vmscan.c 99.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83
	/* Scan (total_size >> priority) pages at once */
	int priority;

84 85 86 87 88
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
89

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
131
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
132 133 134 135

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
136
#ifdef CONFIG_MEMCG
137 138
static bool global_reclaim(struct scan_control *sc)
{
139
	return !sc->target_mem_cgroup;
140
}
141
#else
142 143 144 145
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
146 147
#endif

148
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149
{
150
	if (!mem_cgroup_disabled())
151
		return mem_cgroup_get_lru_size(lruvec, lru);
152

153
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 155
}

L
Linus Torvalds 已提交
156 157 158
/*
 * Add a shrinker callback to be called from the vm
 */
159
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
160
{
161
	atomic_long_set(&shrinker->nr_in_batch, 0);
162 163 164
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
165
}
166
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
167 168 169 170

/*
 * Remove one
 */
171
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
172 173 174 175 176
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
177
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
178

179 180 181 182 183 184 185 186
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
187 188 189 190 191 192 193 194 195
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
196
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
197 198 199 200 201 202 203
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
204 205
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
206
 */
207
unsigned long shrink_slab(struct shrink_control *shrink,
208
			  unsigned long nr_pages_scanned,
209
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
210 211
{
	struct shrinker *shrinker;
212
	unsigned long ret = 0;
L
Linus Torvalds 已提交
213

214 215
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
216

217 218 219 220 221
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
222 223 224

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
225 226
		long total_scan;
		long max_pass;
227
		int shrink_ret = 0;
228 229
		long nr;
		long new_nr;
230 231
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
232

233 234 235 236
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

237 238 239 240 241
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
242
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 244

		total_scan = nr;
245
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246
		delta *= max_pass;
L
Linus Torvalds 已提交
247
		do_div(delta, lru_pages + 1);
248 249
		total_scan += delta;
		if (total_scan < 0) {
250 251
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
252 253
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
254 255
		}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

271 272 273 274 275
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
276 277
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
278

279
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 281 282
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

283
		while (total_scan >= batch_size) {
284
			int nr_before;
L
Linus Torvalds 已提交
285

286 287
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288
							batch_size);
L
Linus Torvalds 已提交
289 290
			if (shrink_ret == -1)
				break;
291 292
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
293 294
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
295 296 297 298

			cond_resched();
		}

299 300 301 302 303
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
304 305 306 307 308
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 310

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
311 312
	}
	up_read(&shrinker_rwsem);
313 314
out:
	cond_resched();
315
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static inline int is_page_cache_freeable(struct page *page)
{
320 321 322 323 324
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
325
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
326 327
}

328 329
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
330
{
331
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
355
	lock_page(page);
356 357
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
358 359 360
	unlock_page(page);
}

361 362 363 364 365 366 367 368 369 370 371 372
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
373
/*
A
Andrew Morton 已提交
374 375
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
376
 */
377
static pageout_t pageout(struct page *page, struct address_space *mapping,
378
			 struct scan_control *sc)
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
387
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
403
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
404 405
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
406
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
407 408 409 410 411 412 413
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
414
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
415 416 417 418 419 420 421
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
422 423
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
424 425 426 427 428 429 430
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
431
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
432 433 434
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
435

L
Linus Torvalds 已提交
436 437 438 439
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
440
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
442 443 444 445 446 447
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

448
/*
N
Nick Piggin 已提交
449 450
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
451
 */
N
Nick Piggin 已提交
452
static int __remove_mapping(struct address_space *mapping, struct page *page)
453
{
454 455
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
456

N
Nick Piggin 已提交
457
	spin_lock_irq(&mapping->tree_lock);
458
	/*
N
Nick Piggin 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
482
	 */
N
Nick Piggin 已提交
483
	if (!page_freeze_refs(page, 2))
484
		goto cannot_free;
N
Nick Piggin 已提交
485 486 487
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
488
		goto cannot_free;
N
Nick Piggin 已提交
489
	}
490 491 492 493

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
494
		spin_unlock_irq(&mapping->tree_lock);
495
		swapcache_free(swap, page);
N
Nick Piggin 已提交
496
	} else {
497 498 499 500
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

501
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
502
		spin_unlock_irq(&mapping->tree_lock);
503
		mem_cgroup_uncharge_cache_page(page);
504 505 506

		if (freepage != NULL)
			freepage(page);
507 508 509 510 511
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
512
	spin_unlock_irq(&mapping->tree_lock);
513 514 515
	return 0;
}

N
Nick Piggin 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
549
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
563
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
564 565 566 567 568 569 570 571
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
572
		/*
573 574 575
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
576
		 * isolation/check_move_unevictable_pages,
577
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 579
		 * the page back to the evictable list.
		 *
580
		 * The other side is TestClearPageMlocked() or shmem_lock().
581 582
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

601 602 603 604 605
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
606 607 608
	put_page(page);		/* drop ref from isolate */
}

609 610 611
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
612
	PAGEREF_KEEP,
613 614 615 616 617 618
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
619
	int referenced_ptes, referenced_page;
620 621
	unsigned long vm_flags;

622 623
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
624
	referenced_page = TestClearPageReferenced(page);
625 626 627 628 629 630 631 632

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

633
	if (referenced_ptes) {
634
		if (PageSwapBacked(page))
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

652
		if (referenced_page || referenced_ptes > 1)
653 654
			return PAGEREF_ACTIVATE;

655 656 657 658 659 660
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

661 662
		return PAGEREF_KEEP;
	}
663 664

	/* Reclaim if clean, defer dirty pages to writeback */
665
	if (referenced_page && !PageSwapBacked(page))
666 667 668
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
669 670
}

