vmscan.c 106.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
208
unsigned long shrink_slab(struct shrink_control *shrink,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218 219 220 221 222
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
223 224 225

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
226 227
		long total_scan;
		long max_pass;
228
		int shrink_ret = 0;
229 230
		long nr;
		long new_nr;
231 232
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
233

234 235 236 237
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

238 239 240 241 242
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
243
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 245

		total_scan = nr;
246
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
		delta *= max_pass;
L
Linus Torvalds 已提交
248
		do_div(delta, lru_pages + 1);
249 250
		total_scan += delta;
		if (total_scan < 0) {
251 252
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
253 254
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
255 256
		}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

272 273 274 275 276
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
277 278
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
279

280
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 282 283
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

284
		while (total_scan >= batch_size) {
285
			int nr_before;
L
Linus Torvalds 已提交
286

287 288
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289
							batch_size);
L
Linus Torvalds 已提交
290 291
			if (shrink_ret == -1)
				break;
292 293
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
294 295
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
296 297 298 299

			cond_resched();
		}

300 301 302 303 304
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
305 306 307 308 309
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 311

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
312 313
	}
	up_read(&shrinker_rwsem);
314 315
out:
	cond_resched();
316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static inline int is_page_cache_freeable(struct page *page)
{
321 322 323 324 325
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
326
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
327 328
}

329 330
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
331
{
332
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
356
	lock_page(page);
357 358
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
359 360 361
	unlock_page(page);
}

362 363 364 365 366 367 368 369 370 371 372 373
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
374
/*
A
Andrew Morton 已提交
375 376
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
377
 */
378
static pageout_t pageout(struct page *page, struct address_space *mapping,
379
			 struct scan_control *sc)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
388
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
405 406
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
407
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
415
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
416 417 418 419 420 421 422
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
423 424
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
432
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
433 434 435
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
436

L
Linus Torvalds 已提交
437 438 439 440
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
441
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
443 444 445 446 447 448
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

449
/*
N
Nick Piggin 已提交
450 451
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
452
 */
N
Nick Piggin 已提交
453
static int __remove_mapping(struct address_space *mapping, struct page *page)
454
{
455 456
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
457

N
Nick Piggin 已提交
458
	spin_lock_irq(&mapping->tree_lock);
459
	/*
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
483
	 */
N
Nick Piggin 已提交
484
	if (!page_freeze_refs(page, 2))
485
		goto cannot_free;
N
Nick Piggin 已提交
486 487 488
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
489
		goto cannot_free;
N
Nick Piggin 已提交
490
	}
491 492 493 494

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
495
		spin_unlock_irq(&mapping->tree_lock);
496
		swapcache_free(swap, page);
N
Nick Piggin 已提交
497
	} else {
498 499 500 501
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

502
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
503
		spin_unlock_irq(&mapping->tree_lock);
504
		mem_cgroup_uncharge_cache_page(page);
505 506 507

		if (freepage != NULL)
			freepage(page);
508 509 510 511 512
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
513
	spin_unlock_irq(&mapping->tree_lock);
514 515 516
	return 0;
}

N
Nick Piggin 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
550
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
551 552 553 554 555 556

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

557
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
558 559 560 561 562 563
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
564
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571 572
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
573
		/*
574 575 576
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
577
		 * isolation/check_move_unevictable_pages,
578
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 580
		 * the page back to the evictable list.
		 *
581
		 * The other side is TestClearPageMlocked() or shmem_lock().
582 583
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
584 585 586 587 588 589 590
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
591
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

602 603 604 605 606
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
607 608 609
	put_page(page);		/* drop ref from isolate */
}

610 611 612
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
613
	PAGEREF_KEEP,
614 615 616 617 618 619
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
620
	int referenced_ptes, referenced_page;
621 622
	unsigned long vm_flags;

623 624
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
625
	referenced_page = TestClearPageReferenced(page);
626 627 628 629 630 631 632 633

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

634
	if (referenced_ptes) {
635
		if (PageSwapBacked(page))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

653
		if (referenced_page || referenced_ptes > 1)
654 655
			return PAGEREF_ACTIVATE;

656 657 658 659 660 661
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

662 663
		return PAGEREF_KEEP;
	}
664 665

	/* Reclaim if clean, defer dirty pages to writeback */
666
	if (referenced_page && !PageSwapBacked(page))
667 668 669
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
670 671
}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
}

