vmscan.c 93.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

98
	int swappiness;
99

A
Andy Whitcroft 已提交
100
	int order;
101

102
	/*
103 104
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
105
	 */
106
	reclaim_mode_t reclaim_mode;
107

108 109 110
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

111 112 113 114 115
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
152
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
153 154 155 156

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

157
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159
#else
160
#define scanning_global_lru(sc)	(1)
161 162
#endif

163 164 165
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
166
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
167 168
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

169 170 171
	return &zone->reclaim_stat;
}

172 173
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
174
{
175
	if (!scanning_global_lru(sc))
176 177
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

178 179 180 181
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
182 183 184
/*
 * Add a shrinker callback to be called from the vm
 */
185
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
186
{
187 188 189 190
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
191
}
192
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
193 194 195 196

/*
 * Remove one
 */
197
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
198 199 200 201 202
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
203
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
214
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
215 216 217 218 219 220 221
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
222 223
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
224
 */
225 226
unsigned long shrink_slab(struct shrink_control *shrink,
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
227 228
{
	struct shrinker *shrinker;
229
	unsigned long ret = 0;
230 231
	unsigned long scanned = shrink->nr_scanned;
	gfp_t gfp_mask = shrink->gfp_mask;
L
Linus Torvalds 已提交
232 233 234 235

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

236 237 238 239 240
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
241 242 243 244

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
245
		unsigned long max_pass;
L
Linus Torvalds 已提交
246

247
		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
L
Linus Torvalds 已提交
248
		delta = (4 * scanned) / shrinker->seeks;
249
		delta *= max_pass;
L
Linus Torvalds 已提交
250 251
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
252
		if (shrinker->nr < 0) {
253 254 255
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
256 257 258 259 260 261 262 263 264 265
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
266 267 268 269 270 271 272

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
273
			int nr_before;
L
Linus Torvalds 已提交
274

275 276 277
			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
								gfp_mask);
L
Linus Torvalds 已提交
278 279
			if (shrink_ret == -1)
				break;
280 281
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
282
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
283 284 285 286 287 288 289 290
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
291 292
out:
	cond_resched();
293
	return ret;
L
Linus Torvalds 已提交
294 295
}

296
static void set_reclaim_mode(int priority, struct scan_control *sc,
297 298
				   bool sync)
{
299
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
300 301

	/*
302 303 304
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
305
	 */
306
	if (COMPACTION_BUILD)
307
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
308
	else
309
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
310 311

	/*
312 313 314
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
315 316
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
317
		sc->reclaim_mode |= syncmode;
318
	else if (sc->order && priority < DEF_PRIORITY - 2)
319
		sc->reclaim_mode |= syncmode;
320
	else
321
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
322 323
}

324
static void reset_reclaim_mode(struct scan_control *sc)
325
{
326
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
327 328
}

L
Linus Torvalds 已提交
329 330
static inline int is_page_cache_freeable(struct page *page)
{
331 332 333 334 335
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
336
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
337 338
}

339 340
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
341
{
342
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
343 344 345 346 347
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
348 349 350 351

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
370
	lock_page(page);
371 372
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
373 374 375
	unlock_page(page);
}

376 377 378 379 380 381 382 383 384 385 386 387
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
388
/*
A
Andrew Morton 已提交
389 390
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
391
 */
392
static pageout_t pageout(struct page *page, struct address_space *mapping,
393
			 struct scan_control *sc)
L
Linus Torvalds 已提交
394 395 396 397 398 399 400 401
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
402
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
418
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
419 420
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
421
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
422 423 424 425 426 427 428
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
429
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
430 431 432 433 434 435 436
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
437 438
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
439 440 441 442 443 444 445
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
446
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
447 448 449
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
450 451 452 453 454 455

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
456
		if (PageWriteback(page) &&
457
		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
458 459
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
460 461 462 463
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
464
		trace_mm_vmscan_writepage(page,
465
			trace_reclaim_flags(page, sc->reclaim_mode));
466
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
467 468 469 470 471 472
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

473
/*
N
Nick Piggin 已提交
474 475
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
476
 */
N
Nick Piggin 已提交
477
static int __remove_mapping(struct address_space *mapping, struct page *page)
478
{
479 480
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
481