L
Linus Torvalds 已提交
671
/*
A
Andrew Morton 已提交
672
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
673
 */
A
Andrew Morton 已提交
674
static unsigned long shrink_page_list(struct list_head *page_list,
675
				      struct zone *zone,
676
				      struct scan_control *sc,
677 678
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
679 680
{
	LIST_HEAD(ret_pages);
681
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
682
	int pgactivate = 0;
683 684
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
685
	unsigned long nr_reclaimed = 0;
686
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
687 688 689

	cond_resched();

690
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
691
	while (!list_empty(page_list)) {
692
		enum page_references references;
L
Linus Torvalds 已提交
693 694 695 696 697 698 699 700 701
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
702
		if (!trylock_page(page))
L
Linus Torvalds 已提交
703 704
			goto keep;

N
Nick Piggin 已提交
705
		VM_BUG_ON(PageActive(page));
706
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
707 708

		sc->nr_scanned++;
709

N
Nick Piggin 已提交
710 711
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
712

713
		if (!sc->may_unmap && page_mapped(page))
714 715
			goto keep_locked;

L
Linus Torvalds 已提交
716 717 718 719
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

720 721 722 723
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
724 725 726
			/*
			 * memcg doesn't have any dirty pages throttling so we
			 * could easily OOM just because too many pages are in
727
			 * writeback and there is nothing else to reclaim.
728
			 *
729
			 * Check __GFP_IO, certainly because a loop driver
730 731 732 733
			 * thread might enter reclaim, and deadlock if it waits
			 * on a page for which it is needed to do the write
			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
			 * but more thought would probably show more reasons.
734 735 736 737 738 739
			 *
			 * Don't require __GFP_FS, since we're not going into
			 * the FS, just waiting on its writeback completion.
			 * Worryingly, ext4 gfs2 and xfs allocate pages with
			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
			 * testing may_enter_fs here is liable to OOM on them.
740
			 */
741 742 743 744 745 746 747 748 749 750 751 752 753 754
			if (global_reclaim(sc) ||
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
755
				nr_writeback++;
756
				goto keep_locked;
757
			}
758
			wait_on_page_writeback(page);
759
		}
L
Linus Torvalds 已提交
760

761
		references = page_check_references(page, sc);
762 763
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
764
			goto activate_locked;
765 766
		case PAGEREF_KEEP:
			goto keep_locked;
767 768 769 770
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
771 772 773 774 775

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
776
		if (PageAnon(page) && !PageSwapCache(page)) {
777 778
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
779
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
780
				goto activate_locked;
781
			may_enter_fs = 1;
N
Nick Piggin 已提交
782
		}
L
Linus Torvalds 已提交
783 784 785 786 787 788 789 790

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
791
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
792 793 794 795
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
796 797
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
798 799 800 801 802 803
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
804 805
			nr_dirty++;

806 807
			/*
			 * Only kswapd can writeback filesystem pages to
808 809
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
810
			 */
811
			if (page_is_file_cache(page) &&
812 813
					(!current_is_kswapd() ||
					 sc->priority >= DEF_PRIORITY - 2)) {
814 815 816 817 818 819 820 821 822
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

823 824 825
				goto keep_locked;
			}

826
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
827
				goto keep_locked;
828
			if (!may_enter_fs)
L
Linus Torvalds 已提交
829
				goto keep_locked;
830
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
831 832 833
				goto keep_locked;

			/* Page is dirty, try to write it out here */
834
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
835
			case PAGE_KEEP:
836
				nr_congested++;
L
Linus Torvalds 已提交
837 838 839 840
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
841
				if (PageWriteback(page))
842
					goto keep;
843
				if (PageDirty(page))
L
Linus Torvalds 已提交
844
					goto keep;
845

L
Linus Torvalds 已提交
846 847 848 849
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
850
				if (!trylock_page(page))
L
Linus Torvalds 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
870
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
871 872 873 874 875 876 877 878 879 880
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
881
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
882 883
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
900 901
		}

N
Nick Piggin 已提交
902
		if (!mapping || !__remove_mapping(mapping, page))
903
			goto keep_locked;
L
Linus Torvalds 已提交
904

N
Nick Piggin 已提交
905 906 907 908 909 910 911 912
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
913
free_it:
914
		nr_reclaimed++;
915 916 917 918 919 920

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
921 922
		continue;

N
Nick Piggin 已提交
923
cull_mlocked:
924 925
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
926 927 928 929
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
930
activate_locked:
931 932
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
933
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
934
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
935 936 937 938 939 940
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
941
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
942
	}
943

944 945 946 947 948 949
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
950
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
951
		zone_set_flag(zone, ZONE_CONGESTED);
952

953
	free_hot_cold_page_list(&free_pages, 1);
954

L
Linus Torvalds 已提交
955
	list_splice(&ret_pages, page_list);
956
	count_vm_events(PGACTIVATE, pgactivate);
957
	mem_cgroup_uncharge_end();
958 959
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
960
	return nr_reclaimed;
L
Linus Torvalds 已提交
961 962
}

A
Andy Whitcroft 已提交
963 964 965 966 967 968 969 970 971 972
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
973
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
974 975 976 977 978 979 980
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Mel Gorman 已提交
981
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
982 983 984
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
985
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1020

1021 1022 1023
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1048
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1049
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1050
 * @nr_scanned:	The number of pages that were scanned.
1051
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1052
 * @mode:	One of the LRU isolation modes
1053
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1054 1055 1056
 *
 * returns how many pages were moved onto *@dst.
 */
1057
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1058
		struct lruvec *lruvec, struct list_head *dst,
1059
		unsigned long *nr_scanned, struct scan_control *sc,
1060
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1061
{
H
Hugh Dickins 已提交
1062
	struct list_head *src = &lruvec->lists[lru];
1063
	unsigned long nr_taken = 0;
1064
	unsigned long scan;
L
Linus Torvalds 已提交
1065

