vmscan.c 95.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83 84 85
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
86

87 88 89 90 91
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
92 93
};

94 95 96 97 98
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
133
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
134 135 136 137

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

138
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
139 140
static bool global_reclaim(struct scan_control *sc)
{
141
	return !sc->target_mem_cgroup;
142
}
143
#else
144 145 146 147
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
148 149
#endif

150
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
151
{
152
	return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
153 154
}

155 156
static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
				       enum lru_list lru)
157
{
158
	if (!mem_cgroup_disabled())
159 160 161 162
		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
						    zone_to_nid(mz->zone),
						    zone_idx(mz->zone),
						    BIT(lru));
163

164
	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
165 166 167
}


L
Linus Torvalds 已提交
168 169 170
/*
 * Add a shrinker callback to be called from the vm
 */
171
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
172
{
173
	atomic_long_set(&shrinker->nr_in_batch, 0);
174 175 176
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
177
}
178
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
179 180 181 182

/*
 * Remove one
 */
183
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
184 185 186 187 188
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
189
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
190

191 192 193 194 195 196 197 198
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
199 200 201 202 203 204 205 206 207
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
208
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
209 210 211 212 213 214 215
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
216 217
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
218
 */
219
unsigned long shrink_slab(struct shrink_control *shrink,
220
			  unsigned long nr_pages_scanned,
221
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
222 223
{
	struct shrinker *shrinker;
224
	unsigned long ret = 0;
L
Linus Torvalds 已提交
225

226 227
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
228

229 230 231 232 233
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
234 235 236

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
237 238
		long total_scan;
		long max_pass;
239
		int shrink_ret = 0;
240 241
		long nr;
		long new_nr;
242 243
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
244

245 246 247 248
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

249 250 251 252 253
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
254
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
255 256

		total_scan = nr;
257
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
258
		delta *= max_pass;
L
Linus Torvalds 已提交
259
		do_div(delta, lru_pages + 1);
260 261
		total_scan += delta;
		if (total_scan < 0) {
262 263
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
264 265
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
266 267
		}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

283 284 285 286 287
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
288 289
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
290

291
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
292 293 294
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

295
		while (total_scan >= batch_size) {
296
			int nr_before;
L
Linus Torvalds 已提交
297

298 299
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
300
							batch_size);
L
Linus Torvalds 已提交
301 302
			if (shrink_ret == -1)
				break;
303 304
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
305 306
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
307 308 309 310

			cond_resched();
		}

311 312 313 314 315
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
316 317 318 319 320
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
321 322

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
323 324
	}
	up_read(&shrinker_rwsem);
325 326
out:
	cond_resched();
327
	return ret;
L
Linus Torvalds 已提交
328 329 330 331
}

static inline int is_page_cache_freeable(struct page *page)
{
332 333 334 335 336
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
337
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
338 339
}

340 341
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
342
{
343
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
367
	lock_page(page);
368 369
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
370 371 372
	unlock_page(page);
}

373 374 375 376 377 378 379 380 381 382 383 384
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
385
/*
A
Andrew Morton 已提交
386 387
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
388
 */
389
static pageout_t pageout(struct page *page, struct address_space *mapping,
390
			 struct scan_control *sc)
L
Linus Torvalds 已提交
391 392 393 394 395 396 397 398
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
399
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
415
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
416 417
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
418
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
419 420 421 422 423 424 425
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
426
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
427 428 429 430 431 432 433
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
434 435
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
436 437 438 439 440 441 442
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
443
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
444 445 446
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
447

L
Linus Torvalds 已提交
448 449 450 451
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
452
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
453
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
454 455 456 457 458 459
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

460
/*
N
Nick Piggin 已提交
461 462
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
463
 */
N
Nick Piggin 已提交
464
static int __remove_mapping(struct address_space *mapping, struct page *page)
465
{
466 467
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
468

N
Nick Piggin 已提交
469
	spin_lock_irq(&mapping->tree_lock);
470
	/*
N
Nick Piggin 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
494
	 */
N
Nick Piggin 已提交
495
	if (!page_freeze_refs(page, 2))
496
		goto cannot_free;
N
Nick Piggin 已提交
497 498 499
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
500
		goto cannot_free;
N
Nick Piggin 已提交
501
	}
502 503 504 505

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
506
		spin_unlock_irq(&mapping->tree_lock);
507
		swapcache_free(swap, page);
N
Nick Piggin 已提交
508
	} else {
509 510 511 512
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

513
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
514
		spin_unlock_irq(&mapping->tree_lock);
515
		mem_cgroup_uncharge_cache_page(page);
516 517 518

		if (freepage != NULL)
			freepage(page);
519 520 521 522 523
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
524
	spin_unlock_irq(&mapping->tree_lock);
525 526 527
	return 0;
}

N
Nick Piggin 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
561
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
575
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
576 577 578 579 580 581 582 583
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
584
		/*
585 586 587
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
588
		 * isolation/check_move_unevictable_pages,
589
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
590 591
		 * the page back to the evictable list.
		 *
592
		 * The other side is TestClearPageMlocked() or shmem_lock().
593 594
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

613 614 615 616 617
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
618 619 620
	put_page(page);		/* drop ref from isolate */
}

621 622 623
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
624
	PAGEREF_KEEP,
625 626 627 628
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
629
						  struct mem_cgroup_zone *mz,
630 631
						  struct scan_control *sc)
{
632
	int referenced_ptes, referenced_page;
633 634
	unsigned long vm_flags;

635 636
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
637
	referenced_page = TestClearPageReferenced(page);
638 639 640 641 642 643 644 645

