vmscan.c 104.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
208
unsigned long shrink_slab(struct shrink_control *shrink,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218 219 220 221 222
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
223 224 225

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
226 227
		long total_scan;
		long max_pass;
228
		int shrink_ret = 0;
229 230
		long nr;
		long new_nr;
231 232
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
233

234 235 236 237
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

238 239 240 241 242
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
243
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 245

		total_scan = nr;
246
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
		delta *= max_pass;
L
Linus Torvalds 已提交
248
		do_div(delta, lru_pages + 1);
249 250
		total_scan += delta;
		if (total_scan < 0) {
251 252
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
253 254
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
255 256
		}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

272 273 274 275 276
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
277 278
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
279

280
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 282 283
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

284
		while (total_scan >= batch_size) {
285
			int nr_before;
L
Linus Torvalds 已提交
286

287 288
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289
							batch_size);
L
Linus Torvalds 已提交
290 291
			if (shrink_ret == -1)
				break;
292 293
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
294 295
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
296 297 298 299

			cond_resched();
		}

300 301 302 303 304
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
305 306 307 308 309
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 311

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
312 313
	}
	up_read(&shrinker_rwsem);
314 315
out:
	cond_resched();
316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static inline int is_page_cache_freeable(struct page *page)
{
321 322 323 324 325
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
326
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
327 328
}

329 330
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
331
{
332
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
356
	lock_page(page);
357 358
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
359 360 361
	unlock_page(page);
}

362 363 364 365 366 367 368 369 370 371 372 373
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
374
/*
A
Andrew Morton 已提交
375 376
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
377
 */
378
static pageout_t pageout(struct page *page, struct address_space *mapping,
379
			 struct scan_control *sc)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
388
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
405 406
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
407
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
415
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
416 417 418 419 420 421 422
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
423 424
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
432
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
433 434 435
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
436

L
Linus Torvalds 已提交
437 438 439 440
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
441
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
443 444 445 446 447 448
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

449
/*
N
Nick Piggin 已提交
450 451
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
452
 */
N
Nick Piggin 已提交
453
static int __remove_mapping(struct address_space *mapping, struct page *page)
454
{
455 456
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
457

N
Nick Piggin 已提交
458
	spin_lock_irq(&mapping->tree_lock);
459
	/*
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
483
	 */
N
Nick Piggin 已提交
484
	if (!page_freeze_refs(page, 2))
485
		goto cannot_free;
N
Nick Piggin 已提交
486 487 488
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
489
		goto cannot_free;
N
Nick Piggin 已提交
490
	}
491 492 493 494

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
495
		spin_unlock_irq(&mapping->tree_lock);
496
		swapcache_free(swap, page);
N
Nick Piggin 已提交
497
	} else {
498 499 500 501
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

502
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
503
		spin_unlock_irq(&mapping->tree_lock);
504
		mem_cgroup_uncharge_cache_page(page);
505 506 507

		if (freepage != NULL)
			freepage(page);
508 509 510 511 512
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
513
	spin_unlock_irq(&mapping->tree_lock);
514 515 516
	return 0;
}

N
Nick Piggin 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
550
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
551 552 553 554 555 556

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

557
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
558 559 560 561 562 563
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
564
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571 572
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
573
		/*
574 575 576
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
577
		 * isolation/check_move_unevictable_pages,
578
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 580
		 * the page back to the evictable list.
		 *
581
		 * The other side is TestClearPageMlocked() or shmem_lock().
582 583
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
584 585 586 587 588 589 590
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
591
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

602 603 604 605 606
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
607 608 609
	put_page(page);		/* drop ref from isolate */
}

610 611 612
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
613
	PAGEREF_KEEP,
614 615 616 617 618 619
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
620
	int referenced_ptes, referenced_page;
621 622
	unsigned long vm_flags;

623 624
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
625
	referenced_page = TestClearPageReferenced(page);
626 627 628 629 630 631 632 633

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

634
	if (referenced_ptes) {
635
		if (PageSwapBacked(page))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

653
		if (referenced_page || referenced_ptes > 1)
654 655
			return PAGEREF_ACTIVATE;

656 657 658 659 660 661
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

662 663
		return PAGEREF_KEEP;
	}
664 665

	/* Reclaim if clean, defer dirty pages to writeback */
666
	if (referenced_page && !PageSwapBacked(page))
667 668 669
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
670 671
}

L
Linus Torvalds 已提交
672
/*
A
Andrew Morton 已提交
673
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
674
 */
A
Andrew Morton 已提交
675
static unsigned long shrink_page_list(struct list_head *page_list,
676
				      struct zone *zone,
677
				      struct scan_control *sc,
678
				      enum ttu_flags ttu_flags,
679
				      unsigned long *ret_nr_unqueued_dirty,
680 681
				      unsigned long *ret_nr_writeback,
				      bool force_reclaim)
L
Linus Torvalds 已提交
682 683
{
	LIST_HEAD(ret_pages);
684
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
685
	int pgactivate = 0;
686
	unsigned long nr_unqueued_dirty = 0;
687 688
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
689
	unsigned long nr_reclaimed = 0;
690
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
691 692 693

	cond_resched();

694
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
695 696 697 698
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
699
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
L
Linus Torvalds 已提交
700 701 702 703 704 705

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
706
		if (!trylock_page(page))
L
Linus Torvalds 已提交
707 708
			goto keep;

N
Nick Piggin 已提交
709
		VM_BUG_ON(PageActive(page));
710
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
711 712

		sc->nr_scanned++;
713

714
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
715
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
716

