vmscan.c 98.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
98
	int order;
99

100
	/*
101 102
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
103
	 */
104
	reclaim_mode_t reclaim_mode;
105

106 107 108
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

109 110 111 112 113
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
150
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
151 152 153 154

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

155
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 157 158 159 160 161 162 163 164
static bool global_reclaim(struct scan_control *sc)
{
	return !sc->mem_cgroup;
}

static bool scanning_global_lru(struct scan_control *sc)
{
	return !sc->mem_cgroup;
}
165
#else
166 167 168 169 170 171 172 173 174
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}

static bool scanning_global_lru(struct scan_control *sc)
{
	return true;
}
175 176
#endif

177 178 179
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
180
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
181 182
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

183 184 185
	return &zone->reclaim_stat;
}

186 187
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
188
{
189
	if (!scanning_global_lru(sc))
190 191
		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
				zone_to_nid(zone), zone_idx(zone), BIT(lru));
192

193 194 195 196
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
197 198 199
/*
 * Add a shrinker callback to be called from the vm
 */
200
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
201
{
202
	atomic_long_set(&shrinker->nr_in_batch, 0);
203 204 205
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
206
}
207
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
208 209 210 211

/*
 * Remove one
 */
212
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
213 214 215 216 217
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
218
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
219

220 221 222 223 224 225 226 227
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
228 229 230 231 232 233 234 235 236
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
237
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
238 239 240 241 242 243 244
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
245 246
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
247
 */
248
unsigned long shrink_slab(struct shrink_control *shrink,
249
			  unsigned long nr_pages_scanned,
250
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
251 252
{
	struct shrinker *shrinker;
253
	unsigned long ret = 0;
L
Linus Torvalds 已提交
254

255 256
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
257

258 259 260 261 262
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
263 264 265

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
266 267
		long total_scan;
		long max_pass;
268
		int shrink_ret = 0;
269 270
		long nr;
		long new_nr;
271 272
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
273

274 275 276 277
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

278 279 280 281 282
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
283
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
284 285

		total_scan = nr;
286
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
287
		delta *= max_pass;
L
Linus Torvalds 已提交
288
		do_div(delta, lru_pages + 1);
289 290
		total_scan += delta;
		if (total_scan < 0) {
291 292
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
293 294
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
295 296
		}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

312 313 314 315 316
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
317 318
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
319

320
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
321 322 323
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

324
		while (total_scan >= batch_size) {
325
			int nr_before;
L
Linus Torvalds 已提交
326

327 328
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
329
							batch_size);
L
Linus Torvalds 已提交
330 331
			if (shrink_ret == -1)
				break;
332 333
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
334 335
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
336 337 338 339

			cond_resched();
		}

340 341 342 343 344
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
345 346 347 348 349
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
350 351

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
352 353
	}
	up_read(&shrinker_rwsem);
354 355
out:
	cond_resched();
356
	return ret;
L
Linus Torvalds 已提交
357 358
}

359
static void set_reclaim_mode(int priority, struct scan_control *sc,
360 361
				   bool sync)
{
362
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
363 364

	/*
365 366 367
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
368
	 */
369
	if (COMPACTION_BUILD)
370
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
371
	else
372
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
373 374

	/*
375 376 377
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
378 379
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
380
		sc->reclaim_mode |= syncmode;
381
	else if (sc->order && priority < DEF_PRIORITY - 2)
382
		sc->reclaim_mode |= syncmode;
383
	else
384
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
385 386
}

387
static void reset_reclaim_mode(struct scan_control *sc)
388
{
389
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
390 391
}

L
Linus Torvalds 已提交
392 393
static inline int is_page_cache_freeable(struct page *page)
{
394 395 396 397 398
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
399
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
400 401
}

402 403
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
404
{
405
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
406 407 408 409 410
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
411 412 413 414

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
433
	lock_page(page);
434 435
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
436 437 438
	unlock_page(page);
}

439 440 441 442 443 444 445 446 447 448 449 450
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
451
/*
A
Andrew Morton 已提交
452 453
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
454
 */
455
static pageout_t pageout(struct page *page, struct address_space *mapping,
456
			 struct scan_control *sc)
L
Linus Torvalds 已提交
457 458 459 460 461 462 463 464
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
465
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
481
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
482 483
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
484
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
485 486 487 488 489 490 491
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
492
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
493 494 495 496 497 498 499
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
500 501
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
502 503 504 505 506 507 508
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
509
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
510 511 512
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
513

L
Linus Torvalds 已提交
514 515 516 517
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
518
		trace_mm_vmscan_writepage(page,
519
			trace_reclaim_flags(page, sc->reclaim_mode));
520
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
521 522 523 524 525 526
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

527
/*
N
Nick Piggin 已提交
528 529
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
530
 */
N
Nick Piggin 已提交
531
static int __remove_mapping(struct address_space *mapping, struct page *page)
532
{
533 534
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
535

