vmscan.c 107.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
51
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
52

53 54
#include "internal.h"

55 56 57
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
58 59 60 61
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

62 63 64
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

68 69
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
70
	/* This context's GFP mask */
A
Al Viro 已提交
71
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
72 73 74

	int may_writepage;

75 76
	/* Can mapped pages be reclaimed? */
	int may_unmap;
77

78 79 80
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
81
	int order;
82

83 84 85
	/* Scan (total_size >> priority) pages at once */
	int priority;

86 87 88 89 90
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
91

92 93 94 95 96
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
133
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
134 135 136 137

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
138
#ifdef CONFIG_MEMCG
139 140
static bool global_reclaim(struct scan_control *sc)
{
141
	return !sc->target_mem_cgroup;
142
}
143
#else
144 145 146 147
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
148 149
#endif

150
static unsigned long zone_reclaimable_pages(struct zone *zone)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

169
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170
{
171
	if (!mem_cgroup_disabled())
172
		return mem_cgroup_get_lru_size(lruvec, lru);
173

174
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 176
}

L
Linus Torvalds 已提交
177
/*
G
Glauber Costa 已提交
178
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
179
 */
G
Glauber Costa 已提交
180
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
181
{
G
Glauber Costa 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

199 200 201
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
202
	return 0;
L
Linus Torvalds 已提交
203
}
204
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
205 206 207 208

/*
 * Remove one
 */
209
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
210 211 212 213
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
214
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
215
}
216
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
217 218

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
219 220 221 222 223 224 225 226

static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
		 unsigned long nr_pages_scanned, unsigned long lru_pages)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
227
	long freeable;
G
Glauber Costa 已提交
228 229 230 231 232 233
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

234 235
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
236 237 238 239 240 241 242 243 244 245 246
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
	delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
	delta *= freeable;
G
Glauber Costa 已提交
248 249 250 251 252
	do_div(delta, lru_pages + 1);
	total_scan += delta;
	if (total_scan < 0) {
		printk(KERN_ERR
		"shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
253
		       shrinker->scan_objects, total_scan);
254
		total_scan = freeable;
G
Glauber Costa 已提交
255 256 257 258 259 260 261 262
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
263
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
264 265 266 267 268
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
269 270
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
271 272 273 274 275 276

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
277 278
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
279 280 281

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				nr_pages_scanned, lru_pages,
282
				freeable, delta, total_scan);
G
Glauber Costa 已提交
283

284 285 286 287 288 289 290 291 292 293 294
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
295
	 * than the total number of objects on slab (freeable), we must be
296 297 298 299
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
300
	       total_scan >= freeable) {
D
Dave Chinner 已提交
301
		unsigned long ret;
302
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
303

304
		shrinkctl->nr_to_scan = nr_to_scan;
D
Dave Chinner 已提交
305 306 307 308
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
309

310 311
		count_vm_events(SLABS_SCANNED, nr_to_scan);
		total_scan -= nr_to_scan;
G
Glauber Costa 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
	return freed;
329 330
}

L
Linus Torvalds 已提交
331 332 333 334 335 336 337 338
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
339
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
340 341 342 343 344 345 346
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
347 348
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
349
 */
D
Dave Chinner 已提交
350
unsigned long shrink_slab(struct shrink_control *shrinkctl,
351
			  unsigned long nr_pages_scanned,
352
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
353 354
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
355
	unsigned long freed = 0;
L
Linus Torvalds 已提交
356

357 358
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
359

360
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
361 362 363 364 365 366 367
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
368 369
		goto out;
	}
L
Linus Torvalds 已提交
370 371

	list_for_each_entry(shrinker, &shrinker_list, list) {
372 373
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
			shrinkctl->nid = 0;
G
Glauber Costa 已提交
374
			freed += shrink_slab_node(shrinkctl, shrinker,
375 376 377 378 379 380 381 382
					nr_pages_scanned, lru_pages);
			continue;
		}

		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
			if (node_online(shrinkctl->nid))
				freed += shrink_slab_node(shrinkctl, shrinker,
						nr_pages_scanned, lru_pages);
L
Linus Torvalds 已提交
383 384 385 386

		}
	}
	up_read(&shrinker_rwsem);
387 388
out:
	cond_resched();
D
Dave Chinner 已提交
389
	return freed;
L
Linus Torvalds 已提交
390 391 392 393
}

static inline int is_page_cache_freeable(struct page *page)
{
394 395 396 397 398
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
399
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
400 401
}

402 403
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
404
{
405
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
429
	lock_page(page);
430 431
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
432 433 434
	unlock_page(page);
}

435 436 437 438 439 440 441 442 443 444 445 446
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
447
/*
A
Andrew Morton 已提交
448 449
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
450
 */
451
static pageout_t pageout(struct page *page, struct address_space *mapping,
452
			 struct scan_control *sc)
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
461
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
477
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
478 479
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
480
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
481 482 483 484 485 486 487
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
488
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
489 490 491 492 493 494 495
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
496 497
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
498 499 500 501 502 503 504
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
505
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
506 507 508
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
509

L
Linus Torvalds 已提交
510 511 512 513
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
514
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
516 517 518 519 520 521
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

522
/*
N
Nick Piggin 已提交
523 524
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
525
 */
526 527
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
528
{
529 530
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
531

N
Nick Piggin 已提交
532
	spin_lock_irq(&mapping->tree_lock);
533
	/*
N
Nick Piggin 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
557
	 */
N
Nick Piggin 已提交
558
	if (!page_freeze_refs(page, 2))
559
		goto cannot_free;
N
Nick Piggin 已提交
560 561 562
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
563
		goto cannot_free;
N
Nick Piggin 已提交
564
	}
565 566 567 568