N
Nick Piggin 已提交
482
	spin_lock_irq(&mapping->tree_lock);
483
	/*
N
Nick Piggin 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
507
	 */
N
Nick Piggin 已提交
508
	if (!page_freeze_refs(page, 2))
509
		goto cannot_free;
N
Nick Piggin 已提交
510 511 512
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
513
		goto cannot_free;
N
Nick Piggin 已提交
514
	}
515 516 517 518

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
519
		spin_unlock_irq(&mapping->tree_lock);
520
		swapcache_free(swap, page);
N
Nick Piggin 已提交
521
	} else {
522 523 524 525
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

526
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
527
		spin_unlock_irq(&mapping->tree_lock);
528
		mem_cgroup_uncharge_cache_page(page);
529 530 531

		if (freepage != NULL)
			freepage(page);
532 533 534 535 536
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
537
	spin_unlock_irq(&mapping->tree_lock);
538 539 540
	return 0;
}

N
Nick Piggin 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
574
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
588
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
589 590 591 592 593 594 595 596
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
597 598 599 600 601 602 603 604 605 606
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

625 626 627 628 629
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
630 631 632
	put_page(page);		/* drop ref from isolate */
}

633 634 635
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
636
	PAGEREF_KEEP,
637 638 639 640 641 642
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
643
	int referenced_ptes, referenced_page;
644 645
	unsigned long vm_flags;

646 647
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
648 649

	/* Lumpy reclaim - ignore references */
650
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
651 652 653 654 655 656 657 658 659
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
684 685

	/* Reclaim if clean, defer dirty pages to writeback */
686
	if (referenced_page && !PageSwapBacked(page))
687 688 689
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
690 691
}

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
710
/*
A
Andrew Morton 已提交
711
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
712
 */
A
Andrew Morton 已提交
713
static unsigned long shrink_page_list(struct list_head *page_list,
714
				      struct zone *zone,
715
				      struct scan_control *sc)
L
Linus Torvalds 已提交
716 717
{
	LIST_HEAD(ret_pages);
718
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
719
	int pgactivate = 0;
720 721
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
722
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
723 724 725 726

	cond_resched();

	while (!list_empty(page_list)) {
727
		enum page_references references;
L
Linus Torvalds 已提交
728 729 730 731 732 733 734 735 736
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
737
		if (!trylock_page(page))
L
Linus Torvalds 已提交
738 739
			goto keep;

N
Nick Piggin 已提交
740
		VM_BUG_ON(PageActive(page));
741
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
742 743

		sc->nr_scanned++;
744

N
Nick Piggin 已提交
745 746
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
747

748
		if (!sc->may_unmap && page_mapped(page))
749 750
			goto keep_locked;

L
Linus Torvalds 已提交
751 752 753 754
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

755 756 757 758 759 760 761 762 763 764 765 766
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
767
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
768
			    may_enter_fs)
769
				wait_on_page_writeback(page);
770 771 772 773
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
774
		}
L
Linus Torvalds 已提交
775

776 777 778
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
779
			goto activate_locked;
780 781
		case PAGEREF_KEEP:
			goto keep_locked;
782 783 784 785
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
786 787 788 789 790

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
791
		if (PageAnon(page) && !PageSwapCache(page)) {
792 793
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
794
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
795
				goto activate_locked;
796
			may_enter_fs = 1;
N
Nick Piggin 已提交
797
		}
L
Linus Torvalds 已提交
798 799 800 801 802 803 804 805

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
806
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
807 808 809 810
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
811 812
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
813 814 815 816 817 818
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
819 820
			nr_dirty++;

821
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
822
				goto keep_locked;
823
			if (!may_enter_fs)
L
Linus Torvalds 已提交
824
				goto keep_locked;
825
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
826 827 828
				goto keep_locked;

			/* Page is dirty, try to write it out here */
829
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
830
			case PAGE_KEEP:
831
				nr_congested++;
L
Linus Torvalds 已提交
832 833 834 835
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
836 837 838
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
839
					goto keep;
840

L
Linus Torvalds 已提交
841 842 843 844
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
845
				if (!trylock_page(page))
L
Linus Torvalds 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
865
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
866 867 868 869 870 871 872 873 874 875
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
876
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
877 878
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
895 896
		}

N
Nick Piggin 已提交
897
		if (!mapping || !__remove_mapping(mapping, page))
898
			goto keep_locked;
L
Linus Torvalds 已提交
899