N
Nick Piggin 已提交
536
	spin_lock_irq(&mapping->tree_lock);
537
	/*
N
Nick Piggin 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
561
	 */
N
Nick Piggin 已提交
562
	if (!page_freeze_refs(page, 2))
563
		goto cannot_free;
N
Nick Piggin 已提交
564 565 566
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
567
		goto cannot_free;
N
Nick Piggin 已提交
568
	}
569 570 571 572

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
573
		spin_unlock_irq(&mapping->tree_lock);
574
		swapcache_free(swap, page);
N
Nick Piggin 已提交
575
	} else {
576 577 578 579
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

580
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
581
		spin_unlock_irq(&mapping->tree_lock);
582
		mem_cgroup_uncharge_cache_page(page);
583 584 585

		if (freepage != NULL)
			freepage(page);
586 587 588 589 590
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
591
	spin_unlock_irq(&mapping->tree_lock);
592 593 594
	return 0;
}

N
Nick Piggin 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
628
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
642
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
643 644 645 646 647 648 649 650
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
651
		/*
652 653 654 655 656
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
		 * isolation/check_move_unevictable_page,
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
657 658
		 * the page back to the evictable list.
		 *
659
		 * The other side is TestClearPageMlocked() or shmem_lock().
660 661
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

680 681 682 683 684
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
685 686 687
	put_page(page);		/* drop ref from isolate */
}

688 689 690
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
691
	PAGEREF_KEEP,
692 693 694 695 696 697
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
698
	int referenced_ptes, referenced_page;
699 700
	unsigned long vm_flags;

701 702
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
703 704

	/* Lumpy reclaim - ignore references */
705
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
706 707 708 709 710 711 712 713 714
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

734
		if (referenced_page || referenced_ptes > 1)
735 736
			return PAGEREF_ACTIVATE;

737 738 739 740 741 742
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

743 744
		return PAGEREF_KEEP;
	}
745 746

	/* Reclaim if clean, defer dirty pages to writeback */
747
	if (referenced_page && !PageSwapBacked(page))
748 749 750
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
751 752
}

L
Linus Torvalds 已提交
753
/*
A
Andrew Morton 已提交
754
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
755
 */
A
Andrew Morton 已提交
756
static unsigned long shrink_page_list(struct list_head *page_list,
757
				      struct zone *zone,
758
				      struct scan_control *sc,
759 760 761
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
762 763
{
	LIST_HEAD(ret_pages);
764
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
765
	int pgactivate = 0;
766 767
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
768
	unsigned long nr_reclaimed = 0;
769
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
770 771 772 773

	cond_resched();

	while (!list_empty(page_list)) {
774
		enum page_references references;
L
Linus Torvalds 已提交
775 776 777 778 779 780 781 782 783
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
784
		if (!trylock_page(page))
L
Linus Torvalds 已提交
785 786
			goto keep;

N
Nick Piggin 已提交
787
		VM_BUG_ON(PageActive(page));
788
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
789 790

		sc->nr_scanned++;
791

N
Nick Piggin 已提交
792 793
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
794

795
		if (!sc->may_unmap && page_mapped(page))
796 797
			goto keep_locked;

L
Linus Torvalds 已提交
798 799 800 801
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

802 803 804 805
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
806
			nr_writeback++;
807
			/*
808 809 810 811
			 * Synchronous reclaim cannot queue pages for
			 * writeback due to the possibility of stack overflow
			 * but if it encounters a page under writeback, wait
			 * for the IO to complete.
812
			 */
813
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
814
			    may_enter_fs)
815
				wait_on_page_writeback(page);
816 817 818 819
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
820
		}
L
Linus Torvalds 已提交
821

822 823 824
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
825
			goto activate_locked;
826 827
		case PAGEREF_KEEP:
			goto keep_locked;
828 829 830 831
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
832 833 834 835 836

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
837
		if (PageAnon(page) && !PageSwapCache(page)) {
838 839
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
840
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
841
				goto activate_locked;
842
			may_enter_fs = 1;
N
Nick Piggin 已提交
843
		}
L
Linus Torvalds 已提交
844 845 846 847 848 849 850 851

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
852
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
853 854 855 856
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
857 858
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
859 860 861 862 863 864
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
865 866
			nr_dirty++;

867 868
			/*
			 * Only kswapd can writeback filesystem pages to
869 870
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
871
			 */
872 873
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
874 875 876 877 878 879 880 881 882
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

883 884 885
				goto keep_locked;
			}

886
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
887
				goto keep_locked;
888
			if (!may_enter_fs)
L
Linus Torvalds 已提交
889
				goto keep_locked;
890
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
891 892 893
				goto keep_locked;

			/* Page is dirty, try to write it out here */
894
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
895
			case PAGE_KEEP:
896
				nr_congested++;
L
Linus Torvalds 已提交
897 898 899 900
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
901 902 903
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
904
					goto keep;
905

L
Linus Torvalds 已提交
906 907 908 909
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
910
				if (!trylock_page(page))
L
Linus Torvalds 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
930
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
931 932 933 934 935 936 937 938 939 940
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
941
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
942 943
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
960 961
		}