717
		if (!sc->may_unmap && page_mapped(page))
718 719
			goto keep_locked;

L
Linus Torvalds 已提交
720 721 722 723
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

724 725 726
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
		 *    block for HZ/10 or until some IO completes then clear the
		 *    ZONE_WRITEBACK flag to recheck if the condition exists.
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
764
		if (PageWriteback(page)) {
765 766 767 768 769 770 771 772 773 774 775
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
				unlock_page(page);
				congestion_wait(BLK_RW_ASYNC, HZ/10);
				zone_clear_flag(zone, ZONE_WRITEBACK);
				goto keep;

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
776 777 778 779 780 781 782 783 784 785 786 787 788
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
789
				nr_writeback++;
790

791
				goto keep_locked;
792 793 794 795

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
796
			}
797
		}
L
Linus Torvalds 已提交
798

799 800 801
		if (!force_reclaim)
			references = page_check_references(page, sc);

802 803
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
804
			goto activate_locked;
805 806
		case PAGEREF_KEEP:
			goto keep_locked;
807 808 809 810
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
811 812 813 814 815

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
816
		if (PageAnon(page) && !PageSwapCache(page)) {
817 818
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
819
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
820
				goto activate_locked;
821
			may_enter_fs = 1;
N
Nick Piggin 已提交
822
		}
L
Linus Torvalds 已提交
823 824 825 826 827 828 829 830

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
831
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
832 833 834 835
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
836 837
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
838 839 840 841 842 843
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
844 845
			nr_dirty++;

846 847 848
			if (!PageWriteback(page))
				nr_unqueued_dirty++;

849 850
			/*
			 * Only kswapd can writeback filesystem pages to
851 852
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
853
			 */
854
			if (page_is_file_cache(page) &&
855
					(!current_is_kswapd() ||
856
					 !zone_is_reclaim_dirty(zone))) {
857 858 859 860 861 862 863 864 865
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

866 867 868
				goto keep_locked;
			}

869
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
870
				goto keep_locked;
871
			if (!may_enter_fs)
L
Linus Torvalds 已提交
872
				goto keep_locked;
873
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
874 875 876
				goto keep_locked;

			/* Page is dirty, try to write it out here */
877
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
878
			case PAGE_KEEP:
879
				nr_congested++;
L
Linus Torvalds 已提交
880 881 882 883
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
884
				if (PageWriteback(page))
885
					goto keep;
886
				if (PageDirty(page))
L
Linus Torvalds 已提交
887
					goto keep;
888

L
Linus Torvalds 已提交
889 890 891 892
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
893
				if (!trylock_page(page))
L
Linus Torvalds 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
913
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
914 915 916 917 918 919 920 921 922 923
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
924
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
925 926
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
943 944
		}

N
Nick Piggin 已提交
945
		if (!mapping || !__remove_mapping(mapping, page))
946
			goto keep_locked;
L
Linus Torvalds 已提交
947

N
Nick Piggin 已提交
948 949 950 951 952 953 954 955
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
956
free_it:
957
		nr_reclaimed++;
958 959 960 961 962 963

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
964 965
		continue;

N
Nick Piggin 已提交
966
cull_mlocked:
967 968
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
969 970 971 972
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
973
activate_locked:
974 975
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
976
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
977
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
978 979 980 981 982 983
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
984
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
985
	}
986

987 988 989 990 991 992
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
993
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
994
		zone_set_flag(zone, ZONE_CONGESTED);
995

996
	free_hot_cold_page_list(&free_pages, 1);
997

L
Linus Torvalds 已提交
998
	list_splice(&ret_pages, page_list);
999
	count_vm_events(PGACTIVATE, pgactivate);
1000
	mem_cgroup_uncharge_end();
1001
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1002
	*ret_nr_writeback += nr_writeback;
1003
	return nr_reclaimed;
L
Linus Torvalds 已提交
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
	unsigned long ret, dummy1, dummy2;
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
				TTU_UNMAP|TTU_IGNORE_ACCESS,
				&dummy1, &dummy2, true);
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1043
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1044 1045 1046 1047 1048 1049 1050
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1051 1052
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1053 1054
		return ret;

A
Andy Whitcroft 已提交
1055
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1090

1091 1092 1093
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1118
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1119
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1120
 * @nr_scanned:	The number of pages that were scanned.
1121
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1122
 * @mode:	One of the LRU isolation modes
1123
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1124 1125 1126
 *
 * returns how many pages were moved onto *@dst.
 */
1127
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1128
		struct lruvec *lruvec, struct list_head *dst,
1129
		unsigned long *nr_scanned, struct scan_control *sc,
1130
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1131
{
H
Hugh Dickins 已提交
1132
	struct list_head *src = &lruvec->lists[lru];
1133
	unsigned long nr_taken = 0;
1134
	unsigned long scan;
L
Linus Torvalds 已提交
1135

1136
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1137
		struct page *page;
1138
		int nr_pages;
A
Andy Whitcroft 已提交
1139

L
Linus Torvalds 已提交
1140 1141 1142
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1143
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1144

1145
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1146
		case 0:
1147 1148
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1149
			list_move(&page->lru, dst);
1150
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1151 1152 1153 1154 1155 1156
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1157

A
Andy Whitcroft 已提交
1158 1159 1160
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1161 1162
	}

H
Hugh Dickins 已提交
1163
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1164 1165
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1166 1167 1168
	return nr_taken;
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1180 1181 1182
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1198 1199
	VM_BUG_ON(!page_count(page));