N
Nick Piggin 已提交
900 901 902 903 904 905 906 907
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
908
free_it:
909
		nr_reclaimed++;
910 911 912 913 914 915

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
916 917
		continue;

N
Nick Piggin 已提交
918
cull_mlocked:
919 920
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
921 922
		unlock_page(page);
		putback_lru_page(page);
923
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
924 925
		continue;

L
Linus Torvalds 已提交
926
activate_locked:
927 928
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
929
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
930
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
931 932 933 934 935
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
936
		reset_reclaim_mode(sc);
937
keep_lumpy:
L
Linus Torvalds 已提交
938
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
939
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
940
	}
941

942 943 944 945 946 947
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
K
KAMEZAWA Hiroyuki 已提交
948
	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
949 950
		zone_set_flag(zone, ZONE_CONGESTED);

951 952
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
953
	list_splice(&ret_pages, page_list);
954
	count_vm_events(PGACTIVATE, pgactivate);
955
	return nr_reclaimed;
L
Linus Torvalds 已提交
956 957
}

A
Andy Whitcroft 已提交
958 959 960 961 962 963 964 965 966 967
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
968
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

984
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
985 986
		return ret;

L
Lee Schermerhorn 已提交
987 988 989 990 991 992 993 994
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
995
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
996

A
Andy Whitcroft 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1024 1025
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1026
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1027 1028 1029
 *
 * returns how many pages were moved onto *@dst.
 */
1030 1031
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1032
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
1033
{
1034
	unsigned long nr_taken = 0;
1035 1036 1037
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1038
	unsigned long scan;
L
Linus Torvalds 已提交
1039

1040
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1041 1042 1043 1044 1045 1046
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1047 1048 1049
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1050
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1051

1052
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1053 1054
		case 0:
			list_move(&page->lru, dst);
1055
			mem_cgroup_del_lru(page);
1056
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1057 1058 1059 1060 1061
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1062
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1063
			continue;
1064

A
Andy Whitcroft 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1077
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1097

A
Andy Whitcroft 已提交
1098 1099
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1100
				break;
1101 1102 1103 1104 1105 1106 1107

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1108 1109
			    !PageSwapCache(cursor_page))
				break;
1110

1111
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1112
				list_move(&cursor_page->lru, dst);
1113
				mem_cgroup_del_lru(cursor_page);
1114
				nr_taken += hpage_nr_pages(page);
1115 1116 1117
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1118
				scan++;
1119
			} else {
1120 1121 1122 1123
				/* the page is freed already. */
				if (!page_count(cursor_page))
					continue;
				break;
A
Andy Whitcroft 已提交
1124 1125
			}
		}
1126 1127 1128 1129

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1130 1131 1132
	}

	*scanned = scan;
1133 1134 1135 1136 1137 1138

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1139 1140 1141
	return nr_taken;
}

1142 1143 1144 1145
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1146
					int active, int file)
1147
{
1148
	int lru = LRU_BASE;
1149
	if (active)
1150 1151 1152 1153
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1154
								mode, file);
1155 1156
}

A
Andy Whitcroft 已提交
1157 1158 1159 1160
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1161 1162
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1163 1164
{
	int nr_active = 0;
1165
	int lru;
A
Andy Whitcroft 已提交
1166 1167
	struct page *page;

1168
	list_for_each_entry(page, page_list, lru) {
1169
		int numpages = hpage_nr_pages(page);
1170
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1171
		if (PageActive(page)) {
1172
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1173
			ClearPageActive(page);
1174
			nr_active += numpages;
A
Andy Whitcroft 已提交
1175
		}
1176
		if (count)
1177
			count[lru] += numpages;
1178
	}
A
Andy Whitcroft 已提交
1179 1180 1181 1182

	return nr_active;
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1194 1195 1196
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1212 1213
	VM_BUG_ON(!page_count(page));

1214 1215 1216 1217
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1218
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1219
			int lru = page_lru(page);
1220
			ret = 0;
1221
			get_page(page);
1222
			ClearPageLRU(page);
1223 1224

			del_page_from_lru_list(zone, page, lru);
1225 1226 1227 1228 1229 1230
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1256 1257 1258 1259
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1260
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1261 1262 1263 1264 1265
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1266
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1285
		SetPageLRU(page);
1286
		lru = page_lru(page);
1287
		add_page_to_lru_list(zone, page, lru);
1288 1289
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1290 1291
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1357
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1378
/*
A
Andrew Morton 已提交
1379 1380
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1381
 */
1382 1383 1384
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1385 1386
{
	LIST_HEAD(page_list);
1387
	unsigned long nr_scanned;
1388
	unsigned long nr_reclaimed = 0;
1389 1390 1391
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1392