1066
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1067
		struct page *page;
1068
		int nr_pages;
A
Andy Whitcroft 已提交
1069

L
Linus Torvalds 已提交
1070 1071 1072
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1073
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1074

1075
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1076
		case 0:
1077 1078
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1079
			list_move(&page->lru, dst);
1080
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1081 1082 1083 1084 1085 1086
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1087

A
Andy Whitcroft 已提交
1088 1089 1090
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1091 1092
	}

H
Hugh Dickins 已提交
1093
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1094 1095
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1096 1097 1098
	return nr_taken;
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1110 1111 1112
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1128 1129
	VM_BUG_ON(!page_count(page));

1130 1131
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1132
		struct lruvec *lruvec;
1133 1134

		spin_lock_irq(&zone->lru_lock);
1135
		lruvec = mem_cgroup_page_lruvec(page, zone);
1136
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1137
			int lru = page_lru(page);
1138
			get_page(page);
1139
			ClearPageLRU(page);
1140 1141
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1142 1143 1144 1145 1146 1147
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1159
	if (!global_reclaim(sc))
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1173
static noinline_for_stack void
H
Hugh Dickins 已提交
1174
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1175
{
1176 1177
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1178
	LIST_HEAD(pages_to_free);
1179 1180 1181 1182 1183

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1184
		struct page *page = lru_to_page(page_list);
1185
		int lru;
1186

1187 1188 1189 1190 1191 1192 1193 1194
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1195 1196 1197

		lruvec = mem_cgroup_page_lruvec(page, zone);

1198
		SetPageLRU(page);
1199
		lru = page_lru(page);
1200 1201
		add_page_to_lru_list(page, lruvec, lru);

1202 1203
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1204 1205
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1206
		}
1207 1208 1209
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1210
			del_page_from_lru_list(page, lruvec, lru);
1211 1212 1213 1214 1215 1216 1217

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1218 1219 1220
		}
	}

1221 1222 1223 1224
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1225 1226
}

L
Linus Torvalds 已提交
1227
/*
A
Andrew Morton 已提交
1228 1229
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1230
 */
1231
static noinline_for_stack unsigned long
1232
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1233
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1234 1235
{
	LIST_HEAD(page_list);
1236
	unsigned long nr_scanned;
1237
	unsigned long nr_reclaimed = 0;
1238
	unsigned long nr_taken;
1239 1240
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1241
	isolate_mode_t isolate_mode = 0;
1242
	int file = is_file_lru(lru);
1243 1244
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1245

1246
	while (unlikely(too_many_isolated(zone, file, sc))) {
1247
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1248 1249 1250 1251 1252 1253

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1254
	lru_add_drain();
1255 1256

	if (!sc->may_unmap)
1257
		isolate_mode |= ISOLATE_UNMAPPED;
1258
	if (!sc->may_writepage)
1259
		isolate_mode |= ISOLATE_CLEAN;
1260

L
Linus Torvalds 已提交
1261
	spin_lock_irq(&zone->lru_lock);
1262

1263 1264
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1265 1266 1267 1268

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1269
	if (global_reclaim(sc)) {
1270 1271
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1272
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1273
		else
H
Hugh Dickins 已提交
1274
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1275
	}
1276
	spin_unlock_irq(&zone->lru_lock);
1277

1278
	if (nr_taken == 0)
1279
		return 0;
A
Andy Whitcroft 已提交
1280

1281
	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1282
						&nr_dirty, &nr_writeback);
1283

1284 1285
	spin_lock_irq(&zone->lru_lock);

1286
	reclaim_stat->recent_scanned[file] += nr_taken;
1287

Y
Ying Han 已提交
1288 1289 1290 1291 1292 1293 1294 1295
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1296

1297
	putback_inactive_pages(lruvec, &page_list);
1298

1299
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1300 1301 1302 1303

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1328 1329
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1330 1331
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1332 1333 1334
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1335
		sc->priority,
M
Mel Gorman 已提交
1336
		trace_shrink_flags(file));
1337
	return nr_reclaimed;
L
Linus Torvalds 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1357

1358
static void move_active_pages_to_lru(struct lruvec *lruvec,
1359
				     struct list_head *list,
1360
				     struct list_head *pages_to_free,
1361 1362
				     enum lru_list lru)
{
1363
	struct zone *zone = lruvec_zone(lruvec);
1364 1365
	unsigned long pgmoved = 0;
	struct page *page;
1366
	int nr_pages;
1367 1368 1369

	while (!list_empty(list)) {
		page = lru_to_page(list);
1370
		lruvec = mem_cgroup_page_lruvec(page, zone);
1371 1372 1373 1374

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1375 1376
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1377
		list_move(&page->lru, &lruvec->lists[lru]);
1378
		pgmoved += nr_pages;
1379

1380 1381 1382
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1383
			del_page_from_lru_list(page, lruvec, lru);
1384 1385 1386 1387 1388 1389 1390

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1391 1392 1393 1394 1395 1396
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1397

H
Hugh Dickins 已提交
1398
static void shrink_active_list(unsigned long nr_to_scan,
1399
			       struct lruvec *lruvec,
1400
			       struct scan_control *sc,
1401
			       enum lru_list lru)
L
Linus Torvalds 已提交
1402
{
1403
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1404
	unsigned long nr_scanned;
1405
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1406
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1407
	LIST_HEAD(l_active);
1408
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1409
	struct page *page;
1410
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1411
	unsigned long nr_rotated = 0;
1412
	isolate_mode_t isolate_mode = 0;
1413
	int file = is_file_lru(lru);
1414
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1415 1416

	lru_add_drain();
1417 1418

	if (!sc->may_unmap)
1419
		isolate_mode |= ISOLATE_UNMAPPED;
1420
	if (!sc->may_writepage)
1421
		isolate_mode |= ISOLATE_CLEAN;
1422

