688 1689
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1690
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1691 1692 1693 1694
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1695
        else:
1696 1697 1698 1699 1700 1701 1702 1703 1704
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1705
            self.ops.append(op)
M
minqiyang 已提交
1706

1707 1708
        return op

W
Wu Yi 已提交
1709
    def _insert_op(self, index, *args, **kwargs):
1710 1711 1712 1713 1714 1715 1716 1717 1718
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1719 1720
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1721 1722 1723 1724
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1725
    def _remove_op(self, index):
1726 1727 1728 1729 1730 1731 1732 1733 1734
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1735 1736
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1737 1738
        del self.ops[index]

W
Wu Yi 已提交
1739
    def _slice_ops(self, start, end):
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1750
        return self.ops[start:end]
Y
Yancey1989 已提交
1751

W
Wu Yi 已提交
1752
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1753
        if in_dygraph_mode():
1754 1755 1756 1757
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1758 1759 1760 1761 1762 1763 1764 1765
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1766
        else:
1767 1768 1769 1770 1771 1772 1773 1774
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1775
            self.ops.insert(0, op)
1776

Y
Yu Yang 已提交
1777 1778
        return op

W
Wu Yi 已提交
1779
    def _sync_with_cpp(self):
1780
        """
1781 1782
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1783
        """
Q
Qiao Longfei 已提交
1784 1785 1786 1787 1788
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1789
        # sync variables removed from c++ end
1790
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1791
            if not self.desc.find_var(cpt.to_bytes(var)):
1792 1793
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1794
        # sync operators from cpp
1795 1796 1797 1798
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1815 1816 1817 1818 1819

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1820
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1821 1822 1823 1824 1825 1826 1827

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1841 1842 1843 1844
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1845
    def _copy_param_info_from(self, other):
1846
        """
1847 1848
        Copy the information of parameters from the other block.

1849
        Args:
1850 1851 1852 1853 1854
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1855 1856 1857 1858 1859

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1860 1861
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1862
        for p in other.iter_parameters():
1863 1864 1865
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1866
                raise ValueError("_copy_param_info_from should be invoked with "
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1879
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1880
                error_clip=p.error_clip,
1881 1882 1883
                name=v.name)
            self.vars[new_p.name] = new_p

1884
    def _clone_variable(self, var, force_persistable=True):
1885 1886
        """
        Clone a variable into current block.
1887

1888 1889
        Args:
            var: the variable to be cloned.
1890 1891 1892
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1893 1894

        Returns:
1895
            Variable: the new  variable cloned from 'var' in current block.
1896 1897
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1898 1899 1900 1901 1902
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1903 1904
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1905
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1906 1907 1908 1909 1910 1911
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1912
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1913
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1914 1915 1916 1917 1918 1919 1920
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1921
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1922
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1923
        return ret_var
1924

Y
Yu Yang 已提交
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2021
    def remove_input_by_id(self, node_id):
2022 2023 2024 2025 2026 2027
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2028
        self.node.remove_input(node_id)
2029

2030
    def remove_input(self, node):
2031 2032 2033 2034
        """
        Remove a node from inputs.

        Args:
2035
            node(IrNode): the node being removed.
2036
        """
2037
        self.node.remove_input(node.node)
2038

2039
    def append_input(self, node):
2040 2041 2042 2043
        """
        Append a node in inputs.

        Args:
2044
            node(IrNode): the node being appended.
2045
        """
2046
        self.node.append_input(node.node)
2047 2048 2049 2050 2051 2052 2053 2054

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2055
    def remove_output_by_id(self, node_id):
2056 2057 2058 2059 2060 2061
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2062
        self.node.remove_output(node_id)
2063

2064
    def remove_output(self, node):
2065 2066 2067 2068
        """
        Remove a node from outputs.

        Args:
2069
            node(IrNode): the node being removed.
2070
        """
2071
        self.node.remove_output(node.node)
2072

2073
    def append_output(self, node):
2074 2075 2076 2077
        """
        Append a node in outputs.