1393
	while (unlikely(too_many_isolated(zone, file, sc))) {
1394
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1395 1396 1397 1398 1399 1400

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1401
	set_reclaim_mode(priority, sc, false);
L
Linus Torvalds 已提交
1402 1403
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1404

1405 1406 1407
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1408
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1409
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1421
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1422
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1423 1424 1425 1426 1427 1428 1429
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1430

1431 1432 1433 1434
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1435

1436
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1437

1438
	spin_unlock_irq(&zone->lru_lock);
1439

1440
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1441

1442 1443
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1444
		set_reclaim_mode(priority, sc, true);
1445
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1446
	}
1447

1448 1449 1450 1451
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1452

1453
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1454 1455 1456 1457 1458

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1459
		trace_shrink_flags(file, sc->reclaim_mode));
1460
	return nr_reclaimed;
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1499
		pgmoved += hpage_nr_pages(page);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1513

A
Andrew Morton 已提交
1514
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1515
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1516
{
1517
	unsigned long nr_taken;
1518
	unsigned long pgscanned;
1519
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1520
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1521
	LIST_HEAD(l_active);
1522
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1523
	struct page *page;
1524
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1525
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1526 1527 1528

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1529
	if (scanning_global_lru(sc)) {
1530 1531 1532 1533
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1534
		zone->pages_scanned += pgscanned;
1535 1536 1537 1538 1539 1540 1541 1542 1543
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1544
	}
1545

1546
	reclaim_stat->recent_scanned[file] += nr_taken;
1547

1548
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1549
	if (file)
1550
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1551
	else
1552
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1553
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558 1559
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1560

L
Lee Schermerhorn 已提交
1561 1562 1563 1564 1565
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1566
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1567
			nr_rotated += hpage_nr_pages(page);
1568 1569 1570 1571 1572 1573 1574 1575 1576
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1577
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1578 1579 1580 1581
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1582

1583
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1584 1585 1586
		list_add(&page->lru, &l_inactive);
	}

1587
	/*
1588
	 * Move pages back to the lru list.
1589
	 */
1590
	spin_lock_irq(&zone->lru_lock);
1591
	/*
1592 1593 1594 1595
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1596
	 */
1597
	reclaim_stat->recent_rotated[file] += nr_rotated;
1598

1599 1600 1601 1602
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1603
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1604
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1605 1606
}

1607
#ifdef CONFIG_SWAP
1608
static int inactive_anon_is_low_global(struct zone *zone)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1633 1634 1635 1636 1637 1638 1639
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1640
	if (scanning_global_lru(sc))
1641 1642
		low = inactive_anon_is_low_global(zone);
	else
1643
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1644 1645
	return low;
}
1646 1647 1648 1649 1650 1651 1652
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1690 1691 1692 1693 1694 1695 1696 1697 1698
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1699
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1700 1701
	struct zone *zone, struct scan_control *sc, int priority)
{
1702 1703
	int file = is_file_lru(lru);

1704 1705 1706
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1707 1708 1709
		return 0;
	}

R
Rik van Riel 已提交
1710
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1711 1712
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1733 1734 1735 1736 1737 1738
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1739
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1740
 */
1741 1742
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1743 1744 1745 1746
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1747
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1760

1761 1762 1763 1764
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1765

1766
	if (scanning_global_lru(sc)) {
1767 1768 1769
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1770
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1771 1772 1773 1774
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1775
		}
1776 1777
	}

1778 1779 1780 1781 1782 1783 1784
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1796
	spin_lock_irq(&zone->lru_lock);
1797 1798 1799
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1800 1801
	}

1802 1803 1804
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1805 1806 1807
	}

	/*
1808 1809 1810
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1811
	 */
1812 1813
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1814

1815 1816
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1817
	spin_unlock_irq(&zone->lru_lock);
1818

1819 1820 1821 1822 1823 1824 1825
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1826