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
569
		spin_unlock_irq(&mapping->tree_lock);
570
		swapcache_free(swap, page);
N
Nick Piggin 已提交
571
	} else {
572
		void (*freepage)(struct page *);
573
		void *shadow = NULL;
574 575

		freepage = mapping->a_ops->freepage;
576 577 578 579 580 581 582 583 584 585 586 587 588 589
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
		 */
		if (reclaimed && page_is_file_cache(page) &&
		    !mapping_exiting(mapping))
			shadow = workingset_eviction(mapping, page);
		__delete_from_page_cache(page, shadow);
N
Nick Piggin 已提交
590
		spin_unlock_irq(&mapping->tree_lock);
591
		mem_cgroup_uncharge_cache_page(page);
592 593 594

		if (freepage != NULL)
			freepage(page);
595 596 597 598 599
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
600
	spin_unlock_irq(&mapping->tree_lock);
601 602 603
	return 0;
}

N
Nick Piggin 已提交
604 605 606 607 608 609 610 611
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
612
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
613 614 615 616 617 618 619 620 621 622 623
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
624 625 626 627 628 629 630 631 632 633 634
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
635
	bool is_unevictable;
636
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
637

638
	VM_BUG_ON_PAGE(PageLRU(page), page);
L
Lee Schermerhorn 已提交
639 640 641 642

redo:
	ClearPageUnevictable(page);

643
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
644 645 646 647 648 649
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
650
		is_unevictable = false;
651
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
652 653 654 655 656
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
657
		is_unevictable = true;
L
Lee Schermerhorn 已提交
658
		add_page_to_unevictable_list(page);
659
		/*
660 661 662
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
663
		 * isolation/check_move_unevictable_pages,
664
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665 666
		 * the page back to the evictable list.
		 *
667
		 * The other side is TestClearPageMlocked() or shmem_lock().
668 669
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
670 671 672 673 674 675 676
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
677
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
678 679 680 681 682 683 684 685 686 687
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

688
	if (was_unevictable && !is_unevictable)
689
		count_vm_event(UNEVICTABLE_PGRESCUED);
690
	else if (!was_unevictable && is_unevictable)
691 692
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
693 694 695
	put_page(page);		/* drop ref from isolate */
}

696 697 698
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
699
	PAGEREF_KEEP,
700 701 702 703 704 705
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
706
	int referenced_ptes, referenced_page;
707 708
	unsigned long vm_flags;

709 710
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
711
	referenced_page = TestClearPageReferenced(page);
712 713 714 715 716 717 718 719

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

720
	if (referenced_ptes) {
721
		if (PageSwapBacked(page))
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

739
		if (referenced_page || referenced_ptes > 1)
740 741
			return PAGEREF_ACTIVATE;

742 743 744 745 746 747
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

748 749
		return PAGEREF_KEEP;
	}
750 751

	/* Reclaim if clean, defer dirty pages to writeback */
752
	if (referenced_page && !PageSwapBacked(page))
753 754 755
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
756 757
}

758 759 760 761
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
762 763
	struct address_space *mapping;

764 765 766 767 768 769 770 771 772 773 774 775 776
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
777 778 779 780 781 782 783 784

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
785 786
}

L
Linus Torvalds 已提交
787
/*
A
Andrew Morton 已提交
788
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
789
 */
A
Andrew Morton 已提交
790
static unsigned long shrink_page_list(struct list_head *page_list,
791
				      struct zone *zone,
792
				      struct scan_control *sc,
793
				      enum ttu_flags ttu_flags,
794
				      unsigned long *ret_nr_dirty,
795
				      unsigned long *ret_nr_unqueued_dirty,
796
				      unsigned long *ret_nr_congested,
797
				      unsigned long *ret_nr_writeback,
798
				      unsigned long *ret_nr_immediate,
799
				      bool force_reclaim)
L
Linus Torvalds 已提交
800 801
{
	LIST_HEAD(ret_pages);
802
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
803
	int pgactivate = 0;
804
	unsigned long nr_unqueued_dirty = 0;
805 806
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
807
	unsigned long nr_reclaimed = 0;
808
	unsigned long nr_writeback = 0;
809
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
810 811 812

	cond_resched();

813
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
814 815 816 817
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
818
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
819
		bool dirty, writeback;
L
Linus Torvalds 已提交
820 821 822 823 824 825

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
826
		if (!trylock_page(page))
L
Linus Torvalds 已提交
827 828
			goto keep;

829 830
		VM_BUG_ON_PAGE(PageActive(page), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
L
Linus Torvalds 已提交
831 832

		sc->nr_scanned++;
833

834
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
835
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
836

837
		if (!sc->may_unmap && page_mapped(page))
838 839
			goto keep_locked;

L
Linus Torvalds 已提交
840 841 842 843
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

844 845 846
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

847 848 849 850 851 852 853 854 855 856 857 858 859
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

860 861 862 863 864 865
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
866
		mapping = page_mapping(page);
867 868
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
869 870
			nr_congested++;

871 872 873 874 875 876 877 878 879 880 881
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
882 883
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
908
		if (PageWriteback(page)) {
909 910 911 912
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
913 914
				nr_immediate++;
				goto keep_locked;
915 916 917

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
918 919 920 921 922 923 924 925 926 927 928 929 930
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
931
				nr_writeback++;
932

933
				goto keep_locked;
934 935 936 937

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
938
			}
939
		}
L
Linus Torvalds 已提交
940

941 942 943
		if (!force_reclaim)
			references = page_check_references(page, sc);

944 945
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
946
			goto activate_locked;
947 948
		case PAGEREF_KEEP:
			goto keep_locked;
949 950 951 952
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
953 954 955 956 957

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
958
		if (PageAnon(page) && !PageSwapCache(page)) {
959 960
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
961
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
962
				goto activate_locked;
963
			may_enter_fs = 1;
L
Linus Torvalds 已提交
964

965 966 967
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
968 969 970 971 972 973

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
974
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
975 976 977 978
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
979 980
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
981 982 983 984 985 986
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
987 988
			/*
			 * Only kswapd can writeback filesystem pages to
989 990
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
991
			 */
992
			if (page_is_file_cache(page) &&
993
					(!current_is_kswapd() ||
994
					 !zone_is_reclaim_dirty(zone))) {
995 996 997 998 999 1000 1001 1002 1003
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

1004 1005 1006
				goto keep_locked;
			}

1007
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1008
				goto keep_locked;
1009
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1010
				goto keep_locked;
1011
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1012 1013 1014
				goto keep_locked;