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

646
	if (referenced_ptes) {
647
		if (PageSwapBacked(page))
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

665
		if (referenced_page || referenced_ptes > 1)
666 667
			return PAGEREF_ACTIVATE;

668 669 670 671 672 673
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

674 675
		return PAGEREF_KEEP;
	}
676 677

	/* Reclaim if clean, defer dirty pages to writeback */
678
	if (referenced_page && !PageSwapBacked(page))
679 680 681
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
682 683
}

L
Linus Torvalds 已提交
684
/*
A
Andrew Morton 已提交
685
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
686
 */
A
Andrew Morton 已提交
687
static unsigned long shrink_page_list(struct list_head *page_list,
688
				      struct mem_cgroup_zone *mz,
689
				      struct scan_control *sc,
690 691 692
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
693 694
{
	LIST_HEAD(ret_pages);
695
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
696
	int pgactivate = 0;
697 698
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
699
	unsigned long nr_reclaimed = 0;
700
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
701 702 703 704

	cond_resched();

	while (!list_empty(page_list)) {
705
		enum page_references references;
L
Linus Torvalds 已提交
706 707 708 709 710 711 712 713 714
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
715
		if (!trylock_page(page))
L
Linus Torvalds 已提交
716 717
			goto keep;

N
Nick Piggin 已提交
718
		VM_BUG_ON(PageActive(page));
719
		VM_BUG_ON(page_zone(page) != mz->zone);
L
Linus Torvalds 已提交
720 721

		sc->nr_scanned++;
722

N
Nick Piggin 已提交
723 724
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
725

726
		if (!sc->may_unmap && page_mapped(page))
727 728
			goto keep_locked;

L
Linus Torvalds 已提交
729 730 731 732
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

733 734 735 736
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
737
			nr_writeback++;
738 739
			unlock_page(page);
			goto keep;
740
		}
L
Linus Torvalds 已提交
741

742
		references = page_check_references(page, mz, sc);
743 744
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
745
			goto activate_locked;
746 747
		case PAGEREF_KEEP:
			goto keep_locked;
748 749 750 751
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
752 753 754 755 756

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
757
		if (PageAnon(page) && !PageSwapCache(page)) {
758 759
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
760
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
761
				goto activate_locked;
762
			may_enter_fs = 1;
N
Nick Piggin 已提交
763
		}
L
Linus Torvalds 已提交
764 765 766 767 768 769 770 771

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
772
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
773 774 775 776
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
777 778
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
779 780 781 782 783 784
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
785 786
			nr_dirty++;

787 788
			/*
			 * Only kswapd can writeback filesystem pages to
789 790
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
791
			 */
792 793
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
794 795 796 797 798 799 800 801 802
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

803 804 805
				goto keep_locked;
			}

806
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
807
				goto keep_locked;
808
			if (!may_enter_fs)
L
Linus Torvalds 已提交
809
				goto keep_locked;
810
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
811 812 813
				goto keep_locked;

			/* Page is dirty, try to write it out here */
814
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
815
			case PAGE_KEEP:
816
				nr_congested++;
L
Linus Torvalds 已提交
817 818 819 820
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
821
				if (PageWriteback(page))
822
					goto keep;
823
				if (PageDirty(page))
L
Linus Torvalds 已提交
824
					goto keep;
825

L
Linus Torvalds 已提交
826 827 828 829
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
830
				if (!trylock_page(page))
L
Linus Torvalds 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
850
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
851 852 853 854 855 856 857 858 859 860
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
861
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
862 863
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
880 881
		}

N
Nick Piggin 已提交
882
		if (!mapping || !__remove_mapping(mapping, page))
883
			goto keep_locked;
L
Linus Torvalds 已提交
884

N
Nick Piggin 已提交
885 886 887 888 889 890 891 892
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
893
free_it:
894
		nr_reclaimed++;
895 896 897 898 899 900

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
901 902
		continue;

N
Nick Piggin 已提交
903
cull_mlocked:
904 905
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
906 907 908 909
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
910
activate_locked:
911 912
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
913
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
914
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
915 916 917 918 919 920
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
921
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
922
	}
923

924 925 926 927 928 929
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
930
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
931
		zone_set_flag(mz->zone, ZONE_CONGESTED);
932

933
	free_hot_cold_page_list(&free_pages, 1);
934

L
Linus Torvalds 已提交
935
	list_splice(&ret_pages, page_list);
936
	count_vm_events(PGACTIVATE, pgactivate);
937 938
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
939
	return nr_reclaimed;
L
Linus Torvalds 已提交
940 941
}

A
Andy Whitcroft 已提交
942 943 944 945 946 947 948 949 950 951
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
952
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
953 954 955 956 957 958 959
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Mel Gorman 已提交
960
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
961 962 963
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
964
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
965

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
999

1000 1001 1002
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
H
Hugh Dickins 已提交
1027
 * @mz:		The mem_cgroup_zone to pull pages from.
L
Linus Torvalds 已提交
1028
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1029
 * @nr_scanned:	The number of pages that were scanned.
1030
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1031
 * @mode:	One of the LRU isolation modes
1032
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1033 1034 1035
 *
 * returns how many pages were moved onto *@dst.
 */
1036
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
H
Hugh Dickins 已提交
1037
		struct mem_cgroup_zone *mz, struct list_head *dst,
1038
		unsigned long *nr_scanned, struct scan_control *sc,
1039
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1040
{
H
Hugh Dickins 已提交
1041 1042
	struct lruvec *lruvec;
	struct list_head *src;
1043
	unsigned long nr_taken = 0;
1044
	unsigned long scan;
1045
	int file = is_file_lru(lru);
H
Hugh Dickins 已提交
1046 1047 1048