        Args:
2078
            node(IrNode): the node being appended.
2079
        """
2080
        self.node.append_output(node.node)
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2335 2336
class IrGraph(object):
    """
2337
    Python IrGraph. Beneath it is a core.Graph, which is used for
2338
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2339 2340
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2341 2342 2343 2344
    """

    def __init__(self, graph, for_test=False):
        """
2345 2346
        Construct an IrGraph using core.Graph.

2347 2348 2349 2350 2351 2352 2353 2354 2355
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2356 2357 2358 2359
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2360 2361 2362
        Warns:
            The method only clones the graph structure, not its attributes.

2363 2364 2365
        Returns:
            IrGraph: A new and duplicated graph.
        """
2366
        g = self.graph.clone()
2367 2368
        return IrGraph(g, self._for_test)

2369
    def is_test(self):
2370 2371 2372
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2373 2374
        return self._for_test

W
WangZhen 已提交
2375
    def all_nodes(self):
2376 2377 2378
        """
        Return all nodes included in the graph as a set.
        """
2379
        return {IrNode(node) for node in self.graph.nodes()}
2380

2381
    def all_var_nodes(self):
2382 2383 2384
        """
        Return all variable nodes included in the graph as a set.
        """
2385
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2386

2387
    def all_persistable_nodes(self):
2388 2389 2390
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2391 2392 2393 2394 2395
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2396
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2397

2398
    def all_op_nodes(self):
2399 2400 2401
        """
        Return all operator nodes included in the graph as a set.
        """
2402
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2403

2404
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2416
            IrVarNode: the created persistable variable node.
2417
        """
2418 2419 2420 2421 2422
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2423
        return IrVarNode(self.graph.create_var_node(var_desc))
2424 2425

    def create_var_node(self, name, var_type, shape, var_dtype):
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2437
            IrVarNode: the created variable node.
2438 2439
        """

2440 2441 2442 2443
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2444
        return IrVarNode(self.graph.create_var_node(var_desc))
2445 2446

    def create_var_node_from_desc(self, var_desc):
2447 2448 2449 2450 2451 2452 2453 2454
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2455
            IrVarNode: the created variable node.
2456
        """
2457
        return IrVarNode(self.graph.create_var_node(var_desc))
2458 2459

    def create_op_node(self, op_type, attrs, inputs, outputs):
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2470
            IrOpNode: the created operator node.
2471
        """
2472 2473
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2474
        for attr, value in six.iteritems(attrs):
2475
            self._update_desc_attr(op_desc, attr, value)
2476
        for input_name, var_nodes in six.iteritems(inputs):
2477 2478 2479 2480
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2481
        for output_name, var_nodes in six.iteritems(outputs):
2482 2483 2484 2485
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2486
        return IrOpNode(self.graph.create_op_node(op_desc))
2487 2488

    def create_op_node_from_desc(self, op_desc):
2489 2490 2491 2492 2493 2494 2495
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2496
            IrOpNode: the created operator node.
2497
        """
2498
        return IrOpNode(self.graph.create_op_node(op_desc))
2499 2500

    def update_input_link(self, old_input_node, new_input_node, op_node):
2501 2502 2503 2504
        """
        Update the input's link of a operator node.

        Args:
2505 2506 2507
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2508
        """
2509 2510
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2511
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2512 2513 2514 2515
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2516
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2517 2518

    def link_to(self, node_in, node_out):
2519 2520 2521 2522
        """
        Connect two nodes.