			/* Page is dirty, try to write it out here */
1015
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1016 1017 1018 1019 1020
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1021
				if (PageWriteback(page))
1022
					goto keep;
1023
				if (PageDirty(page))
L
Linus Torvalds 已提交
1024
					goto keep;
1025

L
Linus Torvalds 已提交
1026 1027 1028 1029
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1030
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1050
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1061
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1062 1063
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1080 1081
		}

1082
		if (!mapping || !__remove_mapping(mapping, page, true))
1083
			goto keep_locked;
L
Linus Torvalds 已提交
1084

N
Nick Piggin 已提交
1085 1086 1087 1088 1089 1090 1091 1092
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1093
free_it:
1094
		nr_reclaimed++;
1095 1096 1097 1098 1099 1100

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1101 1102
		continue;

N
Nick Piggin 已提交
1103
cull_mlocked:
1104 1105
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1106 1107 1108 1109
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1110
activate_locked:
1111 1112
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1113
			try_to_free_swap(page);
1114
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1121
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1122
	}
1123

1124
	free_hot_cold_page_list(&free_pages, 1);
1125

L
Linus Torvalds 已提交
1126
	list_splice(&ret_pages, page_list);
1127
	count_vm_events(PGACTIVATE, pgactivate);
1128
	mem_cgroup_uncharge_end();
1129 1130
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1131
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132
	*ret_nr_writeback += nr_writeback;
1133
	*ret_nr_immediate += nr_immediate;
1134
	return nr_reclaimed;
L
Linus Torvalds 已提交
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1145
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1146 1147 1148 1149
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1150 1151
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1152 1153 1154 1155 1156 1157
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1158 1159
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1160 1161 1162 1163 1164
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1175
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1176 1177 1178 1179 1180 1181 1182
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1183 1184
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1185 1186
		return ret;

A
Andy Whitcroft 已提交
1187
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1222

1223 1224 1225
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1250
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1251
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1252
 * @nr_scanned:	The number of pages that were scanned.
1253
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1254
 * @mode:	One of the LRU isolation modes
1255
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1256 1257 1258
 *
 * returns how many pages were moved onto *@dst.
 */
1259
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260
		struct lruvec *lruvec, struct list_head *dst,
1261
		unsigned long *nr_scanned, struct scan_control *sc,
1262
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1263
{
H
Hugh Dickins 已提交
1264
	struct list_head *src = &lruvec->lists[lru];
1265
	unsigned long nr_taken = 0;
1266
	unsigned long scan;
L
Linus Torvalds 已提交
1267

1268
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1269
		struct page *page;
1270
		int nr_pages;
A
Andy Whitcroft 已提交
1271

L
Linus Torvalds 已提交
1272 1273 1274
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1275
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1276

1277
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1278
		case 0:
1279 1280
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1281
			list_move(&page->lru, dst);
1282
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1283 1284 1285 1286 1287 1288
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1289

A
Andy Whitcroft 已提交
1290 1291 1292
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1293 1294
	}

H
Hugh Dickins 已提交
1295
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1296 1297
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1298 1299 1300
	return nr_taken;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1312 1313 1314
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1330
	VM_BUG_ON_PAGE(!page_count(page), page);
1331

1332 1333
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1334
		struct lruvec *lruvec;
1335 1336

		spin_lock_irq(&zone->lru_lock);
1337
		lruvec = mem_cgroup_page_lruvec(page, zone);
1338
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1339
			int lru = page_lru(page);
1340
			get_page(page);
1341
			ClearPageLRU(page);
1342 1343
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1344 1345 1346 1347 1348 1349
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1350
/*
F
Fengguang Wu 已提交
1351 1352 1353 1354 1355
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1356 1357 1358 1359 1360 1361 1362 1363 1364
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1365
	if (!global_reclaim(sc))
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1384 1385 1386
	return isolated > inactive;
}

1387
static noinline_for_stack void
H
Hugh Dickins 已提交
1388
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1389
{
1390 1391
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1392
	LIST_HEAD(pages_to_free);
1393 1394 1395 1396 1397

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1398
		struct page *page = lru_to_page(page_list);
1399
		int lru;
1400

1401
		VM_BUG_ON_PAGE(PageLRU(page), page);
1402
		list_del(&page->lru);
1403
		if (unlikely(!page_evictable(page))) {
1404 1405 1406 1407 1408
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1409 1410 1411

		lruvec = mem_cgroup_page_lruvec(page, zone);

1412
		SetPageLRU(page);
1413
		lru = page_lru(page);
1414 1415
		add_page_to_lru_list(page, lruvec, lru);

1416 1417
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1418 1419
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1420
		}
1421 1422 1423
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1424
			del_page_from_lru_list(page, lruvec, lru);
1425 1426 1427 1428 1429 1430 1431

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1432 1433 1434
		}
	}

1435 1436 1437 1438
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1439 1440
}

L
Linus Torvalds 已提交
1441
/*
A
Andrew Morton 已提交
1442 1443
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1444
 */
1445
static noinline_for_stack unsigned long
1446
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1447
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1448 1449
{
	LIST_HEAD(page_list);
1450
	unsigned long nr_scanned;
1451
	unsigned long nr_reclaimed = 0;
1452
	unsigned long nr_taken;
1453 1454
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1455
	unsigned long nr_unqueued_dirty = 0;
1456
	unsigned long nr_writeback = 0;
1457
	unsigned long nr_immediate = 0;
1458
	isolate_mode_t isolate_mode = 0;
1459
	int file = is_file_lru(lru);
1460 1461
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1462

1463
	while (unlikely(too_many_isolated(zone, file, sc))) {
1464
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1465 1466 1467 1468 1469 1470

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1471
	lru_add_drain();
1472 1473

	if (!sc->may_unmap)
1474
		isolate_mode |= ISOLATE_UNMAPPED;
1475
	if (!sc->may_writepage)
1476
		isolate_mode |= ISOLATE_CLEAN;
1477

L
Linus Torvalds 已提交
1478
	spin_lock_irq(&zone->lru_lock);
1479

1480 1481
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1482 1483 1484 1485