1200 1201
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1202
		struct lruvec *lruvec;
1203 1204

		spin_lock_irq(&zone->lru_lock);
1205
		lruvec = mem_cgroup_page_lruvec(page, zone);
1206
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1207
			int lru = page_lru(page);
1208
			get_page(page);
1209
			ClearPageLRU(page);
1210 1211
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1212 1213 1214 1215 1216 1217
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1218
/*
F
Fengguang Wu 已提交
1219 1220 1221 1222 1223
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1224 1225 1226 1227 1228 1229 1230 1231 1232
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1233
	if (!global_reclaim(sc))
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1244 1245 1246 1247 1248 1249 1250 1251
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1252 1253 1254
	return isolated > inactive;
}

1255
static noinline_for_stack void
H
Hugh Dickins 已提交
1256
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1257
{
1258 1259
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1260
	LIST_HEAD(pages_to_free);
1261 1262 1263 1264 1265

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1266
		struct page *page = lru_to_page(page_list);
1267
		int lru;
1268

1269 1270
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1271
		if (unlikely(!page_evictable(page))) {
1272 1273 1274 1275 1276
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1277 1278 1279

		lruvec = mem_cgroup_page_lruvec(page, zone);

1280
		SetPageLRU(page);
1281
		lru = page_lru(page);
1282 1283
		add_page_to_lru_list(page, lruvec, lru);

1284 1285
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1286 1287
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1288
		}
1289 1290 1291
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1292
			del_page_from_lru_list(page, lruvec, lru);
1293 1294 1295 1296 1297 1298 1299

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1300 1301 1302
		}
	}

1303 1304 1305 1306
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1307 1308
}

L
Linus Torvalds 已提交
1309
/*
A
Andrew Morton 已提交
1310 1311
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1312
 */
1313
static noinline_for_stack unsigned long
1314
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1315
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1316 1317
{
	LIST_HEAD(page_list);
1318
	unsigned long nr_scanned;
1319
	unsigned long nr_reclaimed = 0;
1320
	unsigned long nr_taken;
1321 1322
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1323
	isolate_mode_t isolate_mode = 0;
1324
	int file = is_file_lru(lru);
1325 1326
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1327

1328
	while (unlikely(too_many_isolated(zone, file, sc))) {
1329
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1330 1331 1332 1333 1334 1335

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1336
	lru_add_drain();
1337 1338

	if (!sc->may_unmap)
1339
		isolate_mode |= ISOLATE_UNMAPPED;
1340
	if (!sc->may_writepage)
1341
		isolate_mode |= ISOLATE_CLEAN;
1342

L
Linus Torvalds 已提交
1343
	spin_lock_irq(&zone->lru_lock);
1344

1345 1346
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1347 1348 1349 1350

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1351
	if (global_reclaim(sc)) {
1352 1353
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1354
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1355
		else
H
Hugh Dickins 已提交
1356
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1357
	}
1358
	spin_unlock_irq(&zone->lru_lock);
1359

1360
	if (nr_taken == 0)
1361
		return 0;
A
Andy Whitcroft 已提交
1362

1363 1364
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
					&nr_dirty, &nr_writeback, false);
1365

1366 1367
	spin_lock_irq(&zone->lru_lock);

1368
	reclaim_stat->recent_scanned[file] += nr_taken;
1369

Y
Ying Han 已提交
1370 1371 1372 1373 1374 1375 1376 1377
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1378

1379
	putback_inactive_pages(lruvec, &page_list);
1380

1381
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1382 1383 1384 1385

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1410
	if (nr_writeback && nr_writeback >=
1411
			(nr_taken >> (DEF_PRIORITY - sc->priority))) {
1412
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1413 1414
		zone_set_flag(zone, ZONE_WRITEBACK);
	}
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424
	/*
	 * Similarly, if many dirty pages are encountered that are not
	 * currently being written then flag that kswapd should start
	 * writing back pages.
	 */
	if (global_reclaim(sc) && nr_dirty &&
			nr_dirty >= (nr_taken >> (DEF_PRIORITY - sc->priority)))
		zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

1425 1426 1427
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1428
		sc->priority,
M
Mel Gorman 已提交
1429
		trace_shrink_flags(file));
1430
	return nr_reclaimed;
L
Linus Torvalds 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1450

1451
static void move_active_pages_to_lru(struct lruvec *lruvec,
1452
				     struct list_head *list,
1453
				     struct list_head *pages_to_free,
1454 1455
				     enum lru_list lru)
{
1456
	struct zone *zone = lruvec_zone(lruvec);
1457 1458
	unsigned long pgmoved = 0;
	struct page *page;
1459
	int nr_pages;
1460 1461 1462

	while (!list_empty(list)) {
		page = lru_to_page(list);
1463
		lruvec = mem_cgroup_page_lruvec(page, zone);
1464 1465 1466 1467

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1468 1469
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1470
		list_move(&page->lru, &lruvec->lists[lru]);
1471
		pgmoved += nr_pages;
1472

1473 1474 1475
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1476
			del_page_from_lru_list(page, lruvec, lru);
1477 1478 1479 1480 1481 1482 1483

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1484 1485 1486 1487 1488 1489
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1490

H
Hugh Dickins 已提交
1491
static void shrink_active_list(unsigned long nr_to_scan,
1492
			       struct lruvec *lruvec,
1493
			       struct scan_control *sc,
1494
			       enum lru_list lru)
L
Linus Torvalds 已提交
1495
{
1496
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1497
	unsigned long nr_scanned;
1498
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1499
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1500
	LIST_HEAD(l_active);
1501
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1502
	struct page *page;
1503
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1504
	unsigned long nr_rotated = 0;
1505
	isolate_mode_t isolate_mode = 0;
1506
	int file = is_file_lru(lru);
1507
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1508 1509

	lru_add_drain();
1510 1511

	if (!sc->may_unmap)
1512
		isolate_mode |= ISOLATE_UNMAPPED;
1513
	if (!sc->may_writepage)
1514
		isolate_mode |= ISOLATE_CLEAN;
1515