L
Linus Torvalds 已提交
1423
	spin_lock_irq(&zone->lru_lock);
1424

1425 1426
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1427
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1428
		zone->pages_scanned += nr_scanned;
1429

1430
	reclaim_stat->recent_scanned[file] += nr_taken;
1431

H
Hugh Dickins 已提交
1432
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1433
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1434
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1441

L
Lee Schermerhorn 已提交
1442 1443 1444 1445 1446
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1447 1448 1449 1450 1451 1452 1453 1454
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1455 1456
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1457
			nr_rotated += hpage_nr_pages(page);
1458 1459 1460 1461 1462 1463 1464 1465 1466
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1467
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1468 1469 1470 1471
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1472

1473
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1474 1475 1476
		list_add(&page->lru, &l_inactive);
	}

1477
	/*
1478
	 * Move pages back to the lru list.
1479
	 */
1480
	spin_lock_irq(&zone->lru_lock);
1481
	/*
1482 1483 1484 1485
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1486
	 */
1487
	reclaim_stat->recent_rotated[file] += nr_rotated;
1488

1489 1490
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1491
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1492
	spin_unlock_irq(&zone->lru_lock);
1493 1494

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1495 1496
}

1497
#ifdef CONFIG_SWAP
1498
static int inactive_anon_is_low_global(struct zone *zone)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1511 1512
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1513
 * @lruvec: LRU vector to check
1514 1515 1516 1517
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1518
static int inactive_anon_is_low(struct lruvec *lruvec)
1519
{
1520 1521 1522 1523 1524 1525 1526
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1527
	if (!mem_cgroup_disabled())
1528
		return mem_cgroup_inactive_anon_is_low(lruvec);
1529

1530
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1531
}
1532
#else
1533
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1534 1535 1536 1537
{
	return 0;
}
#endif
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1551
 * @lruvec: LRU vector to check
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1563
static int inactive_file_is_low(struct lruvec *lruvec)
1564
{
1565
	if (!mem_cgroup_disabled())
1566
		return mem_cgroup_inactive_file_is_low(lruvec);
1567

1568
	return inactive_file_is_low_global(lruvec_zone(lruvec));
1569 1570
}

H
Hugh Dickins 已提交
1571
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1572
{
H
Hugh Dickins 已提交
1573
	if (is_file_lru(lru))
1574
		return inactive_file_is_low(lruvec);
1575
	else
1576
		return inactive_anon_is_low(lruvec);
1577 1578
}

1579
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1580
				 struct lruvec *lruvec, struct scan_control *sc)
1581
{
1582
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1583
		if (inactive_list_is_low(lruvec, lru))
1584
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1585 1586 1587
		return 0;
	}

1588
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1589 1590
}

1591
static int vmscan_swappiness(struct scan_control *sc)
1592
{
1593
	if (global_reclaim(sc))
1594
		return vm_swappiness;
1595
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1596 1597
}

1598 1599 1600 1601 1602 1603
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1604 1605
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1606
 */
1607
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1608
			   unsigned long *nr)
1609 1610 1611 1612
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1613
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1614
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1615
	enum lru_list lru;
1616
	int noswap = 0;
1617
	bool force_scan = false;
1618
	struct zone *zone = lruvec_zone(lruvec);
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1630
	if (current_is_kswapd() && zone->all_unreclaimable)
1631
		force_scan = true;
1632
	if (!global_reclaim(sc))
1633
		force_scan = true;
1634 1635 1636 1637 1638 1639 1640 1641 1642

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1643

1644 1645 1646 1647
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1648

1649
	if (global_reclaim(sc)) {
1650
		free  = zone_page_state(zone, NR_FREE_PAGES);
1651 1652
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1653
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1654 1655 1656 1657
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1658
		}
1659 1660
	}

1661 1662 1663 1664
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1665
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1666
	file_prio = 200 - anon_prio;
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1679
	spin_lock_irq(&zone->lru_lock);
1680 1681 1682
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1683 1684
	}

1685 1686 1687
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1688 1689 1690
	}

	/*
1691 1692 1693
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1694
	 */
1695
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1696
	ap /= reclaim_stat->recent_rotated[0] + 1;
1697

1698
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1699
	fp /= reclaim_stat->recent_rotated[1] + 1;
1700
	spin_unlock_irq(&zone->lru_lock);
1701

1702 1703 1704 1705
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1706 1707
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1708
		unsigned long scan;
1709

1710
		scan = get_lru_size(lruvec, lru);
1711 1712
		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
			scan >>= sc->priority;
1713 1714
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1715 1716
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1717
		nr[lru] = scan;
1718
	}
1719
}
1720

M
Mel Gorman 已提交
1721
/* Use reclaim/compaction for costly allocs or under memory pressure */
1722
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1723 1724 1725
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1726
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1727 1728 1729 1730 1731
		return true;

	return false;
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
#ifdef CONFIG_COMPACTION
/*
 * If compaction is deferred for sc->order then scale the number of pages
 * reclaimed based on the number of consecutive allocation failures
 */
static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
			struct lruvec *lruvec, struct scan_control *sc)
{
	struct zone *zone = lruvec_zone(lruvec);

	if (zone->compact_order_failed <= sc->order)
		pages_for_compaction <<= zone->compact_defer_shift;
	return pages_for_compaction;
}
#else
static unsigned long scale_for_compaction(unsigned long pages_for_compaction,
			struct lruvec *lruvec, struct scan_control *sc)
{
	return pages_for_compaction;
}
#endif