        Args:
2523 2524
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2525
        """
2526
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2527
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2528 2529
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2530 2531

    def safe_remove_nodes(self, remove_nodes):
2532 2533 2534 2535 2536 2537 2538
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2539
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2540 2541 2542 2543
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2544 2545
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2546

Z
Zhen Wang 已提交
2547 2548 2549 2550 2551 2552 2553 2554
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2555
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2556 2557 2558 2559
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2560
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2561 2562 2563
                        ]
                    else:
                        var_nodes[each_var_name].append(
2564 2565
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2566 2567
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2568
    def has_circle(self):
2569 2570 2571 2572 2573 2574
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2575 2576 2577
        return core.has_circle(self.graph)

    def graph_num(self):
2578 2579 2580 2581 2582 2583
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2584 2585 2586
        return core.graph_num(self.graph)

    def topology_sort(self):
2587 2588 2589 2590 2591 2592
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2593
            list(IrNode): nodes in topology order.
2594
        """
2595
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2596
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2597 2598

    def build_adjacency_list(self):
2599 2600 2601 2602
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2603
            dict{IrNode: set(IrNode)}: the adjacency list.
2604
        """
2605 2606 2607 2608 2609
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2610

2611 2612 2613 2614 2615 2616 2617 2618
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2619
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2620 2621 2622 2623 2624
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2625 2626 2627 2628 2629 2630 2631 2632 2633
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2634
        remove_ctr_vars = set()
2635
        if remove_ctr_var:
2636
            for node in self.all_var_nodes():
2637 2638 2639
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2640 2641
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2642 2643
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2644 2645 2646 2647 2648 2649
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2661 2662 2663
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2664
        WARN: When the graph includes backward operator nodes, the
2665 2666 2667 2668 2669 2670
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2671
        convert_pass = core.get_pass('graph_to_program_pass')
2672 2673
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2674 2675 2676 2677
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2705
class Program(object):
D
dzhwinter 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2717
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2718 2719

    Returns:
Y
yuyang18 已提交
2720
        A empty program.
D
dzhwinter 已提交
2721 2722

    Examples:
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2736 2737 2738

    """

2739 2740
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2741 2742
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2743
        self._seed = 0
Y
yuyang18 已提交
2744
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2745
        self.__op_role_var = []
T
tangwei12 已提交
2746

2747 2748
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2749
        self._is_distributed = False
2750
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2751
        self._is_chief = False
2752 2753 2754
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2755
        self._endpoints = []
2756 2757 2758
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2759
        self._trainers_endpoints = []
2760
        # the distributed lookup table names
T
tangwei12 已提交
2761
        self._distributed_lookup_table = None
2762 2763 2764

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2765 2766 2767 2768
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2769

D
dzhwinter 已提交
2770
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2771
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2772
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2773

2774 2775 2776
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2777
        self._program_config = None
2778

D
dzhwinter 已提交
2779
    @property
D
dzhwinter 已提交
2780
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2781 2782
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2783
        return self.__is_mem_optimized
D
dzhwinter 已提交
2784

D
dzhwinter 已提交
2785 2786 2787
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2788 2789

    @property
2790
    def _op_role(self):
Y
yuyang18 已提交
2791 2792 2793 2794 2795 2796 2797 2798
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2799
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2800 2801 2802 2803
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2804 2805
        return self._current_role

2806 2807
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2808 2809 2810
        self._current_role = role

    @property
2811
    def _op_role_var(self):
Y
yuyang18 已提交
2812
        """
2813
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2814

2815
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2816 2817 2818

        Notes: This is a very low-level API. Users should not use it directly.
        """
2819
        return self.__op_role_var
Y
yuyang18 已提交
2820

2821 2822 2823 2824 2825 2826 2827 2828 2829
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2830
    @signature_safe_contextmanager
W
Wu Yi 已提交
2831
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2832 2833 2834 2835 2836 2837 2838
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2839
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2840 2841 2842 2843

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2844
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2845 2846
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2847
        tmp_role = self._current_role
2848
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2849

Y
yuyang18 已提交
2850 2851
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2852
        self.__op_role_var = [
2853 2854 2855
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2856
        yield
2857
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2858
        self._current_role = tmp_role
Y
Yu Yang 已提交
2859