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
	src = &lruvec->lists[lru];
L
Linus Torvalds 已提交
1049

1050
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1051 1052
		struct page *page;

L
Linus Torvalds 已提交
1053 1054 1055
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1056
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1057

1058
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1059
		case 0:
1060
			mem_cgroup_lru_del_list(page, lru);
A
Andy Whitcroft 已提交
1061
			list_move(&page->lru, dst);
1062
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1063 1064 1065 1066 1067 1068
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1069

A
Andy Whitcroft 已提交
1070 1071 1072
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1073 1074
	}

H
Hugh Dickins 已提交
1075
	*nr_scanned = scan;
1076

1077
	trace_mm_vmscan_lru_isolate(sc->order,
1078 1079
			nr_to_scan, scan,
			nr_taken,
1080
			mode, file);
L
Linus Torvalds 已提交
1081 1082 1083
	return nr_taken;
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1095 1096 1097
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1113 1114
	VM_BUG_ON(!page_count(page));

1115 1116 1117 1118
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1119
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1120
			int lru = page_lru(page);
1121
			ret = 0;
1122
			get_page(page);
1123
			ClearPageLRU(page);
1124 1125

			del_page_from_lru_list(zone, page, lru);
1126 1127 1128 1129 1130 1131
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1143
	if (!global_reclaim(sc))
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1157
static noinline_for_stack void
1158 1159
putback_inactive_pages(struct mem_cgroup_zone *mz,
		       struct list_head *page_list)
1160
{
1161
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1162 1163
	struct zone *zone = mz->zone;
	LIST_HEAD(pages_to_free);
1164 1165 1166 1167 1168

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1169
		struct page *page = lru_to_page(page_list);
1170
		int lru;
1171

1172 1173 1174 1175 1176 1177 1178 1179
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1180
		SetPageLRU(page);
1181
		lru = page_lru(page);
1182
		add_page_to_lru_list(zone, page, lru);
1183 1184
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1185 1186
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1187
		}
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1199 1200 1201
		}
	}

1202 1203 1204 1205
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1206 1207
}

1208 1209
static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone *mz,
1210
		       struct list_head *page_list,
1211
		       unsigned long *nr_anon,
1212
		       unsigned long *nr_file)
1213
{
1214
	struct zone *zone = mz->zone;
1215
	unsigned int count[NR_LRU_LISTS] = { 0, };
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	unsigned long nr_active = 0;
	struct page *page;
	int lru;

	/*
	 * Count pages and clear active flags
	 */
	list_for_each_entry(page, page_list, lru) {
		int numpages = hpage_nr_pages(page);
		lru = page_lru_base_type(page);
		if (PageActive(page)) {
			lru += LRU_ACTIVE;
			ClearPageActive(page);
			nr_active += numpages;
		}
		count[lru] += numpages;
	}
1233

1234
	preempt_disable();
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];

1249 1250 1251
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
	preempt_enable();
1252 1253
}

L
Linus Torvalds 已提交
1254
/*
A
Andrew Morton 已提交
1255 1256
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1257
 */
1258
static noinline_for_stack unsigned long
1259
shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1260
		     struct scan_control *sc, int priority, enum lru_list lru)
L
Linus Torvalds 已提交
1261 1262
{
	LIST_HEAD(page_list);
1263
	unsigned long nr_scanned;
1264
	unsigned long nr_reclaimed = 0;
1265 1266 1267
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1268 1269
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1270
	isolate_mode_t isolate_mode = 0;
1271
	int file = is_file_lru(lru);
1272
	struct zone *zone = mz->zone;
1273
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1274

1275
	while (unlikely(too_many_isolated(zone, file, sc))) {
1276
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1277 1278 1279 1280 1281 1282

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1283
	lru_add_drain();
1284 1285

	if (!sc->may_unmap)
1286
		isolate_mode |= ISOLATE_UNMAPPED;
1287
	if (!sc->may_writepage)
1288
		isolate_mode |= ISOLATE_CLEAN;
1289

L
Linus Torvalds 已提交
1290
	spin_lock_irq(&zone->lru_lock);
1291

1292
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1293
				     sc, isolate_mode, lru);
1294
	if (global_reclaim(sc)) {
1295 1296 1297 1298 1299 1300 1301 1302
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1303
	spin_unlock_irq(&zone->lru_lock);
1304

1305
	if (nr_taken == 0)
1306
		return 0;
A
Andy Whitcroft 已提交
1307

1308 1309
	update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);

1310
	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1311
						&nr_dirty, &nr_writeback);
1312

1313 1314
	spin_lock_irq(&zone->lru_lock);

1315 1316 1317
	reclaim_stat->recent_scanned[0] += nr_anon;
	reclaim_stat->recent_scanned[1] += nr_file;

Y
Ying Han 已提交
1318 1319 1320 1321 1322 1323 1324 1325
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1326

1327 1328 1329 1330 1331 1332 1333 1334
	putback_inactive_pages(mz, &page_list);

	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1362 1363 1364 1365
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
M
Mel Gorman 已提交
1366
		trace_shrink_flags(file));
1367
	return nr_reclaimed;
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1387

1388 1389
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1390
				     struct list_head *pages_to_free,
1391 1392 1393 1394 1395 1396
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

	while (!list_empty(list)) {
1397 1398
		struct lruvec *lruvec;