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1486
	if (global_reclaim(sc)) {
1487 1488
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1489
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1490
		else
H
Hugh Dickins 已提交
1491
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1492
	}
1493
	spin_unlock_irq(&zone->lru_lock);
1494

1495
	if (nr_taken == 0)
1496
		return 0;
A
Andy Whitcroft 已提交
1497

1498
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1499 1500 1501
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1502

1503 1504
	spin_lock_irq(&zone->lru_lock);

1505
	reclaim_stat->recent_scanned[file] += nr_taken;
1506

Y
Ying Han 已提交
1507 1508 1509 1510 1511 1512 1513 1514
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1515

1516
	putback_inactive_pages(lruvec, &page_list);
1517

1518
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1519 1520 1521 1522

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1534 1535 1536
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1537
	 */
1538
	if (nr_writeback && nr_writeback == nr_taken)
1539
		zone_set_flag(zone, ZONE_WRITEBACK);
1540

1541
	/*
1542 1543
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1544
	 */
1545
	if (global_reclaim(sc)) {
1546 1547 1548 1549 1550 1551 1552
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1571
	}
1572

1573 1574 1575 1576 1577 1578 1579 1580
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1581 1582 1583
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1584
		sc->priority,
M
Mel Gorman 已提交
1585
		trace_shrink_flags(file));
1586
	return nr_reclaimed;
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1606

1607
static void move_active_pages_to_lru(struct lruvec *lruvec,
1608
				     struct list_head *list,
1609
				     struct list_head *pages_to_free,
1610 1611
				     enum lru_list lru)
{
1612
	struct zone *zone = lruvec_zone(lruvec);
1613 1614
	unsigned long pgmoved = 0;
	struct page *page;
1615
	int nr_pages;
1616 1617 1618

	while (!list_empty(list)) {
		page = lru_to_page(list);
1619
		lruvec = mem_cgroup_page_lruvec(page, zone);
1620

1621
		VM_BUG_ON_PAGE(PageLRU(page), page);
1622 1623
		SetPageLRU(page);

1624 1625
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1626
		list_move(&page->lru, &lruvec->lists[lru]);
1627
		pgmoved += nr_pages;
1628

1629 1630 1631
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1632
			del_page_from_lru_list(page, lruvec, lru);
1633 1634 1635 1636 1637 1638 1639

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1640 1641 1642 1643 1644 1645
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1646

H
Hugh Dickins 已提交
1647
static void shrink_active_list(unsigned long nr_to_scan,
1648
			       struct lruvec *lruvec,
1649
			       struct scan_control *sc,
1650
			       enum lru_list lru)
L
Linus Torvalds 已提交
1651
{
1652
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1653
	unsigned long nr_scanned;
1654
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1655
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1656
	LIST_HEAD(l_active);
1657
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1658
	struct page *page;
1659
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1660
	unsigned long nr_rotated = 0;
1661
	isolate_mode_t isolate_mode = 0;
1662
	int file = is_file_lru(lru);
1663
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1664 1665

	lru_add_drain();
1666 1667

	if (!sc->may_unmap)
1668
		isolate_mode |= ISOLATE_UNMAPPED;
1669
	if (!sc->may_writepage)
1670
		isolate_mode |= ISOLATE_CLEAN;
1671

L
Linus Torvalds 已提交
1672
	spin_lock_irq(&zone->lru_lock);
1673

1674 1675
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1676
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1677
		zone->pages_scanned += nr_scanned;
1678

1679
	reclaim_stat->recent_scanned[file] += nr_taken;
1680

H
Hugh Dickins 已提交
1681
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1682
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1683
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1690

1691
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1692 1693 1694 1695
			putback_lru_page(page);
			continue;
		}

1696 1697 1698 1699 1700 1701 1702 1703
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1704 1705
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1706
			nr_rotated += hpage_nr_pages(page);
1707 1708 1709 1710 1711 1712 1713 1714 1715
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1716
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1717 1718 1719 1720
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1721

1722
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1723 1724 1725
		list_add(&page->lru, &l_inactive);
	}

1726
	/*
1727
	 * Move pages back to the lru list.
1728
	 */
1729
	spin_lock_irq(&zone->lru_lock);
1730
	/*
1731 1732 1733 1734
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1735
	 */
1736
	reclaim_stat->recent_rotated[file] += nr_rotated;
1737

1738 1739
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1740
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1741
	spin_unlock_irq(&zone->lru_lock);
1742 1743

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1744 1745
}

1746
#ifdef CONFIG_SWAP
1747
static int inactive_anon_is_low_global(struct zone *zone)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1760 1761
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1762
 * @lruvec: LRU vector to check
1763 1764 1765 1766
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1767
static int inactive_anon_is_low(struct lruvec *lruvec)
1768
{
1769 1770 1771 1772 1773 1774 1775
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1776
	if (!mem_cgroup_disabled())
1777
		return mem_cgroup_inactive_anon_is_low(lruvec);
1778

1779
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1780
}
1781
#else
1782
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1783 1784 1785 1786
{
	return 0;
}
#endif
1787

1788 1789
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1790
 * @lruvec: LRU vector to check
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1802
static int inactive_file_is_low(struct lruvec *lruvec)
1803
{
1804 1805 1806 1807 1808
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1809

1810
	return active > inactive;
1811 1812
}

H
Hugh Dickins 已提交
1813
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1814
{
H
Hugh Dickins 已提交
1815
	if (is_file_lru(lru))
1816
		return inactive_file_is_low(lruvec);
1817
	else
1818
		return inactive_anon_is_low(lruvec);
1819 1820
}

1821
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1822
				 struct lruvec *lruvec, struct scan_control *sc)
1823
{
1824
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1825
		if (inactive_list_is_low(lruvec, lru))
1826
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1827 1828 1829
		return 0;
	}

1830
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1831 1832
}

1833
static int vmscan_swappiness(struct scan_control *sc)
1834
{
1835
	if (global_reclaim(sc))
1836
		return vm_swappiness;
1837
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1838 1839
}