L
Linus Torvalds 已提交
1516
	spin_lock_irq(&zone->lru_lock);
1517

1518 1519
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1520
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1521
		zone->pages_scanned += nr_scanned;
1522

1523
	reclaim_stat->recent_scanned[file] += nr_taken;
1524

H
Hugh Dickins 已提交
1525
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1526
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1527
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532 1533
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1534

1535
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1536 1537 1538 1539
			putback_lru_page(page);
			continue;
		}

1540 1541 1542 1543 1544 1545 1546 1547
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1548 1549
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1550
			nr_rotated += hpage_nr_pages(page);
1551 1552 1553 1554 1555 1556 1557 1558 1559
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1560
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1561 1562 1563 1564
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1565

1566
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1567 1568 1569
		list_add(&page->lru, &l_inactive);
	}

1570
	/*
1571
	 * Move pages back to the lru list.
1572
	 */
1573
	spin_lock_irq(&zone->lru_lock);
1574
	/*
1575 1576 1577 1578
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1579
	 */
1580
	reclaim_stat->recent_rotated[file] += nr_rotated;
1581

1582 1583
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1584
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1585
	spin_unlock_irq(&zone->lru_lock);
1586 1587

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1588 1589
}

1590
#ifdef CONFIG_SWAP
1591
static int inactive_anon_is_low_global(struct zone *zone)
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1604 1605
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1606
 * @lruvec: LRU vector to check
1607 1608 1609 1610
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1611
static int inactive_anon_is_low(struct lruvec *lruvec)
1612
{
1613 1614 1615 1616 1617 1618 1619
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1620
	if (!mem_cgroup_disabled())
1621
		return mem_cgroup_inactive_anon_is_low(lruvec);
1622

1623
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1624
}
1625
#else
1626
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1627 1628 1629 1630
{
	return 0;
}
#endif
1631

1632 1633
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1634
 * @lruvec: LRU vector to check
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1646
static int inactive_file_is_low(struct lruvec *lruvec)
1647
{
1648 1649 1650 1651 1652
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1653

1654
	return active > inactive;
1655 1656
}

H
Hugh Dickins 已提交
1657
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1658
{
H
Hugh Dickins 已提交
1659
	if (is_file_lru(lru))
1660
		return inactive_file_is_low(lruvec);
1661
	else
1662
		return inactive_anon_is_low(lruvec);
1663 1664
}

1665
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1666
				 struct lruvec *lruvec, struct scan_control *sc)
1667
{
1668
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1669
		if (inactive_list_is_low(lruvec, lru))
1670
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1671 1672 1673
		return 0;
	}

1674
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1675 1676
}

1677
static int vmscan_swappiness(struct scan_control *sc)
1678
{
1679
	if (global_reclaim(sc))
1680
		return vm_swappiness;
1681
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1682 1683
}

1684 1685 1686 1687 1688 1689 1690
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1691 1692 1693 1694 1695 1696
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1697 1698
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1699
 */
1700
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1701
			   unsigned long *nr)
1702
{
1703 1704 1705 1706
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1707
	unsigned long anon_prio, file_prio;
1708 1709 1710
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1711
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1712
	enum lru_list lru;
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1724
	if (current_is_kswapd() && zone->all_unreclaimable)
1725
		force_scan = true;
1726
	if (!global_reclaim(sc))
1727
		force_scan = true;
1728 1729

	/* If we have no swap space, do not bother scanning anon pages. */
1730
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1731
		scan_balance = SCAN_FILE;
1732 1733
		goto out;
	}
1734

1735 1736 1737 1738 1739 1740 1741 1742
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1743
		scan_balance = SCAN_FILE;
1744 1745 1746 1747 1748 1749 1750 1751 1752
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1753
		scan_balance = SCAN_EQUAL;
1754 1755 1756
		goto out;
	}

1757 1758 1759 1760
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1761

1762 1763 1764 1765 1766 1767
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1768
	if (global_reclaim(sc)) {
1769
		free = zone_page_state(zone, NR_FREE_PAGES);
1770
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1771
			scan_balance = SCAN_ANON;
1772
			goto out;
1773
		}
1774 1775
	}

1776 1777 1778 1779 1780
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1781
		scan_balance = SCAN_FILE;
1782 1783 1784
		goto out;
	}

1785 1786
	scan_balance = SCAN_FRACT;

1787 1788 1789 1790
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1791
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1792
	file_prio = 200 - anon_prio;
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1805
	spin_lock_irq(&zone->lru_lock);
1806 1807 1808
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1809 1810
	}

1811 1812 1813
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1814 1815 1816
	}

	/*
1817 1818 1819
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1820
	 */
1821
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1822
	ap /= reclaim_stat->recent_rotated[0] + 1;
1823

1824
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1825
	fp /= reclaim_stat->recent_rotated[1] + 1;
1826
	spin_unlock_irq(&zone->lru_lock);
1827

1828 1829 1830 1831
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1832 1833
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1834
		unsigned long size;
1835
		unsigned long scan;
1836

1837
		size = get_lru_size(lruvec, lru);
1838
		scan = size >> sc->priority;
1839

1840 1841
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1864
		nr[lru] = scan;
1865
	}
1866
}
1867