1399 1400 1401 1402 1403
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1404 1405
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1406
		pgmoved += hpage_nr_pages(page);
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1419 1420 1421 1422 1423 1424
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1425

H
Hugh Dickins 已提交
1426
static void shrink_active_list(unsigned long nr_to_scan,
1427 1428
			       struct mem_cgroup_zone *mz,
			       struct scan_control *sc,
1429
			       int priority, enum lru_list lru)
L
Linus Torvalds 已提交
1430
{
1431
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1432
	unsigned long nr_scanned;
1433
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1434
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1435
	LIST_HEAD(l_active);
1436
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1437
	struct page *page;
1438
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1439
	unsigned long nr_rotated = 0;
1440
	isolate_mode_t isolate_mode = 0;
1441
	int file = is_file_lru(lru);
1442
	struct zone *zone = mz->zone;
L
Linus Torvalds 已提交
1443 1444

	lru_add_drain();
1445 1446

	if (!sc->may_unmap)
1447
		isolate_mode |= ISOLATE_UNMAPPED;
1448
	if (!sc->may_writepage)
1449
		isolate_mode |= ISOLATE_CLEAN;
1450

L
Linus Torvalds 已提交
1451
	spin_lock_irq(&zone->lru_lock);
1452

1453
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1454
				     isolate_mode, lru);
1455
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1456
		zone->pages_scanned += nr_scanned;
1457

1458
	reclaim_stat->recent_scanned[file] += nr_taken;
1459

H
Hugh Dickins 已提交
1460
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1461
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1462
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1463 1464 1465 1466 1467 1468
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1469

L
Lee Schermerhorn 已提交
1470 1471 1472 1473 1474
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1475 1476 1477 1478 1479 1480 1481 1482
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1483 1484
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1485
			nr_rotated += hpage_nr_pages(page);
1486 1487 1488 1489 1490 1491 1492 1493 1494
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1495
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1496 1497 1498 1499
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1500

1501
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1502 1503 1504
		list_add(&page->lru, &l_inactive);
	}

1505
	/*
1506
	 * Move pages back to the lru list.
1507
	 */
1508
	spin_lock_irq(&zone->lru_lock);
1509
	/*
1510 1511 1512 1513
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1514
	 */
1515
	reclaim_stat->recent_rotated[file] += nr_rotated;
1516

1517 1518
	move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
	move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1519
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1520
	spin_unlock_irq(&zone->lru_lock);
1521 1522

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1523 1524
}

1525
#ifdef CONFIG_SWAP
1526
static int inactive_anon_is_low_global(struct zone *zone)
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1539 1540 1541 1542 1543 1544 1545 1546
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1547
static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1548
{
1549 1550 1551 1552 1553 1554 1555
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1556
	if (!mem_cgroup_disabled())
1557 1558 1559 1560
		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
						       mz->zone);

	return inactive_anon_is_low_global(mz->zone);
1561
}
1562
#else
1563
static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1564 1565 1566 1567
{
	return 0;
}
#endif
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1581
 * @mz: memory cgroup and zone to check
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1593
static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1594
{
1595
	if (!mem_cgroup_disabled())
1596 1597
		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
						       mz->zone);
1598

1599
	return inactive_file_is_low_global(mz->zone);
1600 1601
}

1602
static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1603 1604
{
	if (file)
1605
		return inactive_file_is_low(mz);
1606
	else
1607
		return inactive_anon_is_low(mz);
1608 1609
}

1610
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1611 1612
				 struct mem_cgroup_zone *mz,
				 struct scan_control *sc, int priority)
1613
{
1614 1615
	int file = is_file_lru(lru);

1616
	if (is_active_lru(lru)) {
1617
		if (inactive_list_is_low(mz, file))
1618
			shrink_active_list(nr_to_scan, mz, sc, priority, lru);
1619 1620 1621
		return 0;
	}

1622
	return shrink_inactive_list(nr_to_scan, mz, sc, priority, lru);
1623 1624
}

1625
static int vmscan_swappiness(struct scan_control *sc)
1626
{
1627
	if (global_reclaim(sc))
1628
		return vm_swappiness;
1629
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1630 1631
}

1632 1633 1634 1635 1636 1637
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1638
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1639
 */
1640 1641
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
			   unsigned long *nr, int priority)
1642 1643 1644 1645
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1646
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1647
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1648
	enum lru_list lru;
1649
	int noswap = 0;
1650
	bool force_scan = false;
1651

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1662
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1663
		force_scan = true;
1664
	if (!global_reclaim(sc))
1665
		force_scan = true;
1666 1667 1668 1669 1670 1671 1672 1673 1674

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1675

1676 1677 1678 1679
	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1680

1681
	if (global_reclaim(sc)) {
1682
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1683 1684
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1685
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1686 1687 1688 1689
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1690
		}
1691 1692
	}

1693 1694 1695 1696
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1697 1698
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1711
	spin_lock_irq(&mz->zone->lru_lock);
1712 1713 1714
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1715 1716
	}

1717 1718 1719
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1720 1721 1722
	}

	/*
1723 1724 1725
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1726
	 */
1727
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1728
	ap /= reclaim_stat->recent_rotated[0] + 1;
1729

1730
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1731
	fp /= reclaim_stat->recent_rotated[1] + 1;
1732
	spin_unlock_irq(&mz->zone->lru_lock);
1733

1734 1735 1736 1737
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1738 1739
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1740
		unsigned long scan;
1741