1827 1828 1829 1830 1831 1832 1833 1834
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1835
}
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1853
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1854 1855
		return false;

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1900 1901 1902
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1903
static void shrink_zone(int priority, struct zone *zone,
1904
				struct scan_control *sc)
L
Linus Torvalds 已提交
1905
{
1906
	unsigned long nr[NR_LRU_LISTS];
1907
	unsigned long nr_to_scan;
1908
	enum lru_list l;
1909
	unsigned long nr_reclaimed, nr_scanned;
1910
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1911

1912 1913
restart:
	nr_reclaimed = 0;
1914
	nr_scanned = sc->nr_scanned;
1915
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1916

1917 1918
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1919
		for_each_evictable_lru(l) {
1920
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1921 1922
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1923
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1924

1925 1926
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1927
			}
L
Linus Torvalds 已提交
1928
		}
1929 1930 1931 1932 1933 1934 1935 1936
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1937
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1938
			break;
L
Linus Torvalds 已提交
1939
	}
1940
	sc->nr_reclaimed += nr_reclaimed;
1941

1942 1943 1944 1945
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1946
	if (inactive_anon_is_low(zone, sc))
1947 1948
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1949 1950 1951 1952 1953
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

1954
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1962 1963
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1964 1965
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1966 1967 1968
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1969 1970 1971 1972
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1973
static void shrink_zones(int priority, struct zonelist *zonelist,
1974
					struct scan_control *sc)
L
Linus Torvalds 已提交
1975
{
1976
	struct zoneref *z;
1977
	struct zone *zone;
1978

1979 1980
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1981
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1982
			continue;
1983 1984 1985 1986
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1987
		if (scanning_global_lru(sc)) {
1988 1989
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1990
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1991 1992
				continue;	/* Let kswapd poll it */
		}
1993

1994
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1995
	}
1996 1997 1998 1999 2000 2001 2002
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2003
/* All zones in zonelist are unreclaimable? */
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2016 2017
		if (!zone->all_unreclaimable)
			return false;
2018 2019
	}

2020
	return true;
L
Linus Torvalds 已提交
2021
}
2022

L
Linus Torvalds 已提交
2023 2024 2025 2026 2027 2028 2029 2030
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2031 2032 2033 2034
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2035 2036 2037
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2038
 */
2039
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2040 2041
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2042 2043
{
	int priority;
2044
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2045
	struct reclaim_state *reclaim_state = current->reclaim_state;
2046
	struct zoneref *z;
2047
	struct zone *zone;
2048
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2049

2050
	get_mems_allowed();
2051 2052
	delayacct_freepages_start();

2053
	if (scanning_global_lru(sc))
2054
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2055 2056

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2057
		sc->nr_scanned = 0;
2058 2059
		if (!priority)
			disable_swap_token();
2060
		shrink_zones(priority, zonelist, sc);
2061 2062 2063 2064
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2065
		if (scanning_global_lru(sc)) {
2066
			unsigned long lru_pages = 0;
2067 2068
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2069 2070 2071 2072 2073 2074
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2075 2076
			shrink->nr_scanned = sc->nr_scanned;
			shrink_slab(shrink, lru_pages);
2077
			if (reclaim_state) {
2078
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2079 2080
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2081
		}
2082
		total_scanned += sc->nr_scanned;
2083
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2093 2094
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2095
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2096
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2097 2098 2099
		}

		/* Take a nap, wait for some writeback to complete */
2100
		if (!sc->hibernation_mode && sc->nr_scanned &&
2101 2102 2103 2104
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2105 2106
						&cpuset_current_mems_allowed,
						&preferred_zone);
2107 2108
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2109
	}
2110

L
Linus Torvalds 已提交
2111
out:
2112
	delayacct_freepages_end();
2113
	put_mems_allowed();
2114

2115 2116 2117
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2118 2119 2120 2121 2122 2123 2124 2125
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2126
	/* top priority shrink_zones still had more to do? don't OOM, then */
2127
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2128 2129 2130
		return 1;

	return 0;
L
Linus Torvalds 已提交
2131 2132
}

2133
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2134
				gfp_t gfp_mask, nodemask_t *nodemask)
2135
{
2136
	unsigned long nr_reclaimed;
2137 2138 2139
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2140
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2141
		.may_unmap = 1,
2142
		.may_swap = 1,
2143 2144 2145
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
2146
		.nodemask = nodemask,
2147
	};
2148 2149 2150
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2151