1868 1869 1870 1871 1872 1873
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1874
	unsigned long targets[NR_LRU_LISTS];
1875 1876 1877 1878 1879
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1880
	bool scan_adjusted = false;
1881 1882 1883

	get_scan_count(lruvec, sc, nr);

1884 1885 1886
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1887 1888 1889
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1890 1891 1892
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1893 1894 1895 1896 1897 1898 1899 1900 1901
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1902 1903 1904 1905

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1906
		/*
1907 1908 1909 1910
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1911
		 */
1912
		if (global_reclaim(sc) && !current_is_kswapd())
1913
			break;
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
1971
/* Use reclaim/compaction for costly allocs or under memory pressure */
1972
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1973
{
1974
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
1975
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1976
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1977 1978 1979 1980 1981
		return true;

	return false;
}

1982
/*
M
Mel Gorman 已提交
1983 1984 1985 1986 1987
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1988
 */
1989
static inline bool should_continue_reclaim(struct zone *zone,
1990 1991 1992 1993 1994 1995 1996 1997
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1998
	if (!in_reclaim_compaction(sc))
1999 2000
		return false;

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2023 2024 2025 2026 2027 2028

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2029
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2030
	if (get_nr_swap_pages() > 0)
2031
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2032 2033 2034 2035 2036
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2037
	switch (compaction_suitable(zone, sc->order)) {
2038 2039 2040 2041 2042 2043 2044 2045
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2046
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2047
{
2048
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2049

2050 2051 2052 2053 2054 2055 2056
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2057

2058 2059
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2060

2061 2062 2063
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2064

2065
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2066

2067
			shrink_lruvec(lruvec, sc);
2068

2069
			/*
2070 2071
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2072
			 * zone.
2073 2074 2075 2076 2077
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2078
			 */
2079 2080
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2081 2082 2083 2084 2085
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2086 2087 2088 2089 2090

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2091 2092
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2093 2094
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2112
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2113 2114 2115 2116 2117 2118 2119 2120
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2121
	if (compaction_deferred(zone, sc->order))
2122 2123 2124 2125 2126 2127 2128 2129 2130
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2131 2132 2133 2134 2135
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2136 2137
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2138 2139
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2140 2141 2142
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2143 2144 2145
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2146 2147
 *
 * This function returns true if a zone is being reclaimed for a costly
2148
 * high-order allocation and compaction is ready to begin. This indicates to
2149 2150
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2151
 */
2152
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2153
{
2154
	struct zoneref *z;
2155
	struct zone *zone;
2156 2157
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2158
	bool aborted_reclaim = false;
2159

2160 2161 2162 2163 2164 2165 2166 2167
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2168 2169
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2170
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2171
			continue;
2172 2173 2174 2175
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2176
		if (global_reclaim(sc)) {
2177 2178
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2179 2180
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2181
				continue;	/* Let kswapd poll it */
2182
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2183
				/*
2184 2185 2186 2187 2188
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2189 2190
				 * noticeable problem, like transparent huge
				 * page allocations.
2191
				 */
2192
				if (compaction_ready(zone, sc)) {
2193
					aborted_reclaim = true;
2194
					continue;
2195
				}
2196
			}
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2210
		}
2211

2212
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2213
	}
2214

2215
	return aborted_reclaim;
2216 2217 2218 2219 2220 2221 2222
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2223
/* All zones in zonelist are unreclaimable? */
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2236 2237
		if (!zone->all_unreclaimable)
			return false;
2238 2239
	}

2240
	return true;
L
Linus Torvalds 已提交
2241
}
2242

L
Linus Torvalds 已提交
2243 2244 2245 2246 2247 2248 2249 2250
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2251 2252 2253 2254
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2255 2256 2257
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2258
 */
2259
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2260 2261
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2262
{
2263
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2264
	struct reclaim_state *reclaim_state = current->reclaim_state;
2265
	struct zoneref *z;
2266
	struct zone *zone;
2267
	unsigned long writeback_threshold;
2268
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2269

2270 2271
	delayacct_freepages_start();

2272
	if (global_reclaim(sc))
2273
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2274

2275
	do {
2276 2277
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2278
		sc->nr_scanned = 0;
2279
		aborted_reclaim = shrink_zones(zonelist, sc);
2280

2281 2282 2283 2284
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2285
		if (global_reclaim(sc)) {
2286
			unsigned long lru_pages = 0;
2287 2288
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2289 2290 2291 2292 2293 2294
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2295
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2296
			if (reclaim_state) {
2297
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2298 2299
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2300
		}
2301
		total_scanned += sc->nr_scanned;
2302
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2303 2304
			goto out;

2305 2306 2307 2308 2309 2310 2311
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2312 2313 2314 2315 2316 2317 2318
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2319 2320
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2321 2322
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2323
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2324 2325 2326
		}

		/* Take a nap, wait for some writeback to complete */
2327
		if (!sc->hibernation_mode && sc->nr_scanned &&
2328
		    sc->priority < DEF_PRIORITY - 2) {
2329 2330 2331
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2332 2333
						&cpuset_current_mems_allowed,
						&preferred_zone);
2334 2335
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2336
	} while (--sc->priority >= 0);
2337

L
Linus Torvalds 已提交
2338
out:
2339 2340
	delayacct_freepages_end();

2341 2342 2343
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2344 2345 2346 2347 2348 2349 2350 2351
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2352 2353
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2354 2355
		return 1;