N
Nick Piggin 已提交
962
		if (!mapping || !__remove_mapping(mapping, page))
963
			goto keep_locked;
L
Linus Torvalds 已提交
964

N
Nick Piggin 已提交
965 966 967 968 969 970 971 972
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
973
free_it:
974
		nr_reclaimed++;
975 976 977 978 979 980

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
981 982
		continue;

N
Nick Piggin 已提交
983
cull_mlocked:
984 985
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
986 987
		unlock_page(page);
		putback_lru_page(page);
988
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
989 990
		continue;

L
Linus Torvalds 已提交
991
activate_locked:
992 993
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
994
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
995
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
996 997 998 999 1000
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
1001
		reset_reclaim_mode(sc);
1002
keep_lumpy:
L
Linus Torvalds 已提交
1003
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1004
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1005
	}
1006

1007 1008 1009 1010 1011 1012
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
1013
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1014 1015
		zone_set_flag(zone, ZONE_CONGESTED);

1016
	free_hot_cold_page_list(&free_pages, 1);
1017

L
Linus Torvalds 已提交
1018
	list_splice(&ret_pages, page_list);
1019
	count_vm_events(PGACTIVATE, pgactivate);
1020 1021
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
1022
	return nr_reclaimed;
L
Linus Torvalds 已提交
1023 1024
}

A
Andy Whitcroft 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1035
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
1036
{
1037
	bool all_lru_mode;
A
Andy Whitcroft 已提交
1038 1039 1040 1041 1042 1043
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

1044 1045 1046
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
1047 1048 1049 1050 1051
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
1052
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
1053 1054
		return ret;

1055
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1056 1057
		return ret;

L
Lee Schermerhorn 已提交
1058 1059 1060 1061 1062 1063 1064 1065
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1066
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1067

1068 1069 1070
	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
		return ret;

1071 1072 1073
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1101 1102
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1103
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1104 1105 1106
 *
 * returns how many pages were moved onto *@dst.
 */
1107 1108
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1109 1110
		unsigned long *scanned, int order, isolate_mode_t mode,
		int file)
L
Linus Torvalds 已提交
1111
{
1112
	unsigned long nr_taken = 0;
1113 1114 1115
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1116
	unsigned long scan;
L
Linus Torvalds 已提交
1117

1118
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1119 1120 1121 1122 1123 1124
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1125 1126 1127
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1128
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1129

1130
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1131 1132
		case 0:
			list_move(&page->lru, dst);
1133
			mem_cgroup_del_lru(page);
1134
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1135 1136 1137 1138 1139
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1140
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1141
			continue;
1142

A
Andy Whitcroft 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1155
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1175

A
Andy Whitcroft 已提交
1176 1177
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1178
				break;
1179 1180 1181 1182 1183 1184

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
1185
			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1186 1187
			    !PageSwapCache(cursor_page))
				break;
1188

1189
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1190
				list_move(&cursor_page->lru, dst);
1191
				mem_cgroup_del_lru(cursor_page);
1192
				nr_taken += hpage_nr_pages(cursor_page);
1193 1194 1195
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1196
				scan++;
1197
			} else {
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1212 1213
					continue;
				break;
A
Andy Whitcroft 已提交
1214 1215
			}
		}
1216 1217 1218 1219

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1220 1221 1222
	}

	*scanned = scan;
1223 1224 1225 1226 1227 1228

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1229 1230 1231
	return nr_taken;
}

1232 1233 1234
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
1235 1236
					isolate_mode_t mode,
					struct zone *z,	int active, int file)
1237
{
1238
	int lru = LRU_BASE;
1239
	if (active)
1240 1241 1242 1243
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1244
								mode, file);
1245 1246
}

A
Andy Whitcroft 已提交
1247 1248 1249 1250
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1251 1252
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1253 1254
{
	int nr_active = 0;
1255
	int lru;
A
Andy Whitcroft 已提交
1256 1257
	struct page *page;

1258
	list_for_each_entry(page, page_list, lru) {
1259
		int numpages = hpage_nr_pages(page);
1260
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1261
		if (PageActive(page)) {
1262
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1263
			ClearPageActive(page);
1264
			nr_active += numpages;
A
Andy Whitcroft 已提交
1265
		}
1266
		if (count)
1267
			count[lru] += numpages;
1268
	}
A
Andy Whitcroft 已提交
1269 1270 1271 1272

	return nr_active;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1284 1285 1286
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1302 1303
	VM_BUG_ON(!page_count(page));

1304 1305 1306 1307
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1308
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1309
			int lru = page_lru(page);
1310
			ret = 0;
1311
			get_page(page);
1312
			ClearPageLRU(page);
1313 1314

			del_page_from_lru_list(zone, page, lru);
1315 1316 1317 1318 1319 1320
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1332
	if (!global_reclaim(sc))
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1346 1347 1348 1349
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1350
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1351 1352 1353 1354 1355
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1356
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1375
		SetPageLRU(page);
1376
		lru = page_lru(page);
1377
		add_page_to_lru_list(zone, page, lru);
1378 1379
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1380 1381
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1427
/*
1428
 * Returns true if a direct reclaim should wait on pages under writeback.
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1447
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1448 1449
		return false;