1754
/*
M
Mel Gorman 已提交
1755 1756 1757 1758 1759
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1760
 */
1761
static inline bool should_continue_reclaim(struct lruvec *lruvec,
1762 1763 1764 1765 1766 1767 1768 1769
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1770
	if (!in_reclaim_compaction(sc))
1771 1772
		return false;

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1795 1796 1797 1798 1799 1800

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1801 1802 1803

	pages_for_compaction = scale_for_compaction(pages_for_compaction,
						    lruvec, sc);
1804
	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1805
	if (nr_swap_pages > 0)
1806
		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1807 1808 1809 1810 1811
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1812
	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1813 1814 1815 1816 1817 1818 1819 1820
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1821 1822 1823
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1824
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
L
Linus Torvalds 已提交
1825
{
1826
	unsigned long nr[NR_LRU_LISTS];
1827
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1828
	enum lru_list lru;
1829
	unsigned long nr_reclaimed, nr_scanned;
1830
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1831
	struct blk_plug plug;
1832

1833 1834
restart:
	nr_reclaimed = 0;
1835
	nr_scanned = sc->nr_scanned;
1836
	get_scan_count(lruvec, sc, nr);
L
Linus Torvalds 已提交
1837

1838
	blk_start_plug(&plug);
1839 1840
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1841 1842
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1843
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1844 1845
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1846

H
Hugh Dickins 已提交
1847
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1848
							    lruvec, sc);
1849
			}
L
Linus Torvalds 已提交
1850
		}
1851 1852 1853 1854 1855 1856 1857 1858
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1859 1860
		if (nr_reclaimed >= nr_to_reclaim &&
		    sc->priority < DEF_PRIORITY)
1861
			break;
L
Linus Torvalds 已提交
1862
	}
1863
	blk_finish_plug(&plug);
1864
	sc->nr_reclaimed += nr_reclaimed;
1865

1866 1867 1868 1869
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1870
	if (inactive_anon_is_low(lruvec))
1871
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1872
				   sc, LRU_ACTIVE_ANON);
1873

1874
	/* reclaim/compaction might need reclaim to continue */
1875
	if (should_continue_reclaim(lruvec, nr_reclaimed,
1876
				    sc->nr_scanned - nr_scanned, sc))
1877 1878
		goto restart;

1879
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1880 1881
}

1882
static void shrink_zone(struct zone *zone, struct scan_control *sc)
1883
{
1884 1885
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1886
		.zone = zone,
1887
		.priority = sc->priority,
1888
	};
1889 1890 1891 1892
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
1893 1894 1895
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);

		shrink_lruvec(lruvec, sc);
1896

1897 1898 1899 1900 1901
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1902 1903 1904 1905
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1906 1907 1908 1909 1910 1911 1912
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1913 1914
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1941
	if (compaction_deferred(zone, sc->order))
1942 1943 1944 1945 1946 1947 1948 1949 1950
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1951 1952 1953 1954 1955
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1956 1957
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1958 1959
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1960 1961 1962
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1963 1964 1965
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
1966 1967
 *
 * This function returns true if a zone is being reclaimed for a costly
1968
 * high-order allocation and compaction is ready to begin. This indicates to
1969 1970
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
1971
 */
1972
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
1973
{
1974
	struct zoneref *z;
1975
	struct zone *zone;
1976 1977
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
1978
	bool aborted_reclaim = false;
1979

1980 1981 1982 1983 1984 1985 1986 1987
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

1988 1989
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1990
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1991
			continue;
1992 1993 1994 1995
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1996
		if (global_reclaim(sc)) {
1997 1998
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1999 2000
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2001
				continue;	/* Let kswapd poll it */
2002 2003
			if (COMPACTION_BUILD) {
				/*
2004 2005 2006 2007 2008
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2009 2010
				 * noticeable problem, like transparent huge
				 * page allocations.
2011
				 */
2012
				if (compaction_ready(zone, sc)) {
2013
					aborted_reclaim = true;
2014
					continue;
2015
				}
2016
			}
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2030
		}
2031

2032
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2033
	}
2034

2035
	return aborted_reclaim;
2036 2037 2038 2039 2040 2041 2042
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2043
/* All zones in zonelist are unreclaimable? */
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2056 2057
		if (!zone->all_unreclaimable)
			return false;
2058 2059
	}

2060
	return true;
L
Linus Torvalds 已提交
2061
}
2062

L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068 2069 2070
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2071 2072 2073 2074
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2075 2076 2077
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2078
 */
2079
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2080 2081
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2082
{
2083
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2084
	struct reclaim_state *reclaim_state = current->reclaim_state;
2085
	struct zoneref *z;
2086
	struct zone *zone;
2087
	unsigned long writeback_threshold;
2088
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2089

2090 2091
	delayacct_freepages_start();

2092
	if (global_reclaim(sc))
2093
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2094

2095
	do {
2096
		sc->nr_scanned = 0;
2097
		aborted_reclaim = shrink_zones(zonelist, sc);
2098

2099 2100 2101 2102
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2103
		if (global_reclaim(sc)) {
2104
			unsigned long lru_pages = 0;
2105 2106
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2107 2108 2109 2110 2111 2112
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2113
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2114
			if (reclaim_state) {
2115
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2116 2117
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2118
		}
2119
		total_scanned += sc->nr_scanned;
2120
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2130 2131
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2132 2133
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2134
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2135 2136 2137
		}

		/* Take a nap, wait for some writeback to complete */
2138
		if (!sc->hibernation_mode && sc->nr_scanned &&
2139
		    sc->priority < DEF_PRIORITY - 2) {
2140 2141 2142
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2143 2144
						&cpuset_current_mems_allowed,
						&preferred_zone);
2145 2146
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2147
	} while (--sc->priority >= 0);
2148

L
Linus Torvalds 已提交
2149
out:
2150 2151
	delayacct_freepages_end();