L
Linus Torvalds 已提交
691
/*
A
Andrew Morton 已提交
692
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
693
 */
A
Andrew Morton 已提交
694
static unsigned long shrink_page_list(struct list_head *page_list,
695
				      struct zone *zone,
696
				      struct scan_control *sc,
697
				      enum ttu_flags ttu_flags,
698
				      unsigned long *ret_nr_dirty,
699
				      unsigned long *ret_nr_unqueued_dirty,
700
				      unsigned long *ret_nr_congested,
701
				      unsigned long *ret_nr_writeback,
702
				      unsigned long *ret_nr_immediate,
703
				      bool force_reclaim)
L
Linus Torvalds 已提交
704 705
{
	LIST_HEAD(ret_pages);
706
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
707
	int pgactivate = 0;
708
	unsigned long nr_unqueued_dirty = 0;
709 710
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
711
	unsigned long nr_reclaimed = 0;
712
	unsigned long nr_writeback = 0;
713
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
714 715 716

	cond_resched();

717
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
718 719 720 721
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
722
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
723
		bool dirty, writeback;
L
Linus Torvalds 已提交
724 725 726 727 728 729

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
730
		if (!trylock_page(page))
L
Linus Torvalds 已提交
731 732
			goto keep;

N
Nick Piggin 已提交
733
		VM_BUG_ON(PageActive(page));
734
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
735 736

		sc->nr_scanned++;
737

738
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
739
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
740

741
		if (!sc->may_unmap && page_mapped(page))
742 743
			goto keep_locked;

L
Linus Torvalds 已提交
744 745 746 747
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

748 749 750
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

		/* Treat this page as congested if underlying BDI is */
		mapping = page_mapping(page);
		if (mapping && bdi_write_congested(mapping->backing_dev_info))
			nr_congested++;

769 770 771 772 773 774 775 776 777 778 779
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
780 781
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
806
		if (PageWriteback(page)) {
807 808 809 810
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
811 812
				nr_immediate++;
				goto keep_locked;
813 814 815

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
816 817 818 819 820 821 822 823 824 825 826 827 828
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
829
				nr_writeback++;
830

831
				goto keep_locked;
832 833 834 835

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
836
			}
837
		}
L
Linus Torvalds 已提交
838

839 840 841
		if (!force_reclaim)
			references = page_check_references(page, sc);

842 843
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
844
			goto activate_locked;
845 846
		case PAGEREF_KEEP:
			goto keep_locked;
847 848 849 850
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
851 852 853 854 855

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
856
		if (PageAnon(page) && !PageSwapCache(page)) {
857 858
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
859
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
860
				goto activate_locked;
861
			may_enter_fs = 1;
L
Linus Torvalds 已提交
862

863 864 865
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
866 867 868 869 870 871

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
872
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
873 874 875 876
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
877 878
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
879 880 881 882 883 884
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
885 886
			/*
			 * Only kswapd can writeback filesystem pages to
887 888
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
889
			 */
890
			if (page_is_file_cache(page) &&
891
					(!current_is_kswapd() ||
892
					 !zone_is_reclaim_dirty(zone))) {
893 894 895 896 897 898 899 900 901
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

902 903 904
				goto keep_locked;
			}

905
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
906
				goto keep_locked;
907
			if (!may_enter_fs)
L
Linus Torvalds 已提交
908
				goto keep_locked;
909
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
910 911 912
				goto keep_locked;

			/* Page is dirty, try to write it out here */
913
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
914 915 916 917 918
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
919
				if (PageWriteback(page))
920
					goto keep;
921
				if (PageDirty(page))
L
Linus Torvalds 已提交
922
					goto keep;
923

L
Linus Torvalds 已提交
924 925 926 927
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
928
				if (!trylock_page(page))
L
Linus Torvalds 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
948
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
949 950 951 952 953 954 955 956 957 958
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
959
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
960 961
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
978 979
		}

N
Nick Piggin 已提交
980
		if (!mapping || !__remove_mapping(mapping, page))
981
			goto keep_locked;
L
Linus Torvalds 已提交
982

N
Nick Piggin 已提交
983 984 985 986 987 988 989 990
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
991
free_it:
992
		nr_reclaimed++;
993 994 995 996 997 998

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
999 1000
		continue;

N
Nick Piggin 已提交
1001
cull_mlocked:
1002 1003
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1004 1005 1006 1007
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1008
activate_locked:
1009 1010
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1011
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1012
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1013 1014 1015 1016 1017 1018
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1019
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1020
	}
1021

1022
	free_hot_cold_page_list(&free_pages, 1);
1023

L
Linus Torvalds 已提交
1024
	list_splice(&ret_pages, page_list);
1025
	count_vm_events(PGACTIVATE, pgactivate);
1026
	mem_cgroup_uncharge_end();
1027 1028
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1029
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1030
	*ret_nr_writeback += nr_writeback;
1031
	*ret_nr_immediate += nr_immediate;
1032
	return nr_reclaimed;
L
Linus Torvalds 已提交
1033 1034
}

1035 1036 1037 1038 1039 1040 1041 1042
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1043
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1055 1056
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1057 1058 1059 1060 1061
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1072
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1073 1074 1075 1076 1077 1078 1079
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1080 1081
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1082 1083
		return ret;