1450
	/* If we have reclaimed everything on the isolated list, no stall */
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1468
/*
A
Andrew Morton 已提交
1469 1470
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1471
 */
1472 1473 1474
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1475 1476
{
	LIST_HEAD(page_list);
1477
	unsigned long nr_scanned;
1478
	unsigned long nr_reclaimed = 0;
1479 1480 1481
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1482 1483
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1484
	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1485

1486
	while (unlikely(too_many_isolated(zone, file, sc))) {
1487
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1488 1489 1490 1491 1492 1493

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1494
	set_reclaim_mode(priority, sc, false);
1495 1496 1497
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
		reclaim_mode |= ISOLATE_ACTIVE;

L
Linus Torvalds 已提交
1498
	lru_add_drain();
1499 1500 1501 1502 1503 1504

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1505
	spin_lock_irq(&zone->lru_lock);
1506

1507
	if (scanning_global_lru(sc)) {
1508 1509
		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1510 1511 1512 1513 1514 1515
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
			&nr_scanned, sc->order, reclaim_mode, zone,
			sc->mem_cgroup, 0, file);
	}
	if (global_reclaim(sc)) {
1516 1517 1518 1519 1520 1521 1522 1523
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1524

1525 1526 1527 1528
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1529

1530
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1531

1532
	spin_unlock_irq(&zone->lru_lock);
1533

1534 1535
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
						&nr_dirty, &nr_writeback);
1536

1537 1538
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1539
		set_reclaim_mode(priority, sc, true);
1540 1541
		nr_reclaimed += shrink_page_list(&page_list, zone, sc,
					priority, &nr_dirty, &nr_writeback);
1542
	}
1543

1544 1545 1546 1547
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1548

1549
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1577 1578 1579 1580
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1581
		trace_shrink_flags(file, sc->reclaim_mode));
1582
	return nr_reclaimed;
L
Linus Torvalds 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1602

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1621
		pgmoved += hpage_nr_pages(page);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1635

A
Andrew Morton 已提交
1636
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1637
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1638
{
1639
	unsigned long nr_taken;
1640
	unsigned long pgscanned;
1641
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1642
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1643
	LIST_HEAD(l_active);
1644
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1645
	struct page *page;
1646
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1647
	unsigned long nr_rotated = 0;
1648
	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
L
Linus Torvalds 已提交
1649 1650

	lru_add_drain();
1651 1652 1653 1654 1655 1656

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1657
	spin_lock_irq(&zone->lru_lock);
1658
	if (scanning_global_lru(sc)) {
1659 1660
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
1661
						reclaim_mode, zone,
1662 1663 1664 1665
						1, file);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
1666
						reclaim_mode, zone,
1667
						sc->mem_cgroup, 1, file);
1668
	}
1669

1670 1671 1672
	if (global_reclaim(sc))
		zone->pages_scanned += pgscanned;

1673
	reclaim_stat->recent_scanned[file] += nr_taken;
1674

1675
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1676
	if (file)
1677
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1678
	else
1679
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1680
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1687

L
Lee Schermerhorn 已提交
1688 1689 1690 1691 1692
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1693
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1694
			nr_rotated += hpage_nr_pages(page);
1695 1696 1697 1698 1699 1700 1701 1702 1703
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1704
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1705 1706 1707 1708
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1709

1710
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1711 1712 1713
		list_add(&page->lru, &l_inactive);
	}

1714
	/*
1715
	 * Move pages back to the lru list.
1716
	 */
1717
	spin_lock_irq(&zone->lru_lock);
1718
	/*
1719 1720 1721 1722
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1723
	 */
1724
	reclaim_stat->recent_rotated[file] += nr_rotated;
1725

1726 1727 1728 1729
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1730
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1731
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1732 1733
}

1734
#ifdef CONFIG_SWAP
1735
static int inactive_anon_is_low_global(struct zone *zone)
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1760 1761 1762 1763 1764 1765 1766
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1767
	if (scanning_global_lru(sc))
1768 1769
		low = inactive_anon_is_low_global(zone);
	else
1770
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1771 1772
	return low;
}
1773 1774 1775 1776 1777 1778 1779
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
1813
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1814 1815 1816
	return low;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1826
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1827 1828
	struct zone *zone, struct scan_control *sc, int priority)
{
1829 1830
	int file = is_file_lru(lru);

1831 1832 1833
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1834 1835 1836
		return 0;
	}

R
Rik van Riel 已提交
1837
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1838 1839
}

1840 1841
static int vmscan_swappiness(struct scan_control *sc)
{
1842
	if (global_reclaim(sc))
1843 1844 1845 1846
		return vm_swappiness;
	return mem_cgroup_swappiness(sc->mem_cgroup);
}