H
Hugh Dickins 已提交
1742
		scan = zone_nr_lru_pages(mz, lru);
1743
		if (priority || noswap || !vmscan_swappiness(sc)) {
1744
			scan >>= priority;
1745 1746
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1747 1748
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1749
		nr[lru] = scan;
1750
	}
1751
}
1752

M
Mel Gorman 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
/* Use reclaim/compaction for costly allocs or under memory pressure */
static bool in_reclaim_compaction(int priority, struct scan_control *sc)
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
			 priority < DEF_PRIORITY - 2))
		return true;

	return false;
}

1764
/*
M
Mel Gorman 已提交
1765 1766 1767 1768 1769
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1770
 */
1771
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1772 1773
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
M
Mel Gorman 已提交
1774
					int priority,
1775 1776 1777 1778 1779 1780
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
M
Mel Gorman 已提交
1781
	if (!in_reclaim_compaction(priority, sc))
1782 1783
		return false;

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1806 1807 1808 1809 1810 1811

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1812
	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1813
	if (nr_swap_pages > 0)
1814
		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1815 1816 1817 1818 1819
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1820
	switch (compaction_suitable(mz->zone, sc->order)) {
1821 1822 1823 1824 1825 1826 1827 1828
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1829 1830 1831
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1832 1833
static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
				   struct scan_control *sc)
L
Linus Torvalds 已提交
1834
{
1835
	unsigned long nr[NR_LRU_LISTS];
1836
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1837
	enum lru_list lru;
1838
	unsigned long nr_reclaimed, nr_scanned;
1839
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1840
	struct blk_plug plug;
1841

1842 1843
restart:
	nr_reclaimed = 0;
1844
	nr_scanned = sc->nr_scanned;
1845
	get_scan_count(mz, sc, nr, priority);
L
Linus Torvalds 已提交
1846

1847
	blk_start_plug(&plug);
1848 1849
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1850 1851
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1852
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1853 1854
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1855

H
Hugh Dickins 已提交
1856
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1857
							    mz, sc, priority);
1858
			}
L
Linus Torvalds 已提交
1859
		}
1860 1861 1862 1863 1864 1865 1866 1867
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1868
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1869
			break;
L
Linus Torvalds 已提交
1870
	}
1871
	blk_finish_plug(&plug);
1872
	sc->nr_reclaimed += nr_reclaimed;
1873

1874 1875 1876 1877
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1878
	if (inactive_anon_is_low(mz))
1879 1880
		shrink_active_list(SWAP_CLUSTER_MAX, mz,
				   sc, priority, LRU_ACTIVE_ANON);
1881

1882
	/* reclaim/compaction might need reclaim to continue */
1883
	if (should_continue_reclaim(mz, nr_reclaimed,
M
Mel Gorman 已提交
1884 1885
					sc->nr_scanned - nr_scanned,
					priority, sc))
1886 1887
		goto restart;

1888
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1889 1890
}

1891 1892 1893
static void shrink_zone(int priority, struct zone *zone,
			struct scan_control *sc)
{
1894 1895
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1896
		.zone = zone,
1897
		.priority = priority,
1898
	};
1899 1900 1901 1902 1903 1904 1905 1906
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
1907

1908 1909 1910 1911 1912 1913
		shrink_mem_cgroup_zone(priority, &mz, sc);
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1914 1915 1916 1917
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1918 1919 1920 1921 1922 1923 1924
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1925 1926
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1953
	if (compaction_deferred(zone, sc->order))
1954 1955 1956 1957 1958 1959 1960 1961 1962
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1963 1964 1965 1966 1967
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1968 1969
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1970 1971
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1972 1973 1974
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1975 1976 1977
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
1978 1979
 *
 * This function returns true if a zone is being reclaimed for a costly
1980
 * high-order allocation and compaction is ready to begin. This indicates to
1981 1982
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
1983
 */
1984
static bool shrink_zones(int priority, struct zonelist *zonelist,
1985
					struct scan_control *sc)
L
Linus Torvalds 已提交
1986
{
1987
	struct zoneref *z;
1988
	struct zone *zone;
1989 1990
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
1991
	bool aborted_reclaim = false;
1992

1993 1994 1995 1996 1997 1998 1999 2000
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2001 2002
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2003
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2004
			continue;
2005 2006 2007 2008
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2009
		if (global_reclaim(sc)) {
2010 2011
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2012
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2013
				continue;	/* Let kswapd poll it */
2014 2015
			if (COMPACTION_BUILD) {
				/*
2016 2017 2018 2019 2020
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2021 2022
				 * noticeable problem, like transparent huge
				 * page allocations.
2023
				 */
2024
				if (compaction_ready(zone, sc)) {
2025
					aborted_reclaim = true;
2026
					continue;
2027
				}
2028
			}
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2042
		}
2043

2044
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2045
	}
2046

2047
	return aborted_reclaim;
2048 2049 2050 2051 2052 2053 2054
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2055
/* All zones in zonelist are unreclaimable? */
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2068 2069
		if (!zone->all_unreclaimable)
			return false;
2070 2071
	}

2072
	return true;
L
Linus Torvalds 已提交
2073
}
2074

L
Linus Torvalds 已提交
2075 2076 2077 2078 2079 2080 2081 2082
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2083 2084 2085 2086
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2087 2088 2089
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2090
 */
2091
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2092 2093
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2094 2095
{
	int priority;
2096
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2097
	struct reclaim_state *reclaim_state = current->reclaim_state;
2098
	struct zoneref *z;
2099
	struct zone *zone;
2100
	unsigned long writeback_threshold;
2101
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2102

2103 2104
	delayacct_freepages_start();

2105
	if (global_reclaim(sc))
2106
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2107 2108