S
rename  
sneaxiy 已提交
2860
    @signature_safe_contextmanager
X
Xin Pan 已提交
2861
    def _lr_schedule_guard(self, is_with_opt=False):
2862 2863 2864 2865 2866 2867 2868
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2869 2870 2871 2872
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2873 2874 2875 2876 2877 2878 2879

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2880 2881

        tmp_role = self._current_role
2882
        tmp_var = self.__op_role_var
2883

2884 2885
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2886 2887
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2888
        # TODO(typhoonzero): how to set target learning rate var
2889
        self.__op_role_var = []
2890
        yield
2891
        self.__op_role_var = tmp_var
2892
        self._current_role = tmp_role
2893

2894
    def __str__(self):
Y
yuyang18 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2904 2905
        return self.to_string(True)

F
fengjiayi 已提交
2906 2907 2908
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2909

F
fengjiayi 已提交
2910
        Args:
Y
yuyang18 已提交
2911 2912
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2913

Y
yuyang18 已提交
2914 2915 2916 2917
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2918 2919
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2920 2921 2922 2923

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2943 2944
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2945 2946
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2947

W
Wu Yi 已提交
2948
    def _get_desc(self):
Y
yuyang18 已提交
2949 2950 2951 2952 2953 2954 2955
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2956 2957
        return self.desc

X
version  
Xin Pan 已提交
2958 2959 2960
    def _version(self):
        return self.desc._version()

2961
    def clone(self, for_test=False):
Y
yuyang18 已提交
2962 2963 2964
        """
        Create a new, duplicated program.

2965

Y
yuyang18 已提交
2966 2967 2968 2969
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2970

Y
yuyang18 已提交
2971
        * Set for_test to False when we want to clone the program for training.
2972 2973 2974
        * Set for_test to True when we want to clone the program for testing. We will not do any prune
          on program here, So if you just want an forward program for testing, please use :code:`clone`
          before using :code:`Opimizer.minimize`
Y
yuyang18 已提交
2975 2976

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2977 2978
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

2979 2980 2981 2982 2983
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
2984 2985

        Args:
Y
yuyang18 已提交
2986 2987
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2988

D
dzhwinter 已提交
2989
        Returns:
Y
yuyang18 已提交
2990 2991 2992 2993
            Program: The new, duplicated Program object.

        Examples:

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
        Notes: The Program Descs' order maybe different after :code:`clone` and this will not affect your training or testing progress. In the following example we give you an simple method :code:`print_prog(program)` to print Program Descs inorder to make sure you have same print result after :code:`clone`:
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3090 3091
        """
        if for_test:
X
Xin Pan 已提交
3092
            p = self._inference_optimize(prune_read_op=False)
3093
        else:
3094
            p = Program()
G
gongweibao 已提交
3095 3096
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3097
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3098 3099 3100
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3101 3102

            p._current_role = self._current_role
3103
            p.__op_role_var = self.__op_role_var
G
gongweibao 已提交
3104

W
Wu Yi 已提交
3105
            p._sync_with_cpp()
3106

W
Wu Yi 已提交
3107
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3108
        p._copy_data_info_from(self)
3109
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3110
        return p
3111

W
Wu Yi 已提交
3112
    def _prune(self, targets):
Y
yuyang18 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3128 3129 3130 3131 3132 3133
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3134 3135
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3136
                    # and we need to find the current op that generate this
3137 3138 3139 3140 3141 3142 3143 3144
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3145
                    t = t.op
3146 3147 3148 3149
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3150
                else:
3151 3152
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3153 3154 3155 3156

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3157 3158 3159
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3160
        res._sync_with_cpp()
3161 3162
        return res

X
Xin Pan 已提交
3163
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3164
        """
F
fengjiayi 已提交
3165 3166 3167 3168 3169
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3170
        3. change the :code:`is_test`
Y
yuyang18 已提交
3171 3172 3173
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3174
        Args:
X
Xin Pan 已提交
3175 3176
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3177

Y
yuyang18 已提交
3178 3179 3180 3181 3182 3183
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3184
        res = Program()
3185
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3186 3187 3188 3189