2152 2153 2154 2155
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2156
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2157 2158 2159 2160

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2161 2162
}

2163
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2164

2165 2166 2167
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
2168
						struct zone *zone)
2169 2170
{
	struct scan_control sc = {
2171
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2172 2173 2174 2175 2176 2177 2178 2179 2180
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2181 2182 2183 2184 2185

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2186 2187 2188 2189 2190 2191 2192 2193
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2194 2195 2196

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2197 2198 2199
	return sc.nr_reclaimed;
}

2200
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2201 2202 2203
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
2204
{
2205
	struct zonelist *zonelist;
2206
	unsigned long nr_reclaimed;
2207 2208
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2209
		.may_unmap = 1,
2210
		.may_swap = !noswap,
2211
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
2212
		.swappiness = swappiness,
2213 2214
		.order = 0,
		.mem_cgroup = mem_cont,
2215
		.nodemask = NULL, /* we don't care the placement */
2216 2217 2218 2219 2220
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2221 2222
	};

2223
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2224 2225 2226 2227 2228

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2229
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2230 2231 2232 2233

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2234 2235 2236
}
#endif

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2248
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

	return balanced_pages > (present_pages >> 2);
}

2265
/* is kswapd sleeping prematurely? */
2266 2267
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2268
{
2269
	int i;
2270 2271
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2272 2273 2274

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2275
		return true;
2276

2277
	/* Check the watermark levels */
2278 2279 2280 2281 2282 2283
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2284 2285 2286 2287 2288 2289 2290 2291
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2292
			continue;
2293
		}
2294

2295
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2296
							classzone_idx, 0))
2297 2298 2299
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2300
	}
2301

2302 2303 2304 2305 2306 2307
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2308
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2309 2310
	else
		return !all_zones_ok;
2311 2312
}

L
Linus Torvalds 已提交
2313 2314
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2315
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2316
 *
2317
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2328 2329 2330 2331 2332
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2333
 */
2334
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2335
							int *classzone_idx)
L
Linus Torvalds 已提交
2336 2337
{
	int all_zones_ok;
2338
	unsigned long balanced;
L
Linus Torvalds 已提交
2339 2340
	int priority;
	int i;
2341
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2342
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2343
	struct reclaim_state *reclaim_state = current->reclaim_state;
2344 2345
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2346
		.may_unmap = 1,
2347
		.may_swap = 1,
2348 2349 2350 2351 2352
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2353
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2354
		.order = order,
2355
		.mem_cgroup = NULL,
2356
	};
2357 2358 2359
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2360 2361
loop_again:
	total_scanned = 0;
2362
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2363
	sc.may_writepage = !laptop_mode;
2364
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2365 2366 2367

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2368
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2369

2370 2371 2372 2373
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2374
		all_zones_ok = 1;
2375
		balanced = 0;
L
Linus Torvalds 已提交
2376

2377 2378 2379 2380 2381 2382
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2383

2384 2385
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2386

2387
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2388
				continue;
L
Linus Torvalds 已提交
2389

2390 2391 2392 2393
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2394
			if (inactive_anon_is_low(zone, &sc))
2395 2396 2397
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2398
			if (!zone_watermark_ok_safe(zone, order,
2399
					high_wmark_pages(zone), 0, 0)) {
2400
				end_zone = i;
2401
				*classzone_idx = i;
A
Andrew Morton 已提交
2402
				break;
L
Linus Torvalds 已提交
2403 2404
			}
		}
A
Andrew Morton 已提交
2405 2406 2407
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2408 2409 2410
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2411
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2425
			int nr_slab;
2426
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2427

2428
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2429 2430
				continue;

2431
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2432 2433 2434
				continue;

			sc.nr_scanned = 0;
2435 2436 2437 2438 2439

			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
2440 2441
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);

2442
			/*
2443 2444 2445 2446 2447 2448
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2449
			 */
2450 2451 2452 2453
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2454
			if (!zone_watermark_ok_safe(zone, order,
2455 2456
					high_wmark_pages(zone) + balance_gap,
					end_zone, 0))
2457
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2458
			reclaim_state->reclaimed_slab = 0;
2459 2460
			shrink.nr_scanned = sc.nr_scanned;
			nr_slab = shrink_slab(&shrink, lru_pages);
2461
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2462
			total_scanned += sc.nr_scanned;
2463