1847 1848 1849 1850 1851 1852
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1853
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1854
 */
1855 1856
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1857 1858 1859 1860
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1861
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1862 1863 1864
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1865
	bool force_scan = false;
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1877
	if (current_is_kswapd())
1878
		force_scan = true;
1879
	if (!global_reclaim(sc))
1880
		force_scan = true;
1881 1882 1883 1884 1885 1886 1887 1888 1889

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1890

1891 1892 1893 1894 1895
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);

1896
	if (global_reclaim(sc)) {
1897 1898 1899
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1900
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1901 1902 1903 1904
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1905
		}
1906 1907
	}

1908 1909 1910 1911
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1912 1913
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1926
	spin_lock_irq(&zone->lru_lock);
1927 1928 1929
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1930 1931
	}

1932 1933 1934
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1935 1936 1937
	}

	/*
1938 1939 1940
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1941
	 */
1942 1943
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1944

1945 1946
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1947
	spin_unlock_irq(&zone->lru_lock);
1948

1949 1950 1951 1952 1953 1954 1955
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1956

1957 1958 1959
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
1960 1961
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1962 1963
			scan = div64_u64(scan * fraction[file], denominator);
		}
1964
		nr[l] = scan;
1965
	}
1966
}
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1984
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1985 1986
		return false;

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2009 2010 2011 2012 2013 2014

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2015 2016 2017
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (nr_swap_pages > 0)
		inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
2032 2033 2034
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2035
static void shrink_zone(int priority, struct zone *zone,
2036
				struct scan_control *sc)
L
Linus Torvalds 已提交
2037
{
2038
	unsigned long nr[NR_LRU_LISTS];
2039
	unsigned long nr_to_scan;
2040
	enum lru_list l;
2041
	unsigned long nr_reclaimed, nr_scanned;
2042
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2043
	struct blk_plug plug;
2044

2045 2046
restart:
	nr_reclaimed = 0;
2047
	nr_scanned = sc->nr_scanned;
2048
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
2049

2050
	blk_start_plug(&plug);
2051 2052
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
2053
		for_each_evictable_lru(l) {
2054
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
2055 2056
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
2057
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
2058

2059 2060
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
2061
			}
L
Linus Torvalds 已提交
2062
		}
2063 2064 2065 2066 2067 2068 2069 2070
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
2071
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2072
			break;
L
Linus Torvalds 已提交
2073
	}
2074
	blk_finish_plug(&plug);
2075
	sc->nr_reclaimed += nr_reclaimed;
2076

2077 2078 2079 2080
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2081
	if (inactive_anon_is_low(zone, sc))
2082 2083
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

2084 2085 2086 2087 2088
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2089
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2097 2098
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2099 2100
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2101 2102 2103
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2104 2105 2106
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2107 2108 2109 2110
 *
 * This function returns true if a zone is being reclaimed for a costly
 * high-order allocation and compaction is either ready to begin or deferred.
 * This indicates to the caller that it should retry the allocation or fail.
L
Linus Torvalds 已提交
2111
 */
2112
static bool shrink_zones(int priority, struct zonelist *zonelist,
2113
					struct scan_control *sc)
L
Linus Torvalds 已提交
2114
{
2115
	struct zoneref *z;
2116
	struct zone *zone;
2117 2118
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2119
	bool should_abort_reclaim = false;
2120

2121 2122
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2123
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2124
			continue;
2125 2126 2127 2128
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2129
		if (global_reclaim(sc)) {
2130 2131
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2132
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2133
				continue;	/* Let kswapd poll it */
2134 2135
			if (COMPACTION_BUILD) {
				/*
2136 2137 2138 2139 2140 2141 2142
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
				 * noticable problem, like transparent huge page
				 * allocations.
2143 2144 2145
				 */
				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
					(compaction_suitable(zone, sc->order) ||
2146 2147
					 compaction_deferred(zone))) {
					should_abort_reclaim = true;
2148
					continue;
2149
				}
2150
			}
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2164
		}
2165

2166
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2167
	}
2168 2169

	return should_abort_reclaim;
2170 2171 2172 2173 2174 2175 2176
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2177
/* All zones in zonelist are unreclaimable? */
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2190 2191
		if (!zone->all_unreclaimable)
			return false;
2192 2193
	}

2194
	return true;
L
Linus Torvalds 已提交
2195
}
2196

L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2205 2206 2207 2208
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2209 2210 2211
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2212
 */
2213
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2214 2215
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2216 2217
{
	int priority;
2218
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2219
	struct reclaim_state *reclaim_state = current->reclaim_state;
2220
	struct zoneref *z;
2221
	struct zone *zone;
2222
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2223

2224
	get_mems_allowed();
2225 2226
	delayacct_freepages_start();

2227
	if (global_reclaim(sc))
2228
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2229 2230

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2231
		sc->nr_scanned = 0;
2232
		if (!priority)
2233
			disable_swap_token(sc->mem_cgroup);
2234 2235 2236
		if (shrink_zones(priority, zonelist, sc))
			break;