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2109
		sc->nr_scanned = 0;
2110
		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2111

2112 2113 2114 2115
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2116
		if (global_reclaim(sc)) {
2117
			unsigned long lru_pages = 0;
2118 2119
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2120 2121 2122 2123 2124 2125
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2126
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2127
			if (reclaim_state) {
2128
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2129 2130
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2131
		}
2132
		total_scanned += sc->nr_scanned;
2133
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2143 2144
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2145 2146
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2147
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2148 2149 2150
		}

		/* Take a nap, wait for some writeback to complete */
2151
		if (!sc->hibernation_mode && sc->nr_scanned &&
2152 2153 2154 2155
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2156 2157
						&cpuset_current_mems_allowed,
						&preferred_zone);
2158 2159
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2160
	}
2161

L
Linus Torvalds 已提交
2162
out:
2163 2164
	delayacct_freepages_end();

2165 2166 2167
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2168 2169 2170 2171 2172 2173 2174 2175
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2176 2177
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2178 2179
		return 1;

2180
	/* top priority shrink_zones still had more to do? don't OOM, then */
2181
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2182 2183 2184
		return 1;

	return 0;
L
Linus Torvalds 已提交
2185 2186
}

2187
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2188
				gfp_t gfp_mask, nodemask_t *nodemask)
2189
{
2190
	unsigned long nr_reclaimed;
2191 2192 2193
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2194
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2195
		.may_unmap = 1,
2196
		.may_swap = 1,
2197
		.order = order,
2198
		.target_mem_cgroup = NULL,
2199
		.nodemask = nodemask,
2200
	};
2201 2202 2203
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2204

2205 2206 2207 2208
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2209
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2210 2211 2212 2213

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2214 2215
}

2216
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2217

2218
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2219
						gfp_t gfp_mask, bool noswap,
2220 2221
						struct zone *zone,
						unsigned long *nr_scanned)
2222 2223
{
	struct scan_control sc = {
2224
		.nr_scanned = 0,
2225
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2226 2227 2228 2229
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2230
		.target_mem_cgroup = memcg,
2231
	};
2232
	struct mem_cgroup_zone mz = {
2233
		.mem_cgroup = memcg,
2234 2235
		.zone = zone,
	};
2236

2237 2238
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2239 2240 2241 2242 2243

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2244 2245 2246 2247 2248 2249 2250
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2251
	shrink_mem_cgroup_zone(0, &mz, &sc);
2252 2253 2254

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2255
	*nr_scanned = sc.nr_scanned;
2256 2257 2258
	return sc.nr_reclaimed;
}

2259
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2260
					   gfp_t gfp_mask,
2261
					   bool noswap)
2262
{
2263
	struct zonelist *zonelist;
2264
	unsigned long nr_reclaimed;
2265
	int nid;
2266 2267
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2268
		.may_unmap = 1,
2269
		.may_swap = !noswap,
2270
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2271
		.order = 0,
2272
		.target_mem_cgroup = memcg,
2273
		.nodemask = NULL, /* we don't care the placement */
2274 2275 2276 2277 2278
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2279 2280
	};

2281 2282 2283 2284 2285
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2286
	nid = mem_cgroup_select_victim_node(memcg);
2287 2288

	zonelist = NODE_DATA(nid)->node_zonelists;
2289 2290 2291 2292 2293

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2294
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2295 2296 2297 2298

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2299 2300 2301
}
#endif

2302 2303 2304
static void age_active_anon(struct zone *zone, struct scan_control *sc,
			    int priority)
{
2305
	struct mem_cgroup *memcg;
2306

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};

		if (inactive_anon_is_low(&mz))
			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2319
					   sc, priority, LRU_ACTIVE_ANON);
2320 2321 2322

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2323 2324
}

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2336
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2350 2351
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2352 2353
}

2354
/* is kswapd sleeping prematurely? */
2355 2356
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2357
{
2358
	int i;
2359 2360
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2361 2362 2363

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2364
		return true;
2365

2366
	/* Check the watermark levels */
2367
	for (i = 0; i <= classzone_idx; i++) {
2368 2369 2370 2371 2372
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2373 2374 2375 2376 2377 2378 2379 2380
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2381
			continue;
2382
		}
2383

2384
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2385
							i, 0))
2386 2387 2388
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2389
	}
2390

2391 2392 2393 2394 2395 2396
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2397
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2398 2399
	else
		return !all_zones_ok;
2400 2401
}

L
Linus Torvalds 已提交
2402 2403
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2404
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2405
 *
2406
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2417 2418 2419 2420 2421
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2422
 */
2423
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2424
							int *classzone_idx)
L
Linus Torvalds 已提交
2425 2426
{
	int all_zones_ok;
2427
	unsigned long balanced;
L
Linus Torvalds 已提交
2428 2429
	int priority;
	int i;
2430
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2431
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2432
	struct reclaim_state *reclaim_state = current->reclaim_state;
2433 2434
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2435 2436
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2437
		.may_unmap = 1,
2438
		.may_swap = 1,
2439 2440 2441 2442 2443
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2444
		.order = order,
2445
		.target_mem_cgroup = NULL,
2446
	};
2447 2448 2449
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2450 2451
loop_again:
	total_scanned = 0;
2452
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2453
	sc.may_writepage = !laptop_mode;
2454
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2455 2456 2457

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2458
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2459 2460

		all_zones_ok = 1;
2461
		balanced = 0;
L
Linus Torvalds 已提交
2462

2463 2464 2465 2466 2467 2468
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2469