2464
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2465
				continue;
2466
			if (nr_slab == 0 &&
2467
			    !zone_reclaimable(zone))
2468
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473 2474
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2475
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2476
				sc.may_writepage = 1;
2477

2478
			if (!zone_watermark_ok_safe(zone, order,
2479 2480 2481 2482 2483 2484 2485
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2486
				if (!zone_watermark_ok_safe(zone, order,
2487 2488
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2489 2490 2491 2492 2493 2494 2495 2496 2497
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2498
				if (i <= *classzone_idx)
2499
					balanced += zone->present_pages;
2500
			}
2501

L
Linus Torvalds 已提交
2502
		}
2503
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2504 2505 2506 2507 2508
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2509 2510 2511 2512 2513 2514
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2515 2516 2517 2518 2519 2520 2521

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2522
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2523 2524 2525
			break;
	}
out:
2526 2527 2528

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2529 2530
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2531
	 */
2532
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2533
		cond_resched();
2534 2535 2536

		try_to_freeze();

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2554 2555 2556
		goto loop_again;
	}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
	}

2587 2588 2589 2590 2591 2592
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2593
	*classzone_idx = end_zone;
2594
	return order;
L
Linus Torvalds 已提交
2595 2596
}

2597
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2608
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2609 2610 2611 2612 2613 2614 2615 2616 2617
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2618
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2641 2642
/*
 * The background pageout daemon, started as a kernel thread
2643
 * from the init process.
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
2657
	int classzone_idx;
L
Linus Torvalds 已提交
2658 2659
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2660

L
Linus Torvalds 已提交
2661 2662 2663
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2664
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2665

2666 2667
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2668
	if (!cpumask_empty(cpumask))
2669
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2684
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2685
	set_freezable();
L
Linus Torvalds 已提交
2686 2687

	order = 0;
2688
	classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
2689 2690
	for ( ; ; ) {
		unsigned long new_order;
2691
		int new_classzone_idx;
2692
		int ret;
2693

L
Linus Torvalds 已提交
2694
		new_order = pgdat->kswapd_max_order;
2695
		new_classzone_idx = pgdat->classzone_idx;
L
Linus Torvalds 已提交
2696
		pgdat->kswapd_max_order = 0;
2697 2698
		pgdat->classzone_idx = MAX_NR_ZONES - 1;
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2699 2700
			/*
			 * Don't sleep if someone wants a larger 'order'
2701
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2702 2703
			 */
			order = new_order;
2704
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2705
		} else {
2706
			kswapd_try_to_sleep(pgdat, order, classzone_idx);
L
Linus Torvalds 已提交
2707
			order = pgdat->kswapd_max_order;
2708
			classzone_idx = pgdat->classzone_idx;
2709 2710
			pgdat->kswapd_max_order = 0;
			pgdat->classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
2711 2712
		}

2713 2714 2715 2716 2717 2718 2719 2720
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2721 2722
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2723
			order = balance_pgdat(pgdat, order, &classzone_idx);
2724
		}
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730 2731
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2732
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2733 2734 2735
{
	pg_data_t *pgdat;

2736
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2737 2738
		return;

2739
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2740
		return;
2741
	pgdat = zone->zone_pgdat;
2742
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2743
		pgdat->kswapd_max_order = order;
2744 2745
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2746
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2747
		return;
2748 2749 2750 2751
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2752
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2753 2754
}

2755 2756 2757 2758 2759 2760 2761 2762
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2763
{
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2788 2789
}

2790
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2791
/*
2792
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2793 2794 2795 2796 2797
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2798
 */
2799
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2800
{
2801 2802
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2803 2804 2805
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2806
		.may_writepage = 1,
2807 2808 2809 2810
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2811
	};
2812 2813 2814 2815
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2816 2817
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2818

2819 2820 2821 2822
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2823

2824
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2825

2826 2827 2828
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2829

2830
	return nr_reclaimed;
L
Linus Torvalds 已提交
2831
}
2832
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2838
static int __devinit cpu_callback(struct notifier_block *nfb,
2839
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2840
{
2841
	int nid;
L
Linus Torvalds 已提交
2842