2237 2238 2239 2240
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2241
		if (global_reclaim(sc)) {
2242
			unsigned long lru_pages = 0;
2243 2244
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2245 2246 2247 2248 2249 2250
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2251
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2252
			if (reclaim_state) {
2253
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2254 2255
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2256
		}
2257
		total_scanned += sc->nr_scanned;
2258
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2268 2269
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2270 2271
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2272
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2273 2274 2275
		}

		/* Take a nap, wait for some writeback to complete */
2276
		if (!sc->hibernation_mode && sc->nr_scanned &&
2277 2278 2279 2280
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2281 2282
						&cpuset_current_mems_allowed,
						&preferred_zone);
2283 2284
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2285
	}
2286

L
Linus Torvalds 已提交
2287
out:
2288
	delayacct_freepages_end();
2289
	put_mems_allowed();
2290

2291 2292 2293
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2294 2295 2296 2297 2298 2299 2300 2301
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2302
	/* top priority shrink_zones still had more to do? don't OOM, then */
2303
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2304 2305 2306
		return 1;

	return 0;
L
Linus Torvalds 已提交
2307 2308
}

2309
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2310
				gfp_t gfp_mask, nodemask_t *nodemask)
2311
{
2312
	unsigned long nr_reclaimed;
2313 2314 2315
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2316
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2317
		.may_unmap = 1,
2318
		.may_swap = 1,
2319 2320
		.order = order,
		.mem_cgroup = NULL,
2321
		.nodemask = nodemask,
2322
	};
2323 2324 2325
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2326

2327 2328 2329 2330
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2331
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2332 2333 2334 2335

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2336 2337
}

2338
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2339

2340 2341
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
2342 2343
						struct zone *zone,
						unsigned long *nr_scanned)
2344 2345
{
	struct scan_control sc = {
2346
		.nr_scanned = 0,
2347
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2348 2349 2350 2351 2352 2353
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
		.mem_cgroup = mem,
	};
2354

2355 2356
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2357 2358 2359 2360 2361

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2362 2363 2364 2365 2366 2367 2368 2369
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2370 2371 2372

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2373
	*nr_scanned = sc.nr_scanned;
2374 2375 2376
	return sc.nr_reclaimed;
}

2377
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2378
					   gfp_t gfp_mask,
2379
					   bool noswap)
2380
{
2381
	struct zonelist *zonelist;
2382
	unsigned long nr_reclaimed;
2383
	int nid;
2384 2385
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2386
		.may_unmap = 1,
2387
		.may_swap = !noswap,
2388
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2389 2390
		.order = 0,
		.mem_cgroup = mem_cont,
2391
		.nodemask = NULL, /* we don't care the placement */
2392 2393 2394 2395 2396
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2397 2398
	};

2399 2400 2401 2402 2403 2404 2405 2406
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
	nid = mem_cgroup_select_victim_node(mem_cont);

	zonelist = NODE_DATA(nid)->node_zonelists;
2407 2408 2409 2410 2411

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2412
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2413 2414 2415 2416

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2417 2418 2419
}
#endif

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2431
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2445 2446
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2447 2448
}

2449
/* is kswapd sleeping prematurely? */
2450 2451
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2452
{
2453
	int i;
2454 2455
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2456 2457 2458

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2459
		return true;
2460

2461
	/* Check the watermark levels */
2462
	for (i = 0; i <= classzone_idx; i++) {
2463 2464 2465 2466 2467
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2468 2469 2470 2471 2472 2473 2474 2475
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2476
			continue;
2477
		}
2478

2479
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2480
							i, 0))
2481 2482 2483
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2484
	}
2485

2486 2487 2488 2489 2490 2491
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2492
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2493 2494
	else
		return !all_zones_ok;
2495 2496
}

L
Linus Torvalds 已提交
2497 2498
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2499
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2500
 *
2501
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2512 2513 2514 2515 2516
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2517
 */
2518
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2519
							int *classzone_idx)
L
Linus Torvalds 已提交
2520 2521
{
	int all_zones_ok;
2522
	unsigned long balanced;
L
Linus Torvalds 已提交
2523 2524
	int priority;
	int i;
2525
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2526
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2527
	struct reclaim_state *reclaim_state = current->reclaim_state;
2528 2529
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2530 2531
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2532
		.may_unmap = 1,
2533
		.may_swap = 1,
2534 2535 2536 2537 2538
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2539
		.order = order,
2540
		.mem_cgroup = NULL,
2541
	};
2542 2543 2544
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2545 2546
loop_again:
	total_scanned = 0;
2547
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2548
	sc.may_writepage = !laptop_mode;
2549
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2550 2551 2552

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2553
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2554

2555 2556
		/* The swap token gets in the way of swapout... */
		if (!priority)
2557
			disable_swap_token(NULL);
2558

L
Linus Torvalds 已提交
2559
		all_zones_ok = 1;
2560
		balanced = 0;
L
Linus Torvalds 已提交
2561

2562 2563 2564 2565 2566 2567
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2568

2569 2570
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2571

2572
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2573
				continue;
L
Linus Torvalds 已提交
2574