1840 1841 1842 1843 1844 1845 1846
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1847 1848 1849 1850 1851 1852
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1853 1854
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1855
 */
1856
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1857
			   unsigned long *nr)
1858
{
1859 1860 1861 1862
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1863
	unsigned long anon_prio, file_prio;
1864
	enum scan_balance scan_balance;
1865
	unsigned long anon, file;
1866
	bool force_scan = false;
1867
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1868
	enum lru_list lru;
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1880
	if (current_is_kswapd() && !zone_reclaimable(zone))
1881
		force_scan = true;
1882
	if (!global_reclaim(sc))
1883
		force_scan = true;
1884 1885

	/* If we have no swap space, do not bother scanning anon pages. */
1886
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1887
		scan_balance = SCAN_FILE;
1888 1889
		goto out;
	}
1890

1891 1892 1893 1894 1895 1896 1897 1898
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1899
		scan_balance = SCAN_FILE;
1900 1901 1902 1903 1904 1905 1906 1907 1908
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1909
		scan_balance = SCAN_EQUAL;
1910 1911 1912
		goto out;
	}

1913 1914 1915 1916
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1917

1918 1919 1920 1921 1922
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1923
		scan_balance = SCAN_FILE;
1924 1925 1926
		goto out;
	}

1927 1928
	scan_balance = SCAN_FRACT;

1929 1930 1931 1932
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1933
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1934
	file_prio = 200 - anon_prio;
1935

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1947
	spin_lock_irq(&zone->lru_lock);
1948 1949 1950
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1951 1952
	}

1953 1954 1955
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1956 1957 1958
	}

	/*
1959 1960 1961
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1962
	 */
1963
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1964
	ap /= reclaim_stat->recent_rotated[0] + 1;
1965

1966
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1967
	fp /= reclaim_stat->recent_rotated[1] + 1;
1968
	spin_unlock_irq(&zone->lru_lock);
1969

1970 1971 1972 1973
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1974 1975
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1976
		unsigned long size;
1977
		unsigned long scan;
1978

1979
		size = get_lru_size(lruvec, lru);
1980
		scan = size >> sc->priority;
1981

1982 1983
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
2006
		nr[lru] = scan;
2007
	}
2008
}
2009

2010 2011 2012 2013 2014 2015
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
2016
	unsigned long targets[NR_LRU_LISTS];
2017 2018 2019 2020 2021
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2022
	bool scan_adjusted = false;
2023 2024 2025

	get_scan_count(lruvec, sc, nr);

2026 2027 2028
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2029 2030 2031
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2032 2033 2034
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2035 2036 2037 2038 2039 2040 2041 2042 2043
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2044 2045 2046 2047

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

2048
		/*
2049 2050 2051 2052
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
2053
		 */
2054
		if (global_reclaim(sc) && !current_is_kswapd())
2055
			break;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2113
/* Use reclaim/compaction for costly allocs or under memory pressure */
2114
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2115
{
2116
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2117
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2118
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2119 2120 2121 2122 2123
		return true;

	return false;
}

2124
/*
M
Mel Gorman 已提交
2125 2126 2127 2128 2129
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2130
 */
2131
static inline bool should_continue_reclaim(struct zone *zone,
2132 2133 2134 2135 2136 2137 2138 2139
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2140
	if (!in_reclaim_compaction(sc))
2141 2142
		return false;

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2165 2166 2167 2168 2169 2170

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2171
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2172
	if (get_nr_swap_pages() > 0)
2173
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2174 2175 2176 2177 2178
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2179
	switch (compaction_suitable(zone, sc->order)) {
2180 2181 2182 2183 2184 2185 2186 2187
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2188
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2189
{
2190
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2191

2192 2193 2194 2195 2196 2197
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2198
		struct mem_cgroup *memcg;
2199

2200 2201
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2202

2203 2204
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2205
			struct lruvec *lruvec;
2206

2207
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2208

2209
			shrink_lruvec(lruvec, sc);
2210

2211
			/*
2212 2213
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2214
			 * zone.
2215 2216 2217 2218 2219
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2220
			 */
2221 2222
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2223 2224 2225
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2226 2227
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2228 2229 2230 2231 2232

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2233 2234
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2254
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2255 2256 2257 2258 2259 2260 2261 2262
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2263
	if (compaction_deferred(zone, sc->order))
2264 2265 2266 2267 2268 2269 2270 2271 2272
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2273 2274 2275 2276 2277
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2278 2279
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2280 2281
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2282 2283 2284
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2285 2286 2287
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2288 2289
 *
 * This function returns true if a zone is being reclaimed for a costly
2290
 * high-order allocation and compaction is ready to begin. This indicates to
2291 2292
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2293
 */
2294
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2295
{
2296
	struct zoneref *z;
2297
	struct zone *zone;
2298 2299
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2300
	unsigned long lru_pages = 0;
2301
	bool aborted_reclaim = false;
2302
	struct reclaim_state *reclaim_state = current->reclaim_state;
2303
	gfp_t orig_mask;
2304 2305 2306
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2307
	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2308

2309 2310 2311 2312 2313
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2314
	orig_mask = sc->gfp_mask;
2315 2316 2317
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2318
	nodes_clear(shrink.nodes_to_scan);
2319

2320 2321
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2322
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2323
			continue;
2324 2325 2326 2327
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2328
		if (global_reclaim(sc)) {
2329 2330
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2331 2332

			lru_pages += zone_reclaimable_pages(zone);
2333
			node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2334

2335 2336
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2337
				continue;	/* Let kswapd poll it */
2338
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2339
				/*
2340 2341 2342 2343 2344
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2345 2346
				 * noticeable problem, like transparent huge
				 * page allocations.
2347
				 */
2348 2349
				if ((zonelist_zone_idx(z) <= requested_highidx)
				    && compaction_ready(zone, sc)) {
2350
					aborted_reclaim = true;
2351
					continue;
2352
				}
2353
			}
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2366
			/* need some check for avoid more shrink_zone() */
2367
		}
2368

2369
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2370
	}
2371

2372 2373 2374 2375 2376 2377 2378
	/*
	 * Don't shrink slabs when reclaiming memory from over limit cgroups
	 * but do shrink slab at least once when aborting reclaim for
	 * compaction to avoid unevenly scanning file/anon LRU pages over slab
	 * pages.
	 */
	if (global_reclaim(sc)) {
2379
		shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2380 2381 2382 2383 2384 2385
		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
		}
	}