2356
	/* top priority shrink_zones still had more to do? don't OOM, then */
2357
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2358 2359 2360
		return 1;

	return 0;
L
Linus Torvalds 已提交
2361 2362
}

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2393 2394 2395 2396
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2397
 */
2398
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2413 2414 2415 2416 2417 2418 2419 2420
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2421 2422 2423 2424 2425

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2426
		goto out;
2427

2428 2429 2430
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2442 2443

		goto check_pending;
2444 2445 2446 2447 2448
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2449 2450 2451 2452 2453 2454 2455

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2456 2457
}

2458
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2459
				gfp_t gfp_mask, nodemask_t *nodemask)
2460
{
2461
	unsigned long nr_reclaimed;
2462
	struct scan_control sc = {
2463
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2464
		.may_writepage = !laptop_mode,
2465
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2466
		.may_unmap = 1,
2467
		.may_swap = 1,
2468
		.order = order,
2469
		.priority = DEF_PRIORITY,
2470
		.target_mem_cgroup = NULL,
2471
		.nodemask = nodemask,
2472
	};
2473 2474 2475
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2476

2477
	/*
2478 2479 2480
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2481
	 */
2482
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2483 2484
		return 1;

2485 2486 2487 2488
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2489
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2490 2491 2492 2493

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2494 2495
}

A
Andrew Morton 已提交
2496
#ifdef CONFIG_MEMCG
2497

2498
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2499
						gfp_t gfp_mask, bool noswap,
2500 2501
						struct zone *zone,
						unsigned long *nr_scanned)
2502 2503
{
	struct scan_control sc = {
2504
		.nr_scanned = 0,
2505
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2506 2507 2508 2509
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2510
		.priority = 0,
2511
		.target_mem_cgroup = memcg,
2512
	};
2513
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2514

2515 2516
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2517

2518
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2519 2520 2521
						      sc.may_writepage,
						      sc.gfp_mask);

2522 2523 2524 2525 2526 2527 2528
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2529
	shrink_lruvec(lruvec, &sc);
2530 2531 2532

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2533
	*nr_scanned = sc.nr_scanned;
2534 2535 2536
	return sc.nr_reclaimed;
}

2537
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2538
					   gfp_t gfp_mask,
2539
					   bool noswap)
2540
{
2541
	struct zonelist *zonelist;
2542
	unsigned long nr_reclaimed;
2543
	int nid;
2544 2545
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2546
		.may_unmap = 1,
2547
		.may_swap = !noswap,
2548
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2549
		.order = 0,
2550
		.priority = DEF_PRIORITY,
2551
		.target_mem_cgroup = memcg,
2552
		.nodemask = NULL, /* we don't care the placement */
2553 2554 2555 2556 2557
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2558 2559
	};

2560 2561 2562 2563 2564
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2565
	nid = mem_cgroup_select_victim_node(memcg);
2566 2567

	zonelist = NODE_DATA(nid)->node_zonelists;
2568 2569 2570 2571 2572

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2573
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2574 2575 2576 2577

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2578 2579 2580
}
#endif

2581
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2582
{
2583
	struct mem_cgroup *memcg;
2584

2585 2586 2587 2588 2589
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2590
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2591

2592
		if (inactive_anon_is_low(lruvec))
2593
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2594
					   sc, LRU_ACTIVE_ANON);
2595 2596 2597

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2598 2599
}

2600 2601 2602 2603 2604 2605 2606
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2607 2608
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2609 2610 2611 2612 2613
		return false;

	return true;
}

2614
/*
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2625 2626 2627 2628
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2629
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2630 2631 2632 2633
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2634
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2635
{
2636
	unsigned long managed_pages = 0;
2637
	unsigned long balanced_pages = 0;
2638 2639
	int i;

2640 2641 2642
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2643

2644 2645 2646
		if (!populated_zone(zone))
			continue;

2647
		managed_pages += zone->managed_pages;
2648 2649 2650 2651 2652 2653 2654 2655 2656

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2657
			balanced_pages += zone->managed_pages;
2658 2659 2660 2661
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2662
			balanced_pages += zone->managed_pages;
2663 2664 2665 2666 2667
		else if (!order)
			return false;
	}

	if (order)
2668
		return balanced_pages >= (managed_pages >> 2);
2669 2670
	else
		return true;
2671 2672
}

2673 2674 2675 2676 2677 2678 2679
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2680
					int classzone_idx)
2681 2682 2683
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2699

2700
	return pgdat_balanced(pgdat, order, classzone_idx);
2701 2702
}

2703 2704 2705
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2706 2707
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2708 2709
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2710
 */
2711
static bool kswapd_shrink_zone(struct zone *zone,
2712
			       int classzone_idx,
2713
			       struct scan_control *sc,
2714 2715
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2716 2717
{
	unsigned long nr_slab;
2718 2719
	int testorder = sc->order;
	unsigned long balance_gap;
2720 2721 2722 2723
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2724
	bool lowmem_pressure;
2725 2726 2727

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2759 2760 2761 2762 2763 2764
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2765 2766 2767
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2768 2769
	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
2770

2771 2772
	zone_clear_flag(zone, ZONE_WRITEBACK);

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
	if (!zone->all_unreclaimable &&
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2785
	return sc->nr_scanned >= sc->nr_to_reclaim;
2786 2787
}

L
Linus Torvalds 已提交
2788 2789
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2790
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2791
 *
2792
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2803 2804 2805 2806 2807
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2808
 */
2809
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2810
							int *classzone_idx)
L
Linus Torvalds 已提交
2811 2812
{
	int i;
2813
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2814 2815
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2816 2817
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2818
		.priority = DEF_PRIORITY,
2819
		.may_unmap = 1,
2820
		.may_swap = 1,
2821
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2822
		.order = order,
2823
		.target_mem_cgroup = NULL,
2824
	};
2825
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2826