2843
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2844
		for_each_node_state(nid, N_HIGH_MEMORY) {
2845
			pg_data_t *pgdat = NODE_DATA(nid);
2846 2847 2848
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2849

2850
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2851
				/* One of our CPUs online: restore mask */
2852
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857
		}
	}
	return NOTIFY_OK;
}

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2891 2892
static int __init kswapd_init(void)
{
2893
	int nid;
2894

L
Linus Torvalds 已提交
2895
	swap_setup();
2896
	for_each_node_state(nid, N_HIGH_MEMORY)
2897
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2913
#define RECLAIM_OFF 0
2914
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2915 2916 2917
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2918 2919 2920 2921 2922 2923 2924
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2925 2926 2927 2928 2929 2930
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2931 2932 2933 2934 2935 2936
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2979 2980 2981
/*
 * Try to free up some pages from this zone through reclaim.
 */
2982
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2983
{
2984
	/* Minimum pages needed in order to stay on node */
2985
	const unsigned long nr_pages = 1 << order;
2986 2987
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2988
	int priority;
2989 2990
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2991
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2992
		.may_swap = 1,
2993 2994
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2995
		.gfp_mask = gfp_mask,
2996
		.swappiness = vm_swappiness,
2997
		.order = order,
2998
	};
2999 3000 3001
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3002
	unsigned long nr_slab_pages0, nr_slab_pages1;
3003 3004

	cond_resched();
3005 3006 3007 3008 3009 3010
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3011
	lockdep_set_current_reclaim_state(gfp_mask);
3012 3013
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3014

3015
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3016 3017 3018 3019 3020 3021
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3022
			shrink_zone(priority, zone, &sc);
3023
			priority--;
3024
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3025
	}
3026

3027
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3028
	shrink.nr_scanned = sc.nr_scanned;
3029
	if (nr_slab_pages0 > zone->min_slab_pages) {
3030
		/*
3031
		 * shrink_slab() does not currently allow us to determine how
3032 3033 3034 3035
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3036
		 *
3037 3038
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3039
		 */
3040 3041 3042 3043
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3044
			if (!shrink_slab(&shrink, lru_pages))
3045 3046 3047 3048 3049 3050 3051 3052
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3053 3054 3055 3056 3057

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3058 3059 3060
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3061 3062
	}

3063
	p->reclaim_state = NULL;
3064
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3065
	lockdep_clear_current_reclaim_state();
3066
	return sc.nr_reclaimed >= nr_pages;
3067
}
3068 3069 3070 3071

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3072
	int ret;
3073 3074

	/*
3075 3076
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3077
	 *
3078 3079 3080 3081 3082
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3083
	 */
3084 3085
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3086
		return ZONE_RECLAIM_FULL;
3087

3088
	if (zone->all_unreclaimable)
3089
		return ZONE_RECLAIM_FULL;
3090

3091
	/*
3092
	 * Do not scan if the allocation should not be delayed.
3093
	 */
3094
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3095
		return ZONE_RECLAIM_NOSCAN;
3096 3097 3098 3099 3100 3101 3102

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3103
	node_id = zone_to_nid(zone);
3104
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3105
		return ZONE_RECLAIM_NOSCAN;
3106 3107

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3108 3109
		return ZONE_RECLAIM_NOSCAN;

3110 3111 3112
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3113 3114 3115
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3116
	return ret;
3117
}
3118
#endif
L
Lee Schermerhorn 已提交
3119 3120 3121 3122 3123 3124 3125

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3126 3127
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3128 3129
 *
 * Reasons page might not be evictable:
3130
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3131
 * (2) page is part of an mlocked VMA
3132
 *
L
Lee Schermerhorn 已提交
3133 3134 3135 3136
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3137 3138 3139
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3140 3141
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3142 3143 3144

	return 1;
}
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3164
		enum lru_list l = page_lru_base_type(page);
3165

3166 3167
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3168
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3169 3170 3171 3172 3173 3174 3175 3176
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3177
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3249
static void scan_zone_unevictable_pages(struct zone *zone)
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3291
static void scan_all_zones_unevictable_pages(void)
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3307
			   void __user *buffer,
3308 3309
			   size_t *length, loff_t *ppos)
{
3310
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3311 3312 3313 3314 3315 3316 3317 3318

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3319
#ifdef CONFIG_NUMA
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3366
#endif