2386 2387 2388 2389 2390 2391
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;

2392
	return aborted_reclaim;
2393 2394
}

2395
/* All zones in zonelist are unreclaimable? */
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2408
		if (zone_reclaimable(zone))
2409
			return false;
2410 2411
	}

2412
	return true;
L
Linus Torvalds 已提交
2413
}
2414

L
Linus Torvalds 已提交
2415 2416 2417 2418 2419 2420 2421 2422
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2423 2424 2425 2426
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2427 2428 2429
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2430
 */
2431
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2432
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2433
{
2434
	unsigned long total_scanned = 0;
2435
	unsigned long writeback_threshold;
2436
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2437

2438 2439
	delayacct_freepages_start();

2440
	if (global_reclaim(sc))
2441
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2442

2443
	do {
2444 2445
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2446
		sc->nr_scanned = 0;
2447
		aborted_reclaim = shrink_zones(zonelist, sc);
2448

2449
		total_scanned += sc->nr_scanned;
2450
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2451 2452
			goto out;

2453 2454 2455 2456 2457 2458 2459
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2460 2461 2462 2463 2464 2465 2466
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2467 2468
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2469 2470
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2471
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2472
		}
2473
	} while (--sc->priority >= 0 && !aborted_reclaim);
2474

L
Linus Torvalds 已提交
2475
out:
2476 2477
	delayacct_freepages_end();

2478 2479 2480
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2481 2482 2483 2484 2485 2486 2487 2488
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2489 2490
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2491 2492
		return 1;

2493
	/* top priority shrink_zones still had more to do? don't OOM, then */
2494
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2495 2496 2497
		return 1;

	return 0;
L
Linus Torvalds 已提交
2498 2499
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2530 2531 2532 2533
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2534
 */
2535
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2550 2551 2552 2553 2554 2555 2556 2557
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2558 2559 2560 2561 2562

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2563
		goto out;
2564

2565 2566 2567
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2579 2580

		goto check_pending;
2581 2582 2583 2584 2585
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2586 2587 2588 2589 2590 2591 2592

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2593 2594
}

2595
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2596
				gfp_t gfp_mask, nodemask_t *nodemask)
2597
{
2598
	unsigned long nr_reclaimed;
2599
	struct scan_control sc = {
2600
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2601
		.may_writepage = !laptop_mode,
2602
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2603
		.may_unmap = 1,
2604
		.may_swap = 1,
2605
		.order = order,
2606
		.priority = DEF_PRIORITY,
2607
		.target_mem_cgroup = NULL,
2608
		.nodemask = nodemask,
2609 2610
	};

2611
	/*
2612 2613 2614
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2615
	 */
2616
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2617 2618
		return 1;

2619 2620 2621 2622
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2623
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2624 2625 2626 2627

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2628 2629
}

A
Andrew Morton 已提交
2630
#ifdef CONFIG_MEMCG
2631

2632
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2633
						gfp_t gfp_mask, bool noswap,
2634 2635
						struct zone *zone,
						unsigned long *nr_scanned)
2636 2637
{
	struct scan_control sc = {
2638
		.nr_scanned = 0,
2639
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2640 2641 2642 2643
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2644
		.priority = 0,
2645
		.target_mem_cgroup = memcg,
2646
	};
2647
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2648

2649 2650
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2651

2652
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2653 2654 2655
						      sc.may_writepage,
						      sc.gfp_mask);

2656 2657 2658 2659 2660 2661 2662
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2663
	shrink_lruvec(lruvec, &sc);
2664 2665 2666

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2667
	*nr_scanned = sc.nr_scanned;
2668 2669 2670
	return sc.nr_reclaimed;
}

2671
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2672
					   gfp_t gfp_mask,
2673
					   bool noswap)
2674
{
2675
	struct zonelist *zonelist;
2676
	unsigned long nr_reclaimed;
2677
	int nid;
2678 2679
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2680
		.may_unmap = 1,
2681
		.may_swap = !noswap,
2682
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2683
		.order = 0,
2684
		.priority = DEF_PRIORITY,
2685
		.target_mem_cgroup = memcg,
2686
		.nodemask = NULL, /* we don't care the placement */
2687 2688 2689
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
2690

2691 2692 2693 2694 2695
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2696
	nid = mem_cgroup_select_victim_node(memcg);
2697 2698

	zonelist = NODE_DATA(nid)->node_zonelists;
2699 2700 2701 2702 2703

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2704
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2705 2706 2707 2708

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2709 2710 2711
}
#endif

2712
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2713
{
2714
	struct mem_cgroup *memcg;
2715

2716 2717 2718 2719 2720
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2721
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2722

2723
		if (inactive_anon_is_low(lruvec))
2724
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2725
					   sc, LRU_ACTIVE_ANON);
2726 2727 2728

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2729 2730
}

2731 2732 2733 2734 2735 2736 2737
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2738 2739
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2740 2741 2742 2743 2744
		return false;

	return true;
}

2745
/*
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2756 2757 2758 2759
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2760
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2761 2762 2763 2764
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2765
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2766
{
2767
	unsigned long managed_pages = 0;
2768
	unsigned long balanced_pages = 0;
2769 2770
	int i;

2771 2772 2773
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2774

2775 2776 2777
		if (!populated_zone(zone))
			continue;

2778
		managed_pages += zone->managed_pages;
2779 2780 2781 2782 2783 2784 2785 2786

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2787
		if (!zone_reclaimable(zone)) {
2788
			balanced_pages += zone->managed_pages;
2789 2790 2791 2792
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2793
			balanced_pages += zone->managed_pages;
2794 2795 2796 2797 2798
		else if (!order)
			return false;
	}

	if (order)
2799
		return balanced_pages >= (managed_pages >> 2);
2800 2801
	else
		return true;
2802 2803
}

2804 2805 2806 2807 2808 2809 2810
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2811
					int classzone_idx)
2812 2813 2814
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2830