2470 2471
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2472

2473
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2474
				continue;
L
Linus Torvalds 已提交
2475

2476 2477 2478 2479
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2480
			age_active_anon(zone, &sc, priority);
2481

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2493
			if (!zone_watermark_ok_safe(zone, order,
2494
					high_wmark_pages(zone), 0, 0)) {
2495
				end_zone = i;
A
Andrew Morton 已提交
2496
				break;
2497 2498 2499
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2500 2501
			}
		}
A
Andrew Morton 已提交
2502 2503 2504
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2505 2506 2507
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2508
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2522
			int nr_slab, testorder;
2523
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2524

2525
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2526 2527
				continue;

2528
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2529 2530 2531
				continue;

			sc.nr_scanned = 0;
2532

2533
			nr_soft_scanned = 0;
2534 2535 2536
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2537 2538 2539 2540 2541
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2542

2543
			/*
2544 2545 2546 2547 2548 2549
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2550
			 */
2551 2552 2553 2554
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2568
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2569
				    !zone_watermark_ok_safe(zone, testorder,
2570
					high_wmark_pages(zone) + balance_gap,
2571
					end_zone, 0)) {
2572
				shrink_zone(priority, zone, &sc);
2573

2574 2575 2576 2577 2578 2579 2580 2581 2582
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2589
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2590
				sc.may_writepage = 1;
2591

2592 2593 2594
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2595
				continue;
2596
			}
2597

2598
			if (!zone_watermark_ok_safe(zone, testorder,
2599 2600 2601 2602 2603 2604 2605
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2606
				if (!zone_watermark_ok_safe(zone, order,
2607 2608
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2609 2610 2611 2612 2613 2614 2615 2616 2617
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2618
				if (i <= *classzone_idx)
2619
					balanced += zone->present_pages;
2620
			}
2621

L
Linus Torvalds 已提交
2622
		}
2623
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2629 2630 2631 2632 2633 2634
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640 2641

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2642
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2643 2644 2645
			break;
	}
out:
2646 2647 2648

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2649 2650
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2651
	 */
2652
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2653
		cond_resched();
2654 2655 2656

		try_to_freeze();

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2674 2675 2676
		goto loop_again;
	}

2677 2678 2679 2680 2681 2682 2683 2684 2685
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2686 2687
		int zones_need_compaction = 1;

2688 2689 2690 2691 2692 2693 2694 2695 2696
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

2697
			/* Would compaction fail due to lack of free memory? */
2698 2699
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2700 2701
				goto loop_again;

2702 2703 2704 2705 2706 2707 2708
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2709 2710 2711 2712 2713
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2714 2715 2716
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2717 2718 2719

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2720 2721
	}

2722 2723 2724 2725 2726 2727
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2728
	*classzone_idx = end_zone;
2729
	return order;
L
Linus Torvalds 已提交
2730 2731
}

2732
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2743
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2744 2745 2746 2747 2748 2749 2750 2751 2752
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2753
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2776 2777
/*
 * The background pageout daemon, started as a kernel thread
2778
 * from the init process.
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2791
	unsigned long order, new_order;
2792
	unsigned balanced_order;
2793
	int classzone_idx, new_classzone_idx;
2794
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2795 2796
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2797

L
Linus Torvalds 已提交
2798 2799 2800
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2801
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2802

2803 2804
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2805
	if (!cpumask_empty(cpumask))
2806
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2821
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2822
	set_freezable();
L
Linus Torvalds 已提交
2823

2824
	order = new_order = 0;
2825
	balanced_order = 0;
2826
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2827
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2828
	for ( ; ; ) {
2829
		int ret;
2830

2831 2832 2833 2834 2835
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2836 2837
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2838 2839 2840 2841 2842 2843
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2844
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2845 2846
			/*
			 * Don't sleep if someone wants a larger 'order'
2847
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2848 2849
			 */
			order = new_order;
2850
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2851
		} else {
2852 2853
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2854
			order = pgdat->kswapd_max_order;
2855
			classzone_idx = pgdat->classzone_idx;
2856 2857
			new_order = order;
			new_classzone_idx = classzone_idx;
2858
			pgdat->kswapd_max_order = 0;
2859
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2860 2861
		}

2862 2863 2864 2865 2866 2867 2868 2869
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2870 2871
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2872 2873 2874
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2875
		}
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881 2882
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2883
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2884 2885 2886
{
	pg_data_t *pgdat;

2887
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2888 2889
		return;

2890
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2891
		return;
2892
	pgdat = zone->zone_pgdat;
2893
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2894
		pgdat->kswapd_max_order = order;
2895 2896
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2897
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2898
		return;
2899 2900 2901 2902
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2903
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2904 2905
}

2906 2907 2908 2909 2910 2911 2912 2913
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2914
{
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2939 2940
}

2941
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2942
/*
2943
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2944 2945 2946 2947 2948
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2949
 */
2950
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2951
{
2952 2953
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2954 2955 2956
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2957
		.may_writepage = 1,
2958 2959 2960
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
2961
	};
2962 2963 2964 2965
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2966 2967
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2968

2969 2970 2971 2972
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2973

2974
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2975

2976 2977 2978
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2979

2980
	return nr_reclaimed;
L
Linus Torvalds 已提交
2981
}
2982
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2988
static int __devinit cpu_callback(struct notifier_block *nfb,
2989
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2990
{
2991
	int nid;
L
Linus Torvalds 已提交
2992

2993
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2994
		for_each_node_state(nid, N_HIGH_MEMORY) {
2995
			pg_data_t *pgdat = NODE_DATA(nid);
2996 2997 2998
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2999