A
Andy Whitcroft 已提交
1084
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1119

1120 1121 1122
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1147
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1148
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1149
 * @nr_scanned:	The number of pages that were scanned.
1150
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1151
 * @mode:	One of the LRU isolation modes
1152
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1153 1154 1155
 *
 * returns how many pages were moved onto *@dst.
 */
1156
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1157
		struct lruvec *lruvec, struct list_head *dst,
1158
		unsigned long *nr_scanned, struct scan_control *sc,
1159
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1160
{
H
Hugh Dickins 已提交
1161
	struct list_head *src = &lruvec->lists[lru];
1162
	unsigned long nr_taken = 0;
1163
	unsigned long scan;
L
Linus Torvalds 已提交
1164

1165
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1166
		struct page *page;
1167
		int nr_pages;
A
Andy Whitcroft 已提交
1168

L
Linus Torvalds 已提交
1169 1170 1171
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1172
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1173

1174
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1175
		case 0:
1176 1177
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1178
			list_move(&page->lru, dst);
1179
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1180 1181 1182 1183 1184 1185
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1186

A
Andy Whitcroft 已提交
1187 1188 1189
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1190 1191
	}

H
Hugh Dickins 已提交
1192
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1193 1194
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1195 1196 1197
	return nr_taken;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1209 1210 1211
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1227 1228
	VM_BUG_ON(!page_count(page));

1229 1230
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1231
		struct lruvec *lruvec;
1232 1233

		spin_lock_irq(&zone->lru_lock);
1234
		lruvec = mem_cgroup_page_lruvec(page, zone);
1235
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1236
			int lru = page_lru(page);
1237
			get_page(page);
1238
			ClearPageLRU(page);
1239 1240
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1241 1242 1243 1244 1245 1246
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1247
/*
F
Fengguang Wu 已提交
1248 1249 1250 1251 1252
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1253 1254 1255 1256 1257 1258 1259 1260 1261
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1262
	if (!global_reclaim(sc))
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1281 1282 1283
	return isolated > inactive;
}

1284
static noinline_for_stack void
H
Hugh Dickins 已提交
1285
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1286
{
1287 1288
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1289
	LIST_HEAD(pages_to_free);
1290 1291 1292 1293 1294

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1295
		struct page *page = lru_to_page(page_list);
1296
		int lru;
1297

1298 1299
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1300
		if (unlikely(!page_evictable(page))) {
1301 1302 1303 1304 1305
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1306 1307 1308

		lruvec = mem_cgroup_page_lruvec(page, zone);

1309
		SetPageLRU(page);
1310
		lru = page_lru(page);
1311 1312
		add_page_to_lru_list(page, lruvec, lru);

1313 1314
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1315 1316
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1317
		}
1318 1319 1320
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1321
			del_page_from_lru_list(page, lruvec, lru);
1322 1323 1324 1325 1326 1327 1328

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1329 1330 1331
		}
	}

1332 1333 1334 1335
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1336 1337
}

L
Linus Torvalds 已提交
1338
/*
A
Andrew Morton 已提交
1339 1340
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1341
 */
1342
static noinline_for_stack unsigned long
1343
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1344
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1345 1346
{
	LIST_HEAD(page_list);
1347
	unsigned long nr_scanned;
1348
	unsigned long nr_reclaimed = 0;
1349
	unsigned long nr_taken;
1350 1351
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1352
	unsigned long nr_unqueued_dirty = 0;
1353
	unsigned long nr_writeback = 0;
1354
	unsigned long nr_immediate = 0;
1355
	isolate_mode_t isolate_mode = 0;
1356
	int file = is_file_lru(lru);
1357 1358
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1359

1360
	while (unlikely(too_many_isolated(zone, file, sc))) {
1361
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1362 1363 1364 1365 1366 1367

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1368
	lru_add_drain();
1369 1370

	if (!sc->may_unmap)
1371
		isolate_mode |= ISOLATE_UNMAPPED;
1372
	if (!sc->may_writepage)
1373
		isolate_mode |= ISOLATE_CLEAN;
1374

L
Linus Torvalds 已提交
1375
	spin_lock_irq(&zone->lru_lock);
1376

1377 1378
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1379 1380 1381 1382

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1383
	if (global_reclaim(sc)) {
1384 1385
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1386
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1387
		else
H
Hugh Dickins 已提交
1388
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1389
	}
1390
	spin_unlock_irq(&zone->lru_lock);
1391

1392
	if (nr_taken == 0)
1393
		return 0;
A
Andy Whitcroft 已提交
1394

1395
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1396 1397 1398
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1399

1400 1401
	spin_lock_irq(&zone->lru_lock);