2152 2153 2154
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2155 2156 2157 2158 2159 2160 2161 2162
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2163 2164
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2165 2166
		return 1;

2167
	/* top priority shrink_zones still had more to do? don't OOM, then */
2168
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2169 2170 2171
		return 1;

	return 0;
L
Linus Torvalds 已提交
2172 2173
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
 * when the low watermark is reached
 */
static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
		return;

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
		return;

2229 2230 2231
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
		return;
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
}

2251
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2252
				gfp_t gfp_mask, nodemask_t *nodemask)
2253
{
2254
	unsigned long nr_reclaimed;
2255 2256 2257
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2258
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2259
		.may_unmap = 1,
2260
		.may_swap = 1,
2261
		.order = order,
2262
		.priority = DEF_PRIORITY,
2263
		.target_mem_cgroup = NULL,
2264
		.nodemask = nodemask,
2265
	};
2266 2267 2268
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2269

2270 2271 2272 2273 2274 2275 2276 2277 2278
	throttle_direct_reclaim(gfp_mask, zonelist, nodemask);

	/*
	 * Do not enter reclaim if fatal signal is pending. 1 is returned so
	 * that the page allocator does not consider triggering OOM
	 */
	if (fatal_signal_pending(current))
		return 1;

2279 2280 2281 2282
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2283
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2284 2285 2286 2287

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2288 2289
}

A
Andrew Morton 已提交
2290
#ifdef CONFIG_MEMCG
2291

2292
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2293
						gfp_t gfp_mask, bool noswap,
2294 2295
						struct zone *zone,
						unsigned long *nr_scanned)
2296 2297
{
	struct scan_control sc = {
2298
		.nr_scanned = 0,
2299
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2300 2301 2302 2303
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2304
		.priority = 0,
2305
		.target_mem_cgroup = memcg,
2306
	};
2307
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2308

2309 2310
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2311

2312
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2313 2314 2315
						      sc.may_writepage,
						      sc.gfp_mask);

2316 2317 2318 2319 2320 2321 2322
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2323
	shrink_lruvec(lruvec, &sc);
2324 2325 2326

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2327
	*nr_scanned = sc.nr_scanned;
2328 2329 2330
	return sc.nr_reclaimed;
}

2331
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2332
					   gfp_t gfp_mask,
2333
					   bool noswap)
2334
{
2335
	struct zonelist *zonelist;
2336
	unsigned long nr_reclaimed;
2337
	int nid;
2338 2339
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2340
		.may_unmap = 1,
2341
		.may_swap = !noswap,
2342
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2343
		.order = 0,
2344
		.priority = DEF_PRIORITY,
2345
		.target_mem_cgroup = memcg,
2346
		.nodemask = NULL, /* we don't care the placement */
2347 2348 2349 2350 2351
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2352 2353
	};

2354 2355 2356 2357 2358
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2359
	nid = mem_cgroup_select_victim_node(memcg);
2360 2361

	zonelist = NODE_DATA(nid)->node_zonelists;
2362 2363 2364 2365 2366

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2367
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2368 2369 2370 2371

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2372 2373 2374
}
#endif

2375
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2376
{
2377
	struct mem_cgroup *memcg;
2378

2379 2380 2381 2382 2383
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2384
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2385

2386
		if (inactive_anon_is_low(lruvec))
2387
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2388
					   sc, LRU_ACTIVE_ANON);
2389 2390 2391

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2405
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2419 2420
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2421 2422
}

2423 2424 2425 2426 2427 2428 2429
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2430
					int classzone_idx)
2431
{
2432
	int i;
2433 2434
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2435 2436 2437

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2453

2454
	/* Check the watermark levels */
2455
	for (i = 0; i <= classzone_idx; i++) {
2456 2457 2458 2459 2460
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2461 2462 2463 2464 2465 2466 2467 2468
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2469
			continue;
2470
		}
2471

2472
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2473
							i, 0))
2474 2475 2476
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2477
	}
2478

2479 2480 2481 2482 2483 2484
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2485
		return pgdat_balanced(pgdat, balanced, classzone_idx);
2486
	else
2487
		return all_zones_ok;
2488 2489
}

L
Linus Torvalds 已提交
2490 2491
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2492
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2493
 *
2494
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2505 2506 2507 2508 2509
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2510
 */
2511
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2512
							int *classzone_idx)
L
Linus Torvalds 已提交
2513 2514
{
	int all_zones_ok;
2515
	unsigned long balanced;
L
Linus Torvalds 已提交
2516
	int i;
2517
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2518
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2519
	struct reclaim_state *reclaim_state = current->reclaim_state;
2520 2521
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2522 2523
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2524
		.may_unmap = 1,
2525
		.may_swap = 1,
2526 2527 2528 2529 2530
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2531
		.order = order,
2532
		.target_mem_cgroup = NULL,
2533
	};
2534 2535 2536
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2537 2538
loop_again:
	total_scanned = 0;
2539
	sc.priority = DEF_PRIORITY;
2540
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2541
	sc.may_writepage = !laptop_mode;
2542
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2543

2544
	do {
L
Linus Torvalds 已提交
2545
		unsigned long lru_pages = 0;
2546
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2547 2548

		all_zones_ok = 1;
2549
		balanced = 0;
L
Linus Torvalds 已提交
2550

2551 2552 2553 2554 2555 2556
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2557

2558 2559
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2560

2561 2562
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2563
				continue;
L
Linus Torvalds 已提交
2564

2565 2566 2567 2568
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2569
			age_active_anon(zone, &sc);
2570