2575 2576 2577 2578
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2579
			if (inactive_anon_is_low(zone, &sc))
2580 2581 2582
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2583
			if (!zone_watermark_ok_safe(zone, order,
2584
					high_wmark_pages(zone), 0, 0)) {
2585
				end_zone = i;
A
Andrew Morton 已提交
2586
				break;
2587 2588 2589
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2590 2591
			}
		}
A
Andrew Morton 已提交
2592 2593 2594
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2595 2596 2597
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2598
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2612
			int nr_slab;
2613
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2614

2615
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2616 2617
				continue;

2618
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2619 2620 2621
				continue;

			sc.nr_scanned = 0;
2622

2623
			nr_soft_scanned = 0;
2624 2625 2626
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2627 2628 2629 2630 2631
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2632

2633
			/*
2634 2635 2636 2637 2638 2639
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2640
			 */
2641 2642 2643 2644
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2645
			if (!zone_watermark_ok_safe(zone, order,
2646
					high_wmark_pages(zone) + balance_gap,
2647
					end_zone, 0)) {
2648
				shrink_zone(priority, zone, &sc);
2649

2650 2651 2652 2653 2654 2655 2656 2657 2658
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2659 2660 2661 2662 2663 2664
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2665
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2666
				sc.may_writepage = 1;
2667

2668 2669 2670
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2671
				continue;
2672
			}
2673

2674
			if (!zone_watermark_ok_safe(zone, order,
2675 2676 2677 2678 2679 2680 2681
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2682
				if (!zone_watermark_ok_safe(zone, order,
2683 2684
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2685 2686 2687 2688 2689 2690 2691 2692 2693
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2694
				if (i <= *classzone_idx)
2695
					balanced += zone->present_pages;
2696
			}
2697

L
Linus Torvalds 已提交
2698
		}
2699
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2700 2701 2702 2703 2704
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2705 2706 2707 2708 2709 2710
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716 2717

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2718
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2719 2720 2721
			break;
	}
out:
2722 2723 2724

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2725 2726
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2727
	 */
2728
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2729
		cond_resched();
2730 2731 2732

		try_to_freeze();

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2750 2751 2752
		goto loop_again;
	}

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
2780 2781
			if (i <= *classzone_idx)
				balanced += zone->present_pages;
2782 2783 2784
		}
	}

2785 2786 2787 2788 2789 2790
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2791
	*classzone_idx = end_zone;
2792
	return order;
L
Linus Torvalds 已提交
2793 2794
}

2795
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2806
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2807 2808 2809 2810 2811 2812 2813 2814 2815
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2816
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2839 2840
/*
 * The background pageout daemon, started as a kernel thread
2841
 * from the init process.
L
Linus Torvalds 已提交
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2854
	unsigned long order, new_order;
2855
	unsigned balanced_order;
2856
	int classzone_idx, new_classzone_idx;
2857
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2858 2859
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2860

L
Linus Torvalds 已提交
2861 2862 2863
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2864
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2865

2866 2867
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2868
	if (!cpumask_empty(cpumask))
2869
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2884
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2885
	set_freezable();
L
Linus Torvalds 已提交
2886

2887
	order = new_order = 0;
2888
	balanced_order = 0;
2889
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2890
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2891
	for ( ; ; ) {
2892
		int ret;
2893

2894 2895 2896 2897 2898
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2899 2900
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2901 2902 2903 2904 2905 2906
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2907
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2908 2909
			/*
			 * Don't sleep if someone wants a larger 'order'
2910
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2911 2912
			 */
			order = new_order;
2913
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2914
		} else {
2915 2916
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2917
			order = pgdat->kswapd_max_order;
2918
			classzone_idx = pgdat->classzone_idx;
2919 2920
			new_order = order;
			new_classzone_idx = classzone_idx;
2921
			pgdat->kswapd_max_order = 0;
2922
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2923 2924
		}

2925 2926 2927 2928 2929 2930 2931 2932
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2933 2934
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2935 2936 2937
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2938
		}
L
Linus Torvalds 已提交
2939 2940 2941 2942 2943 2944 2945
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2946
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2947 2948 2949
{
	pg_data_t *pgdat;

2950
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2951 2952
		return;

2953
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2954
		return;
2955
	pgdat = zone->zone_pgdat;
2956
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2957
		pgdat->kswapd_max_order = order;
2958 2959
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2960
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2961
		return;
2962 2963 2964 2965
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2966
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2967 2968
}

2969 2970 2971 2972 2973 2974 2975 2976
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2977
{
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3002 3003
}

3004
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3005
/*
3006
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3007 3008 3009 3010 3011
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3012
 */
3013
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3014
{
3015 3016
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3017 3018 3019
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3020
		.may_writepage = 1,
3021 3022 3023
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
3024
	};
3025 3026 3027 3028
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3029 3030
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3031

3032 3033 3034 3035
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3036

3037
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3038

3039 3040 3041
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3042

3043
	return nr_reclaimed;
L
Linus Torvalds 已提交
3044
}
3045
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3046 3047 3048 3049 3050