2831
	return pgdat_balanced(pgdat, order, classzone_idx);
2832 2833
}

2834 2835 2836
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2837 2838
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2839 2840
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2841
 */
2842
static bool kswapd_shrink_zone(struct zone *zone,
2843
			       int classzone_idx,
2844
			       struct scan_control *sc,
2845 2846
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2847
{
2848 2849
	int testorder = sc->order;
	unsigned long balance_gap;
2850 2851 2852 2853
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2854
	bool lowmem_pressure;
2855 2856 2857

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2889
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2890 2891
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2892 2893

	reclaim_state->reclaimed_slab = 0;
2894
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2895 2896
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2897 2898 2899
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2900 2901
	zone_clear_flag(zone, ZONE_WRITEBACK);

2902 2903 2904 2905 2906 2907
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2908
	if (zone_reclaimable(zone) &&
2909 2910 2911 2912 2913
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2914
	return sc->nr_scanned >= sc->nr_to_reclaim;
2915 2916
}

L
Linus Torvalds 已提交
2917 2918
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2919
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2920
 *
2921
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2932 2933 2934 2935 2936
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2937
 */
2938
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2939
							int *classzone_idx)
L
Linus Torvalds 已提交
2940 2941
{
	int i;
2942
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2943 2944
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2945 2946
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2947
		.priority = DEF_PRIORITY,
2948
		.may_unmap = 1,
2949
		.may_swap = 1,
2950
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2951
		.order = order,
2952
		.target_mem_cgroup = NULL,
2953
	};
2954
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2955

2956
	do {
L
Linus Torvalds 已提交
2957
		unsigned long lru_pages = 0;
2958
		unsigned long nr_attempted = 0;
2959
		bool raise_priority = true;
2960
		bool pgdat_needs_compaction = (order > 0);
2961 2962

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2963

2964 2965 2966 2967 2968 2969
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2970

2971 2972
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2973

2974 2975
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2976
				continue;
L
Linus Torvalds 已提交
2977

2978 2979 2980 2981
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2982
			age_active_anon(zone, &sc);
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2995
			if (!zone_balanced(zone, order, 0, 0)) {
2996
				end_zone = i;
A
Andrew Morton 已提交
2997
				break;
2998
			} else {
2999 3000 3001 3002
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
3003
				zone_clear_flag(zone, ZONE_CONGESTED);
3004
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
3005 3006
			}
		}
3007

3008
		if (i < 0)
A
Andrew Morton 已提交
3009 3010
			goto out;

L
Linus Torvalds 已提交
3011 3012 3013
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3014 3015 3016
			if (!populated_zone(zone))
				continue;

3017
			lru_pages += zone_reclaimable_pages(zone);
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3029 3030
		}

3031 3032 3033 3034 3035 3036 3037
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3050
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3051 3052
				continue;

3053 3054
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3055 3056 3057
				continue;

			sc.nr_scanned = 0;
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3068
			/*
3069 3070 3071 3072
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3073
			 */
3074 3075 3076
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3077
		}
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3088
		/*
3089 3090 3091 3092 3093 3094
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3095
		 */
3096 3097
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3098

3099 3100 3101
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3102

3103 3104 3105 3106 3107 3108 3109
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3110
		/*
3111 3112
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3113
		 */
3114 3115
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3116
	} while (sc.priority >= 1 &&
3117
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3118

3119
out:
3120
	/*
3121
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3122 3123 3124 3125
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3126
	*classzone_idx = end_zone;
3127
	return order;
L
Linus Torvalds 已提交
3128 3129
}

3130
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3141
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3142 3143 3144 3145 3146 3147 3148 3149 3150
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3151
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3163

3164 3165 3166 3167 3168 3169 3170 3171
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3172 3173 3174
		if (!kthread_should_stop())
			schedule();

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3185 3186
/*
 * The background pageout daemon, started as a kernel thread
3187
 * from the init process.
L
Linus Torvalds 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3200
	unsigned long order, new_order;
3201
	unsigned balanced_order;
3202
	int classzone_idx, new_classzone_idx;
3203
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3204 3205
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3206

L
Linus Torvalds 已提交
3207 3208 3209
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3210
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3211

3212 3213
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3214
	if (!cpumask_empty(cpumask))
3215
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3230
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3231
	set_freezable();
L
Linus Torvalds 已提交
3232

3233
	order = new_order = 0;
3234
	balanced_order = 0;
3235
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3236
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3237
	for ( ; ; ) {
3238
		bool ret;
3239

3240 3241 3242 3243 3244
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3245 3246
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3247 3248 3249 3250 3251 3252
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3253
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3254 3255
			/*
			 * Don't sleep if someone wants a larger 'order'
3256
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3257 3258
			 */
			order = new_order;
3259
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3260
		} else {
3261 3262
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3263
			order = pgdat->kswapd_max_order;
3264
			classzone_idx = pgdat->classzone_idx;
3265 3266
			new_order = order;
			new_classzone_idx = classzone_idx;
3267
			pgdat->kswapd_max_order = 0;
3268
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3269 3270
		}

3271 3272 3273 3274 3275 3276 3277 3278
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3279 3280
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3281 3282 3283
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3284
		}
L
Linus Torvalds 已提交
3285
	}
3286 3287

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3288 3289 3290 3291 3292 3293
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3294
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3295 3296 3297
{
	pg_data_t *pgdat;

3298
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3299 3300
		return;

3301
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3302
		return;
3303
	pgdat = zone->zone_pgdat;
3304
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3305
		pgdat->kswapd_max_order = order;
3306 3307
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3308
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3309
		return;
3310
	if (zone_balanced(zone, order, 0, 0))
3311 3312 3313
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3314
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3315 3316
}

3317
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3318
/*
3319
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3320 3321 3322 3323 3324
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3325
 */
3326
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3327
{
3328 3329
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3330 3331 3332
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3333
		.may_writepage = 1,
3334 3335 3336
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3337
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3338
	};
3339
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3340 3341
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3342

3343 3344 3345 3346
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3347

3348
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3349

3350 3351 3352
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3353

3354
	return nr_reclaimed;
L
Linus Torvalds 已提交
3355
}
3356
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3357 3358 3359 3360 3361