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2582
			if (!zone_watermark_ok_safe(zone, order,
2583
					high_wmark_pages(zone), 0, 0)) {
2584
				end_zone = i;
A
Andrew Morton 已提交
2585
				break;
2586 2587 2588
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2589 2590
			}
		}
A
Andrew Morton 已提交
2591 2592 2593
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2594 2595 2596
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2597
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2611
			int nr_slab, testorder;
2612
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2613

2614
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2615 2616
				continue;

2617 2618
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2619 2620 2621
				continue;

			sc.nr_scanned = 0;
2622

2623
			nr_soft_scanned = 0;
2624 2625 2626
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2627 2628 2629 2630 2631
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2632

2633
			/*
2634 2635 2636 2637 2638 2639
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2640
			 */
2641 2642 2643 2644
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2658
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2659
				    !zone_watermark_ok_safe(zone, testorder,
2660
					high_wmark_pages(zone) + balance_gap,
2661
					end_zone, 0)) {
2662
				shrink_zone(zone, &sc);
2663

2664 2665 2666 2667 2668 2669 2670 2671 2672
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2673 2674 2675 2676 2677 2678
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2679
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2680
				sc.may_writepage = 1;
2681

2682 2683 2684
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2685
				continue;
2686
			}
2687

2688
			if (!zone_watermark_ok_safe(zone, testorder,
2689 2690 2691 2692 2693 2694 2695
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2696
				if (!zone_watermark_ok_safe(zone, order,
2697 2698
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2699 2700 2701 2702 2703 2704
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
2705
				 * speculatively avoid congestion waits
2706 2707
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2708
				if (i <= *classzone_idx)
2709
					balanced += zone->present_pages;
2710
			}
2711

L
Linus Torvalds 已提交
2712
		}
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

2723
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2729
		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2730 2731 2732 2733 2734
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2735 2736 2737 2738 2739 2740 2741

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2742
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2743
			break;
2744
	} while (--sc.priority >= 0);
L
Linus Torvalds 已提交
2745
out:
2746 2747 2748

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2749 2750
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2751
	 */
2752
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2753
		cond_resched();
2754 2755 2756

		try_to_freeze();

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2774 2775 2776
		goto loop_again;
	}

2777 2778 2779 2780 2781 2782 2783 2784 2785
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2786 2787
		int zones_need_compaction = 1;

2788 2789 2790 2791 2792 2793
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

2794 2795
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2796 2797
				continue;

2798
			/* Would compaction fail due to lack of free memory? */
2799 2800
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2801 2802
				goto loop_again;

2803 2804 2805 2806 2807 2808 2809
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2810 2811 2812 2813 2814
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2815 2816 2817
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2818 2819 2820

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2821 2822
	}

2823
	/*
2824
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2825 2826 2827 2828
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2829
	*classzone_idx = end_zone;
2830
	return order;
L
Linus Torvalds 已提交
2831 2832
}

2833
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2844
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2845 2846 2847 2848 2849 2850 2851 2852 2853
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2854
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2866 2867 2868 2869

		if (!kthread_should_stop())
			schedule();

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2880 2881
/*
 * The background pageout daemon, started as a kernel thread
2882
 * from the init process.
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2895
	unsigned long order, new_order;
2896
	unsigned balanced_order;
2897
	int classzone_idx, new_classzone_idx;
2898
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2899 2900
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2901

L
Linus Torvalds 已提交
2902 2903 2904
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2905
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2906

2907 2908
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2909
	if (!cpumask_empty(cpumask))
2910
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2925
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2926
	set_freezable();
L
Linus Torvalds 已提交
2927

2928
	order = new_order = 0;
2929
	balanced_order = 0;
2930
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2931
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2932
	for ( ; ; ) {
2933
		int ret;
2934

2935 2936 2937 2938 2939
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2940 2941
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2942 2943 2944 2945 2946 2947
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2948
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2949 2950
			/*
			 * Don't sleep if someone wants a larger 'order'
2951
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2952 2953
			 */
			order = new_order;
2954
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2955
		} else {
2956 2957
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2958
			order = pgdat->kswapd_max_order;
2959
			classzone_idx = pgdat->classzone_idx;
2960 2961
			new_order = order;
			new_classzone_idx = classzone_idx;
2962
			pgdat->kswapd_max_order = 0;
2963
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2964 2965
		}

2966 2967 2968 2969 2970 2971 2972 2973
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2974 2975
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2976 2977 2978
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2979
		}
L
Linus Torvalds 已提交
2980 2981 2982 2983 2984 2985 2986
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2987
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2988 2989 2990
{
	pg_data_t *pgdat;

2991
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2992 2993
		return;

2994
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2995
		return;
2996
	pgdat = zone->zone_pgdat;
2997
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2998
		pgdat->kswapd_max_order = order;
2999 3000
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3001
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3002
		return;
3003 3004 3005 3006
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3007
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3008 3009
}

3010 3011 3012 3013 3014 3015 3016 3017
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3018
{
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3043 3044
}

3045
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3046
/*
3047
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3048 3049 3050 3051 3052
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3053
 */
3054
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3055
{
3056 3057
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3058 3059 3060
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3061
		.may_writepage = 1,
3062 3063 3064
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3065
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3066
	};
3067 3068 3069 3070
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3071 3072
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3073

3074 3075 3076 3077
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3078

3079
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3080

3081 3082 3083
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3084

3085
	return nr_reclaimed;
L
Linus Torvalds 已提交
3086
}
3087
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3093
static int __devinit cpu_callback(struct notifier_block *nfb,
3094
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3095
{
3096
	int nid;
L
Linus Torvalds 已提交
3097

3098
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3099
		for_each_node_state(nid, N_HIGH_MEMORY) {
3100
			pg_data_t *pgdat = NODE_DATA(nid);
3101 3102 3103
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3104