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3051
static int __devinit cpu_callback(struct notifier_block *nfb,
3052
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3053
{
3054
	int nid;
L
Linus Torvalds 已提交
3055

3056
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3057
		for_each_node_state(nid, N_HIGH_MEMORY) {
3058
			pg_data_t *pgdat = NODE_DATA(nid);
3059 3060 3061
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3062

3063
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3064
				/* One of our CPUs online: restore mask */
3065
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3066 3067 3068 3069 3070
		}
	}
	return NOTIFY_OK;
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3104 3105
static int __init kswapd_init(void)
{
3106
	int nid;
3107

L
Linus Torvalds 已提交
3108
	swap_setup();
3109
	for_each_node_state(nid, N_HIGH_MEMORY)
3110
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3126
#define RECLAIM_OFF 0
3127
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3128 3129 3130
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3131 3132 3133 3134 3135 3136 3137
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3138 3139 3140 3141 3142 3143
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3144 3145 3146 3147 3148 3149
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3192 3193 3194
/*
 * Try to free up some pages from this zone through reclaim.
 */
3195
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3196
{
3197
	/* Minimum pages needed in order to stay on node */
3198
	const unsigned long nr_pages = 1 << order;
3199 3200
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3201
	int priority;
3202 3203
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3204
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3205
		.may_swap = 1,
3206 3207
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3208
		.gfp_mask = gfp_mask,
3209
		.order = order,
3210
	};
3211 3212 3213
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3214
	unsigned long nr_slab_pages0, nr_slab_pages1;
3215 3216

	cond_resched();
3217 3218 3219 3220 3221 3222
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3223
	lockdep_set_current_reclaim_state(gfp_mask);
3224 3225
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3226

3227
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3228 3229 3230 3231 3232 3233
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3234
			shrink_zone(priority, zone, &sc);
3235
			priority--;
3236
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3237
	}
3238

3239 3240
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3241
		/*
3242
		 * shrink_slab() does not currently allow us to determine how
3243 3244 3245 3246
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3247
		 *
3248 3249
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3250
		 */
3251 3252 3253 3254
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3255
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3256 3257 3258 3259 3260 3261 3262 3263
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3264 3265 3266 3267 3268

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3269 3270 3271
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3272 3273
	}

3274
	p->reclaim_state = NULL;
3275
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3276
	lockdep_clear_current_reclaim_state();
3277
	return sc.nr_reclaimed >= nr_pages;
3278
}
3279 3280 3281 3282

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3283
	int ret;
3284 3285

	/*
3286 3287
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3288
	 *
3289 3290 3291 3292 3293
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3294
	 */
3295 3296
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3297
		return ZONE_RECLAIM_FULL;
3298

3299
	if (zone->all_unreclaimable)
3300
		return ZONE_RECLAIM_FULL;
3301

3302
	/*
3303
	 * Do not scan if the allocation should not be delayed.
3304
	 */
3305
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3306
		return ZONE_RECLAIM_NOSCAN;
3307 3308 3309 3310 3311 3312 3313

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3314
	node_id = zone_to_nid(zone);
3315
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3316
		return ZONE_RECLAIM_NOSCAN;
3317 3318

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3319 3320
		return ZONE_RECLAIM_NOSCAN;

3321 3322 3323
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3324 3325 3326
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3327
	return ret;
3328
}
3329
#endif
L
Lee Schermerhorn 已提交
3330 3331 3332 3333 3334 3335 3336

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3337 3338
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3339 3340
 *
 * Reasons page might not be evictable:
3341
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3342
 * (2) page is part of an mlocked VMA
3343
 *
L
Lee Schermerhorn 已提交
3344 3345 3346 3347
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3348 3349 3350
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3351 3352
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3353 3354 3355

	return 1;
}
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3375
		enum lru_list l = page_lru_base_type(page);
3376

3377 3378
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3379
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3380 3381 3382 3383 3384 3385 3386 3387
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3388
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3448

3449
static void warn_scan_unevictable_pages(void)
3450
{
3451
	printk_once(KERN_WARNING
3452
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3453
		    "disabled for lack of a legitimate use case.  If you have "
3454 3455
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3456 3457 3458 3459 3460 3461 3462 3463 3464
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3465
			   void __user *buffer,
3466 3467
			   size_t *length, loff_t *ppos)
{
3468
	warn_scan_unevictable_pages();
3469
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3470 3471 3472 3473
	scan_unevictable_pages = 0;
	return 0;
}

3474
#ifdef CONFIG_NUMA
3475 3476 3477 3478 3479
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3480 3481
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3482 3483
					  char *buf)
{
3484
	warn_scan_unevictable_pages();
3485 3486 3487
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3488 3489
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3490 3491
					const char *buf, size_t count)
{
3492
	warn_scan_unevictable_pages();
3493 3494 3495 3496
	return 1;
}


3497
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3498 3499 3500 3501 3502
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3503
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3504 3505 3506 3507
}

void scan_unevictable_unregister_node(struct node *node)
{
3508
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3509
}
3510
#endif