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3362 3363
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3364
{
3365
	int nid;
L
Linus Torvalds 已提交
3366

3367
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3368
		for_each_node_state(nid, N_MEMORY) {
3369
			pg_data_t *pgdat = NODE_DATA(nid);
3370 3371 3372
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3373

3374
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3375
				/* One of our CPUs online: restore mask */
3376
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3377 3378 3379 3380 3381
		}
	}
	return NOTIFY_OK;
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3398 3399
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3400
		pgdat->kswapd = NULL;
3401 3402 3403 3404
	}
	return ret;
}

3405
/*
3406 3407
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3408 3409 3410 3411 3412
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3413
	if (kswapd) {
3414
		kthread_stop(kswapd);
3415 3416
		NODE_DATA(nid)->kswapd = NULL;
	}
3417 3418
}

L
Linus Torvalds 已提交
3419 3420
static int __init kswapd_init(void)
{
3421
	int nid;
3422

L
Linus Torvalds 已提交
3423
	swap_setup();
3424
	for_each_node_state(nid, N_MEMORY)
3425
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3426 3427 3428 3429 3430
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3441
#define RECLAIM_OFF 0
3442
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3443 3444 3445
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3446 3447 3448 3449 3450 3451 3452
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3453 3454 3455 3456 3457 3458
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3459 3460 3461 3462 3463 3464
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3507 3508 3509
/*
 * Try to free up some pages from this zone through reclaim.
 */
3510
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3511
{
3512
	/* Minimum pages needed in order to stay on node */
3513
	const unsigned long nr_pages = 1 << order;
3514 3515
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3516 3517
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3518
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3519
		.may_swap = 1,
3520
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3521
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3522
		.order = order,
3523
		.priority = ZONE_RECLAIM_PRIORITY,
3524
	};
3525 3526 3527
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3528
	unsigned long nr_slab_pages0, nr_slab_pages1;
3529 3530

	cond_resched();
3531 3532 3533 3534 3535 3536
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3537
	lockdep_set_current_reclaim_state(gfp_mask);
3538 3539
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3540

3541
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3542 3543 3544 3545 3546
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3547 3548
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3549
	}
3550

3551 3552
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3553
		/*
3554
		 * shrink_slab() does not currently allow us to determine how
3555 3556 3557 3558
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3559
		 */
D
Dave Chinner 已提交
3560 3561
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3562 3563 3564 3565
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3566
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3567 3568 3569 3570 3571 3572 3573 3574
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3575 3576 3577 3578 3579

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3580 3581 3582
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3583 3584
	}

3585
	p->reclaim_state = NULL;
3586
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3587
	lockdep_clear_current_reclaim_state();
3588
	return sc.nr_reclaimed >= nr_pages;
3589
}
3590 3591 3592 3593

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3594
	int ret;
3595 3596

	/*
3597 3598
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3599
	 *
3600 3601 3602 3603 3604
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3605
	 */
3606 3607
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3608
		return ZONE_RECLAIM_FULL;
3609

3610
	if (!zone_reclaimable(zone))
3611
		return ZONE_RECLAIM_FULL;
3612

3613
	/*
3614
	 * Do not scan if the allocation should not be delayed.
3615
	 */
3616
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3617
		return ZONE_RECLAIM_NOSCAN;
3618 3619 3620 3621 3622 3623 3624

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3625
	node_id = zone_to_nid(zone);
3626
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3627
		return ZONE_RECLAIM_NOSCAN;
3628 3629

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3630 3631
		return ZONE_RECLAIM_NOSCAN;

3632 3633 3634
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3635 3636 3637
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3638
	return ret;
3639
}
3640
#endif
L
Lee Schermerhorn 已提交
3641 3642 3643 3644 3645 3646

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3647
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3648 3649
 *
 * Reasons page might not be evictable:
3650
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3651
 * (2) page is part of an mlocked VMA
3652
 *
L
Lee Schermerhorn 已提交
3653
 */
3654
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3655
{
3656
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3657
}
3658

3659
#ifdef CONFIG_SHMEM
3660
/**
3661 3662 3663
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3664
 *
3665
 * Checks pages for evictability and moves them to the appropriate lru list.
3666 3667
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3668
 */
3669
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3670
{
3671
	struct lruvec *lruvec;
3672 3673 3674 3675
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3676

3677 3678 3679
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3680

3681 3682 3683 3684 3685 3686 3687 3688
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3689
		lruvec = mem_cgroup_page_lruvec(page, zone);
3690

3691 3692
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3693

3694
		if (page_evictable(page)) {
3695 3696
			enum lru_list lru = page_lru_base_type(page);

3697
			VM_BUG_ON_PAGE(PageActive(page), page);
3698
			ClearPageUnevictable(page);
3699 3700
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3701
			pgrescued++;
3702
		}
3703
	}
3704

3705 3706 3707 3708
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3709 3710
	}
}
3711
#endif /* CONFIG_SHMEM */
3712

3713
static void warn_scan_unevictable_pages(void)
3714
{
3715
	printk_once(KERN_WARNING
3716
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3717
		    "disabled for lack of a legitimate use case.  If you have "
3718 3719
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3720 3721 3722 3723 3724 3725 3726 3727 3728
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3729
			   void __user *buffer,
3730 3731
			   size_t *length, loff_t *ppos)
{
3732
	warn_scan_unevictable_pages();
3733
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3734 3735 3736 3737
	scan_unevictable_pages = 0;
	return 0;
}

3738
#ifdef CONFIG_NUMA
3739 3740 3741 3742 3743
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3744 3745
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3746 3747
					  char *buf)
{
3748
	warn_scan_unevictable_pages();
3749 3750 3751
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3752 3753
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3754 3755
					const char *buf, size_t count)
{
3756
	warn_scan_unevictable_pages();
3757 3758 3759 3760
	return 1;
}


3761
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3762 3763 3764 3765 3766
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3767
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3768 3769 3770 3771
}

void scan_unevictable_unregister_node(struct node *node)
{
3772
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3773
}
3774
#endif