2827
	do {
L
Linus Torvalds 已提交
2828
		unsigned long lru_pages = 0;
2829
		unsigned long nr_attempted = 0;
2830
		bool raise_priority = true;
2831
		bool pgdat_needs_compaction = (order > 0);
2832 2833

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2834

2835 2836 2837 2838 2839 2840
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2841

2842 2843
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2844

2845 2846
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2847
				continue;
L
Linus Torvalds 已提交
2848

2849 2850 2851 2852
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2853
			age_active_anon(zone, &sc);
2854

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2866
			if (!zone_balanced(zone, order, 0, 0)) {
2867
				end_zone = i;
A
Andrew Morton 已提交
2868
				break;
2869
			} else {
2870 2871 2872 2873
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2874
				zone_clear_flag(zone, ZONE_CONGESTED);
2875
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2876 2877
			}
		}
2878

2879
		if (i < 0)
A
Andrew Morton 已提交
2880 2881
			goto out;

L
Linus Torvalds 已提交
2882 2883 2884
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2885 2886 2887
			if (!populated_zone(zone))
				continue;

2888
			lru_pages += zone_reclaimable_pages(zone);
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2900 2901
		}

2902 2903 2904 2905 2906 2907 2908
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2921
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2922 2923
				continue;

2924 2925
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2926 2927 2928
				continue;

			sc.nr_scanned = 0;
2929

2930
			nr_soft_scanned = 0;
2931 2932 2933
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2934 2935 2936 2937
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
2938

2939
			/*
2940 2941 2942 2943
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
2944
			 */
2945 2946 2947
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
2948
		}
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
2959
		/*
2960 2961 2962 2963 2964 2965
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
2966
		 */
2967 2968
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
2969

2970 2971 2972
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
2973

2974 2975 2976 2977 2978 2979 2980
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

2981
		/*
2982 2983
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
2984
		 */
2985 2986
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
2987
	} while (sc.priority >= 1 &&
2988
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
2989

2990
out:
2991
	/*
2992
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2993 2994 2995 2996
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2997
	*classzone_idx = end_zone;
2998
	return order;
L
Linus Torvalds 已提交
2999 3000
}

3001
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3012
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3013 3014 3015 3016 3017 3018 3019 3020 3021
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3022
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3034

3035 3036 3037 3038 3039 3040 3041 3042
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3043 3044 3045
		if (!kthread_should_stop())
			schedule();

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3056 3057
/*
 * The background pageout daemon, started as a kernel thread
3058
 * from the init process.
L
Linus Torvalds 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3071
	unsigned long order, new_order;
3072
	unsigned balanced_order;
3073
	int classzone_idx, new_classzone_idx;
3074
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3075 3076
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3077

L
Linus Torvalds 已提交
3078 3079 3080
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3081
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3082

3083 3084
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3085
	if (!cpumask_empty(cpumask))
3086
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3101
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3102
	set_freezable();
L
Linus Torvalds 已提交
3103

3104
	order = new_order = 0;
3105
	balanced_order = 0;
3106
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3107
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3108
	for ( ; ; ) {
3109
		bool ret;
3110

3111 3112 3113 3114 3115
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3116 3117
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3118 3119 3120 3121 3122 3123
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3124
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3125 3126
			/*
			 * Don't sleep if someone wants a larger 'order'
3127
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3128 3129
			 */
			order = new_order;
3130
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3131
		} else {
3132 3133
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3134
			order = pgdat->kswapd_max_order;
3135
			classzone_idx = pgdat->classzone_idx;
3136 3137
			new_order = order;
			new_classzone_idx = classzone_idx;
3138
			pgdat->kswapd_max_order = 0;
3139
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3140 3141
		}

3142 3143 3144 3145 3146 3147 3148 3149
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3150 3151
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3152 3153 3154
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3155
		}
L
Linus Torvalds 已提交
3156
	}
3157 3158

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3159 3160 3161 3162 3163 3164
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3165
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3166 3167 3168
{
	pg_data_t *pgdat;

3169
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3170 3171
		return;

3172
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3173
		return;
3174
	pgdat = zone->zone_pgdat;
3175
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3176
		pgdat->kswapd_max_order = order;
3177 3178
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3179
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3180
		return;
3181 3182 3183 3184
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3185
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3186 3187
}

3188 3189 3190 3191 3192 3193 3194 3195
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3196
{
3197 3198 3199 3200 3201
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3202
	if (get_nr_swap_pages() > 0)
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3216
	if (get_nr_swap_pages() > 0)
3217 3218 3219 3220
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3221 3222
}

3223
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3224
/*
3225
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3226 3227 3228 3229 3230
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3231
 */
3232
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3233
{
3234 3235
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3236 3237 3238
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3239
		.may_writepage = 1,
3240 3241 3242
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3243
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3244
	};
3245 3246 3247 3248
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3249 3250
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3251

3252 3253 3254 3255
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3256

3257
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3258

3259 3260 3261
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3262

3263
	return nr_reclaimed;
L
Linus Torvalds 已提交
3264
}
3265
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3266 3267 3268 3269 3270

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3271 3272
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3273
{
3274
	int nid;
L
Linus Torvalds 已提交
3275

3276
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3277
		for_each_node_state(nid, N_MEMORY) {
3278
			pg_data_t *pgdat = NODE_DATA(nid);
3279 3280 3281
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3282