3000
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3001
				/* One of our CPUs online: restore mask */
3002
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007
		}
	}
	return NOTIFY_OK;
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3041 3042
static int __init kswapd_init(void)
{
3043
	int nid;
3044

L
Linus Torvalds 已提交
3045
	swap_setup();
3046
	for_each_node_state(nid, N_HIGH_MEMORY)
3047
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3063
#define RECLAIM_OFF 0
3064
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3065 3066 3067
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3068 3069 3070 3071 3072 3073 3074
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3075 3076 3077 3078 3079 3080
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3081 3082 3083 3084 3085 3086
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3129 3130 3131
/*
 * Try to free up some pages from this zone through reclaim.
 */
3132
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3133
{
3134
	/* Minimum pages needed in order to stay on node */
3135
	const unsigned long nr_pages = 1 << order;
3136 3137
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3138
	int priority;
3139 3140
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3141
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3142
		.may_swap = 1,
3143 3144
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3145
		.gfp_mask = gfp_mask,
3146
		.order = order,
3147
	};
3148 3149 3150
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3151
	unsigned long nr_slab_pages0, nr_slab_pages1;
3152 3153

	cond_resched();
3154 3155 3156 3157 3158 3159
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3160
	lockdep_set_current_reclaim_state(gfp_mask);
3161 3162
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3163

3164
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3165 3166 3167 3168 3169 3170
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3171
			shrink_zone(priority, zone, &sc);
3172
			priority--;
3173
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3174
	}
3175

3176 3177
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3178
		/*
3179
		 * shrink_slab() does not currently allow us to determine how
3180 3181 3182 3183
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3184
		 *
3185 3186
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3187
		 */
3188 3189 3190 3191
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3192
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3193 3194 3195 3196 3197 3198 3199 3200
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3201 3202 3203 3204 3205

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3206 3207 3208
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3209 3210
	}

3211
	p->reclaim_state = NULL;
3212
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3213
	lockdep_clear_current_reclaim_state();
3214
	return sc.nr_reclaimed >= nr_pages;
3215
}
3216 3217 3218 3219

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3220
	int ret;
3221 3222

	/*
3223 3224
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3225
	 *
3226 3227 3228 3229 3230
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3231
	 */
3232 3233
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3234
		return ZONE_RECLAIM_FULL;
3235

3236
	if (zone->all_unreclaimable)
3237
		return ZONE_RECLAIM_FULL;
3238

3239
	/*
3240
	 * Do not scan if the allocation should not be delayed.
3241
	 */
3242
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3243
		return ZONE_RECLAIM_NOSCAN;
3244 3245 3246 3247 3248 3249 3250

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3251
	node_id = zone_to_nid(zone);
3252
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3253
		return ZONE_RECLAIM_NOSCAN;
3254 3255

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3256 3257
		return ZONE_RECLAIM_NOSCAN;

3258 3259 3260
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3261 3262 3263
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3264
	return ret;
3265
}
3266
#endif
L
Lee Schermerhorn 已提交
3267 3268 3269 3270 3271 3272 3273

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3274 3275
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3276 3277
 *
 * Reasons page might not be evictable:
3278
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3279
 * (2) page is part of an mlocked VMA
3280
 *
L
Lee Schermerhorn 已提交
3281 3282 3283 3284
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3285 3286 3287
	if (mapping_unevictable(page_mapping(page)))
		return 0;

3288
	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
N
Nick Piggin 已提交
3289
		return 0;
L
Lee Schermerhorn 已提交
3290 3291 3292

	return 1;
}
3293

3294
#ifdef CONFIG_SHMEM
3295
/**
3296 3297 3298
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3299
 *
3300
 * Checks pages for evictability and moves them to the appropriate lru list.
3301 3302
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3303
 */
3304
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3305
{
3306
	struct lruvec *lruvec;
3307 3308 3309 3310
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3311

3312 3313 3314
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3315

3316 3317 3318 3319 3320 3321 3322 3323
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3324

3325 3326
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3327

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
			__dec_zone_state(zone, NR_UNEVICTABLE);
			lruvec = mem_cgroup_lru_move_lists(zone, page,
						LRU_UNEVICTABLE, lru);
			list_move(&page->lru, &lruvec->lists[lru]);
			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
			pgrescued++;
3339
		}
3340
	}
3341

3342 3343 3344 3345
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3346 3347
	}
}
3348
#endif /* CONFIG_SHMEM */
3349

3350
static void warn_scan_unevictable_pages(void)
3351
{
3352
	printk_once(KERN_WARNING
3353
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3354
		    "disabled for lack of a legitimate use case.  If you have "
3355 3356
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3357 3358 3359 3360 3361 3362 3363 3364 3365
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3366
			   void __user *buffer,
3367 3368
			   size_t *length, loff_t *ppos)
{
3369
	warn_scan_unevictable_pages();
3370
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3371 3372 3373 3374
	scan_unevictable_pages = 0;
	return 0;
}

3375
#ifdef CONFIG_NUMA
3376 3377 3378 3379 3380
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3381 3382
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3383 3384
					  char *buf)
{
3385
	warn_scan_unevictable_pages();
3386 3387 3388
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3389 3390
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3391 3392
					const char *buf, size_t count)
{
3393
	warn_scan_unevictable_pages();
3394 3395 3396 3397
	return 1;
}


3398
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3399 3400 3401 3402 3403
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3404
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3405 3406 3407 3408
}

void scan_unevictable_unregister_node(struct node *node)
{
3409
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3410
}
3411
#endif