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3190
        if prune_read_op:
3191 3192 3193 3194 3195 3196 3197 3198 3199
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3200
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3201 3202

        # change all `is_test` attributes to True
M
minqiyang 已提交
3203
        for i in six.moves.range(res.desc.num_blocks()):
3204
            block = res.desc.block(i)
M
minqiyang 已提交
3205
            for j in six.moves.range(block.op_size()):
3206 3207
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3208
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3209 3210 3211
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3212
        res._sync_with_cpp()
3213 3214
        return res

3215 3216
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3217 3218 3219 3220 3221 3222 3223
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3224
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3225 3226 3227 3228

        Returns:
            Program: A deserialized program desc.
        """
3229 3230
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3231
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3232
        p._sync_with_cpp()
3233
        return p
Y
Yu Yang 已提交
3234

3235
    @staticmethod
3236
    def _construct_from_desc(desc):
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3252 3253
    @property
    def random_seed(self):
Y
yuyang18 已提交
3254 3255 3256 3257 3258
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3270
        """
D
dzhwinter 已提交
3271 3272
        return self._seed

Q
qiaolongfei 已提交
3273 3274
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3275 3276
        """
        The number of blocks in this program.
3277 3278 3279 3280 3281 3282 3283 3284 3285

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3286
        """
Q
qiaolongfei 已提交
3287 3288
        return self.desc.num_blocks()

D
dzhwinter 已提交
3289 3290 3291 3292 3293 3294
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3295
    def __repr__(self):
3296
        return self.__str__()
3297

Y
Yu Yang 已提交
3298
    def global_block(self):
Y
yuyang18 已提交
3299 3300
        """
        Get the first block of this program.
3301 3302 3303 3304 3305 3306 3307 3308 3309

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3310
        """
Y
Yu Yang 已提交
3311 3312
        return self.blocks[0]

Q
Qiao Longfei 已提交
3313
    def block(self, index):
Y
yuyang18 已提交
3314 3315 3316 3317 3318 3319 3320
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3321 3322 3323 3324 3325 3326 3327 3328 3329

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3330
        """
Q
Qiao Longfei 已提交
3331 3332
        return self.blocks[index]

Y
Yu Yang 已提交
3333
    def current_block(self):
Y
yuyang18 已提交
3334 3335 3336
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3337 3338 3339 3340 3341 3342 3343 3344 3345

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3346
        """
Y
Yu Yang 已提交
3347 3348
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3349
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3360
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3361 3362 3363
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3364 3365 3366 3367
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3368
    def _rollback(self):
Y
yuyang18 已提交
3369 3370 3371 3372 3373
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3374 3375
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3376
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3387 3388 3389
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3390
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3391

W
Wu Yi 已提交
3392
    def _copy_param_info_from(self, other):
3393
        """
3394
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3395

Y
yuyang18 已提交
3396 3397 3398
        Notes: This is a very low level API. Users should not invoke it
        directly.

3399 3400 3401 3402 3403 3404 3405
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3406
            raise TypeError("_copy_param_info_from should be invoked with "
3407 3408 3409
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3410
            raise ValueError("_copy_param_info_from should be invoked with two "
3411
                             "program, with represent the same topology")
W
Wu Yi 已提交
3412
        self.global_block()._copy_param_info_from(other.global_block())
3413

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3429
        self._parameters_on_pservers = other._parameters_on_pservers
3430
        self._endpoints = other._endpoints
3431
        self._ps_endpoint = other._ps_endpoint
3432 3433
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3434
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3435 3436
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3437

Y
yuyang18 已提交
3438 3439 3440
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3441 3442 3443 3444 3445 3446 3447
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3448
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3449 3450 3451
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3452
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3453
                             "program, with represent the same topology")
3454
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3455 3456 3457
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3458
    def list_vars(self):
Y
yuyang18 已提交
3459 3460 3461 3462 3463
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3475
        """
3476
        for each_block in self.blocks:
3477
            for each_var in list(each_block.vars.values()):
3478 3479
                yield each_var

Y
Yu Yang 已提交
3480

Y
Yu Yang 已提交
3481
class Parameter(Variable):
3482
    """
3483
    Parameter is derived from Variable. A parameter is a persistable
3484
    Variable, and will be updated by optimizers after each iteration.
3485
    The training of a neural network is essentially the updating of
3486 3487
    its parameters.