3283
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3284
				/* One of our CPUs online: restore mask */
3285
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3286 3287 3288 3289 3290
		}
	}
	return NOTIFY_OK;
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3307 3308
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3309
		pgdat->kswapd = NULL;
3310 3311 3312 3313
	}
	return ret;
}

3314
/*
3315 3316
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3317 3318 3319 3320 3321
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3322
	if (kswapd) {
3323
		kthread_stop(kswapd);
3324 3325
		NODE_DATA(nid)->kswapd = NULL;
	}
3326 3327
}

L
Linus Torvalds 已提交
3328 3329
static int __init kswapd_init(void)
{
3330
	int nid;
3331

L
Linus Torvalds 已提交
3332
	swap_setup();
3333
	for_each_node_state(nid, N_MEMORY)
3334
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3335 3336 3337 3338 3339
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3350
#define RECLAIM_OFF 0
3351
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3352 3353 3354
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3355 3356 3357 3358 3359 3360 3361
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3362 3363 3364 3365 3366 3367
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3368 3369 3370 3371 3372 3373
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3416 3417 3418
/*
 * Try to free up some pages from this zone through reclaim.
 */
3419
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3420
{
3421
	/* Minimum pages needed in order to stay on node */
3422
	const unsigned long nr_pages = 1 << order;
3423 3424
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3425 3426
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3427
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3428
		.may_swap = 1,
3429
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3430
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3431
		.order = order,
3432
		.priority = ZONE_RECLAIM_PRIORITY,
3433
	};
3434 3435 3436
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3437
	unsigned long nr_slab_pages0, nr_slab_pages1;
3438 3439

	cond_resched();
3440 3441 3442 3443 3444 3445
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3446
	lockdep_set_current_reclaim_state(gfp_mask);
3447 3448
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3449

3450
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3451 3452 3453 3454 3455
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3456 3457
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3458
	}
3459

3460 3461
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3462
		/*
3463
		 * shrink_slab() does not currently allow us to determine how
3464 3465 3466 3467
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3468
		 *
3469 3470
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3471
		 */
3472 3473 3474 3475
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3476
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3477 3478 3479 3480 3481 3482 3483 3484
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3485 3486 3487 3488 3489

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3490 3491 3492
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3493 3494
	}

3495
	p->reclaim_state = NULL;
3496
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3497
	lockdep_clear_current_reclaim_state();
3498
	return sc.nr_reclaimed >= nr_pages;
3499
}
3500 3501 3502 3503

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3504
	int ret;
3505 3506

	/*
3507 3508
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3509
	 *
3510 3511 3512 3513 3514
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3515
	 */
3516 3517
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3518
		return ZONE_RECLAIM_FULL;
3519

3520
	if (zone->all_unreclaimable)
3521
		return ZONE_RECLAIM_FULL;
3522

3523
	/*
3524
	 * Do not scan if the allocation should not be delayed.
3525
	 */
3526
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3527
		return ZONE_RECLAIM_NOSCAN;
3528 3529 3530 3531 3532 3533 3534

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3535
	node_id = zone_to_nid(zone);
3536
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3537
		return ZONE_RECLAIM_NOSCAN;
3538 3539

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3540 3541
		return ZONE_RECLAIM_NOSCAN;

3542 3543 3544
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3545 3546 3547
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3548
	return ret;
3549
}
3550
#endif
L
Lee Schermerhorn 已提交
3551 3552 3553 3554 3555 3556

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3557
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3558 3559
 *
 * Reasons page might not be evictable:
3560
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3561
 * (2) page is part of an mlocked VMA
3562
 *
L
Lee Schermerhorn 已提交
3563
 */
3564
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3565
{
3566
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3567
}
3568

3569
#ifdef CONFIG_SHMEM
3570
/**
3571 3572 3573
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3574
 *
3575
 * Checks pages for evictability and moves them to the appropriate lru list.
3576 3577
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3578
 */
3579
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3580
{
3581
	struct lruvec *lruvec;
3582 3583 3584 3585
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3586

3587 3588 3589
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3590

3591 3592 3593 3594 3595 3596 3597 3598
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3599
		lruvec = mem_cgroup_page_lruvec(page, zone);
3600

3601 3602
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3603

3604
		if (page_evictable(page)) {
3605 3606 3607 3608
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3609 3610
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3611
			pgrescued++;
3612
		}
3613
	}
3614

3615 3616 3617 3618
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3619 3620
	}
}
3621
#endif /* CONFIG_SHMEM */
3622

3623
static void warn_scan_unevictable_pages(void)
3624
{
3625
	printk_once(KERN_WARNING
3626
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3627
		    "disabled for lack of a legitimate use case.  If you have "
3628 3629
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3630 3631 3632 3633 3634 3635 3636 3637 3638
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3639
			   void __user *buffer,
3640 3641
			   size_t *length, loff_t *ppos)
{
3642
	warn_scan_unevictable_pages();
3643
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3644 3645 3646 3647
	scan_unevictable_pages = 0;
	return 0;
}

3648
#ifdef CONFIG_NUMA
3649 3650 3651 3652 3653
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3654 3655
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3656 3657
					  char *buf)
{
3658
	warn_scan_unevictable_pages();
3659 3660 3661
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3662 3663
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3664 3665
					const char *buf, size_t count)
{
3666
	warn_scan_unevictable_pages();
3667 3668 3669 3670
	return 1;
}


3671
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3672 3673 3674 3675 3676
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3677
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3678 3679 3680 3681
}

void scan_unevictable_unregister_node(struct node *node)
{
3682
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3683
}
3684
#endif