3105
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3106
				/* One of our CPUs online: restore mask */
3107
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3108 3109 3110 3111 3112
		}
	}
	return NOTIFY_OK;
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
3130
		pgdat->kswapd = NULL;
3131 3132 3133 3134 3135
		ret = -1;
	}
	return ret;
}

3136
/*
3137 3138
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3139 3140 3141 3142 3143
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3144
	if (kswapd) {
3145
		kthread_stop(kswapd);
3146 3147
		NODE_DATA(nid)->kswapd = NULL;
	}
3148 3149
}

L
Linus Torvalds 已提交
3150 3151
static int __init kswapd_init(void)
{
3152
	int nid;
3153

L
Linus Torvalds 已提交
3154
	swap_setup();
3155
	for_each_node_state(nid, N_HIGH_MEMORY)
3156
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3157 3158 3159 3160 3161
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3172
#define RECLAIM_OFF 0
3173
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3174 3175 3176
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3177 3178 3179 3180 3181 3182 3183
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3184 3185 3186 3187 3188 3189
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3190 3191 3192 3193 3194 3195
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3238 3239 3240
/*
 * Try to free up some pages from this zone through reclaim.
 */
3241
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3242
{
3243
	/* Minimum pages needed in order to stay on node */
3244
	const unsigned long nr_pages = 1 << order;
3245 3246
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3247 3248
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3249
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3250
		.may_swap = 1,
3251 3252
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3253
		.gfp_mask = gfp_mask,
3254
		.order = order,
3255
		.priority = ZONE_RECLAIM_PRIORITY,
3256
	};
3257 3258 3259
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3260
	unsigned long nr_slab_pages0, nr_slab_pages1;
3261 3262

	cond_resched();
3263 3264 3265 3266 3267 3268
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3269
	lockdep_set_current_reclaim_state(gfp_mask);
3270 3271
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3272

3273
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3274 3275 3276 3277 3278
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3279 3280
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3281
	}
3282

3283 3284
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3285
		/*
3286
		 * shrink_slab() does not currently allow us to determine how
3287 3288 3289 3290
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3291
		 *
3292 3293
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3294
		 */
3295 3296 3297 3298
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3299
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3300 3301 3302 3303 3304 3305 3306 3307
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3308 3309 3310 3311 3312

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3313 3314 3315
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3316 3317
	}

3318
	p->reclaim_state = NULL;
3319
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3320
	lockdep_clear_current_reclaim_state();
3321
	return sc.nr_reclaimed >= nr_pages;
3322
}
3323 3324 3325 3326

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3327
	int ret;
3328 3329

	/*
3330 3331
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3332
	 *
3333 3334 3335 3336 3337
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3338
	 */
3339 3340
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3341
		return ZONE_RECLAIM_FULL;
3342

3343
	if (zone->all_unreclaimable)
3344
		return ZONE_RECLAIM_FULL;
3345

3346
	/*
3347
	 * Do not scan if the allocation should not be delayed.
3348
	 */
3349
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3350
		return ZONE_RECLAIM_NOSCAN;
3351 3352 3353 3354 3355 3356 3357

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3358
	node_id = zone_to_nid(zone);
3359
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3360
		return ZONE_RECLAIM_NOSCAN;
3361 3362

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3363 3364
		return ZONE_RECLAIM_NOSCAN;

3365 3366 3367
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3368 3369 3370
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3371
	return ret;
3372
}
3373
#endif
L
Lee Schermerhorn 已提交
3374 3375 3376 3377 3378 3379 3380

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3381 3382
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3383 3384
 *
 * Reasons page might not be evictable:
3385
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3386
 * (2) page is part of an mlocked VMA
3387
 *
L
Lee Schermerhorn 已提交
3388 3389 3390 3391
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3392 3393 3394
	if (mapping_unevictable(page_mapping(page)))
		return 0;

3395
	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
N
Nick Piggin 已提交
3396
		return 0;
L
Lee Schermerhorn 已提交
3397 3398 3399

	return 1;
}
3400

3401
#ifdef CONFIG_SHMEM
3402
/**
3403 3404 3405
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3406
 *
3407
 * Checks pages for evictability and moves them to the appropriate lru list.
3408 3409
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3410
 */
3411
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3412
{
3413
	struct lruvec *lruvec;
3414 3415 3416 3417
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3418

3419 3420 3421
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3422

3423 3424 3425 3426 3427 3428 3429 3430
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3431
		lruvec = mem_cgroup_page_lruvec(page, zone);
3432

3433 3434
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3435

3436 3437 3438 3439 3440
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3441 3442
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3443
			pgrescued++;
3444
		}
3445
	}
3446

3447 3448 3449 3450
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3451 3452
	}
}
3453
#endif /* CONFIG_SHMEM */
3454

3455
static void warn_scan_unevictable_pages(void)
3456
{
3457
	printk_once(KERN_WARNING
3458
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3459
		    "disabled for lack of a legitimate use case.  If you have "
3460 3461
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3462 3463 3464 3465 3466 3467 3468 3469 3470
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3471
			   void __user *buffer,
3472 3473
			   size_t *length, loff_t *ppos)
{
3474
	warn_scan_unevictable_pages();
3475
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3476 3477 3478 3479
	scan_unevictable_pages = 0;
	return 0;
}

3480
#ifdef CONFIG_NUMA
3481 3482 3483 3484 3485
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3486 3487
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3488 3489
					  char *buf)
{
3490
	warn_scan_unevictable_pages();
3491 3492 3493
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3494 3495
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3496 3497
					const char *buf, size_t count)
{
3498
	warn_scan_unevictable_pages();
3499 3500 3501 3502
	return 1;
}


3503
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3504 3505 3506 3507 3508
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3509
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3510 3511 3512 3513
}

void scan_unevictable_unregister_node(struct node *node)
{
3514
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3515
}
3516
#endif