3488
    Relative to a general Variable, a Parameter has several its own
3489 3490
    member variables:

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3503 3504
    """

Y
Yu Yang 已提交
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3515 3516 3517

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3518 3519 3520 3521
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3522 3523
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3524
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3525

W
wanghaoshuang 已提交
3526
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3527

F
fengjiayi 已提交
3528 3529 3530
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3531 3532 3533
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3534

F
update  
fengjiayi 已提交
3535 3536 3537 3538 3539 3540 3541 3542
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3543 3544 3545 3546 3547 3548 3549 3550 3551
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3552 3553 3554 3555 3556 3557
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3558
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3559
            for attr_name in additional_attr:
3560 3561
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3562 3563
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3564 3565 3566 3567
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3568

Y
Yu Yang 已提交
3569
# program is a global instance.
Y
Yu Yang 已提交
3570 3571
_main_program_ = Program()
_startup_program_ = Program()
3572

3573

3574
def default_startup_program():
Y
Yu Yang 已提交
3575
    """
Y
yuyang18 已提交
3576 3577 3578 3579 3580 3581 3582 3583 3584
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3585

Y
Yu Yang 已提交
3586 3587
    Returns:
        Program: startup program
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3603
    """
Y
Yu Yang 已提交
3604
    return _startup_program_
3605

3606

3607
def default_main_program():
Y
Yu Yang 已提交
3608
    """
Y
yuyang18 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3618

Y
Yu Yang 已提交
3619 3620
    Returns:
        Program: main program
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3650
    """
Y
Yu Yang 已提交
3651
    return _main_program_
Y
Yu Yang 已提交
3652 3653 3654 3655 3656


def switch_main_program(program):
    """
    Switch the main program to a new program.
3657

Y
Yu Yang 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3672
    Switch the startup program to a new program
Y
Yu Yang 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3685
@signature_safe_contextmanager
Y
Yu Yang 已提交
3686 3687
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3688 3689 3690
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3691

Y
Yu Yang 已提交
3692
    Examples:
3693 3694 3695
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3696

3697 3698 3699 3700 3701
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3702 3703 3704

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3705

Y
Yu Yang 已提交
3706
    Examples:
3707
       .. code-block:: python
Y
yuyang18 已提交
3708

3709 3710 3711 3712 3713 3714
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3715

Y
Yu Yang 已提交
3716
    Args:
Y
yuyang18 已提交
3717
        main_program(Program): New main program inside `with` statement.
3718
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3732 3733


W
Wu Yi 已提交
3734
def _get_var(name, program=None):
X
xuwei06 已提交
3735
    """
Y
yuyang18 已提交
3736
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3737

X
xuwei06 已提交
3738 3739 3740
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3741
        If None, default_global_program() will be used.
X
xuwei06 已提交
3742 3743 3744 3745 3746 3747 3748

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3749
    assert isinstance(program, Program)
X
xuwei06 已提交
3750 3751

    return program.global_block().var(name)
3752 3753


S
rename  
sneaxiy 已提交
3754
@signature_safe_contextmanager
L
lujun 已提交
3755 3756 3757 3758
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3759

3760
    yield
P
Paddle CI 已提交
3761

L
lujun 已提交
3762
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3763 3764


S
rename  
sneaxiy 已提交
3765
@signature_safe_contextmanager
L
lujun 已提交
3766 3767 3768 3769
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3770

3771
    yield
M
minqiyang 已提交
3772

L
lujun 已提交
3773
    _dygraph_current_expected_place_ = tmp_place