1402
	reclaim_stat->recent_scanned[file] += nr_taken;
1403

Y
Ying Han 已提交
1404 1405 1406 1407 1408 1409 1410 1411
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1412

1413
	putback_inactive_pages(lruvec, &page_list);
1414

1415
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1416 1417 1418 1419

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
1432
	 * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
1443 1444 1445 1446
	 *
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1447
	 */
1448
	if (nr_writeback && nr_writeback >=
1449
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1450
		zone_set_flag(zone, ZONE_WRITEBACK);
1451

1452
	/*
1453 1454
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1455
	 */
1456
	if (global_reclaim(sc)) {
1457 1458 1459 1460 1461 1462 1463
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1482
	}
1483

1484 1485 1486 1487 1488 1489 1490 1491
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1492 1493 1494
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1495
		sc->priority,
M
Mel Gorman 已提交
1496
		trace_shrink_flags(file));
1497
	return nr_reclaimed;
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1517

1518
static void move_active_pages_to_lru(struct lruvec *lruvec,
1519
				     struct list_head *list,
1520
				     struct list_head *pages_to_free,
1521 1522
				     enum lru_list lru)
{
1523
	struct zone *zone = lruvec_zone(lruvec);
1524 1525
	unsigned long pgmoved = 0;
	struct page *page;
1526
	int nr_pages;
1527 1528 1529

	while (!list_empty(list)) {
		page = lru_to_page(list);
1530
		lruvec = mem_cgroup_page_lruvec(page, zone);
1531 1532 1533 1534

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1535 1536
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1537
		list_move(&page->lru, &lruvec->lists[lru]);
1538
		pgmoved += nr_pages;
1539

1540 1541 1542
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1543
			del_page_from_lru_list(page, lruvec, lru);
1544 1545 1546 1547 1548 1549 1550

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1551 1552 1553 1554 1555 1556
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1557

H
Hugh Dickins 已提交
1558
static void shrink_active_list(unsigned long nr_to_scan,
1559
			       struct lruvec *lruvec,
1560
			       struct scan_control *sc,
1561
			       enum lru_list lru)
L
Linus Torvalds 已提交
1562
{
1563
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1564
	unsigned long nr_scanned;
1565
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1566
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1567
	LIST_HEAD(l_active);
1568
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1569
	struct page *page;
1570
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1571
	unsigned long nr_rotated = 0;
1572
	isolate_mode_t isolate_mode = 0;
1573
	int file = is_file_lru(lru);
1574
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1575 1576

	lru_add_drain();
1577 1578

	if (!sc->may_unmap)
1579
		isolate_mode |= ISOLATE_UNMAPPED;
1580
	if (!sc->may_writepage)
1581
		isolate_mode |= ISOLATE_CLEAN;
1582

L
Linus Torvalds 已提交
1583
	spin_lock_irq(&zone->lru_lock);
1584

1585 1586
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1587
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1588
		zone->pages_scanned += nr_scanned;
1589

1590
	reclaim_stat->recent_scanned[file] += nr_taken;
1591

H
Hugh Dickins 已提交
1592
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1593
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1594
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1595 1596 1597 1598 1599 1600
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1601

1602
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1603 1604 1605 1606
			putback_lru_page(page);
			continue;
		}

1607 1608 1609 1610 1611 1612 1613 1614
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1615 1616
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1617
			nr_rotated += hpage_nr_pages(page);
1618 1619 1620 1621 1622 1623 1624 1625 1626
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1627
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1628 1629 1630 1631
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1632

1633
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1634 1635 1636
		list_add(&page->lru, &l_inactive);
	}

1637
	/*
1638
	 * Move pages back to the lru list.
1639
	 */
1640
	spin_lock_irq(&zone->lru_lock);
1641
	/*
1642 1643 1644 1645
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1646
	 */
1647
	reclaim_stat->recent_rotated[file] += nr_rotated;
1648

1649 1650
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1651
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1652
	spin_unlock_irq(&zone->lru_lock);
1653 1654

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1655 1656
}

1657
#ifdef CONFIG_SWAP
1658
static int inactive_anon_is_low_global(struct zone *zone)
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1671 1672
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1673
 * @lruvec: LRU vector to check
1674 1675 1676 1677
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1678
static int inactive_anon_is_low(struct lruvec *lruvec)
1679
{
1680 1681 1682 1683 1684 1685 1686
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1687
	if (!mem_cgroup_disabled())
1688
		return mem_cgroup_inactive_anon_is_low(lruvec);
1689

1690
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1691
}
1692
#else
1693
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1694 1695 1696 1697
{
	return 0;
}
#endif
1698

1699 1700
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1701
 * @lruvec: LRU vector to check
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1713
static int inactive_file_is_low(struct lruvec *lruvec)
1714
{
1715 1716 1717 1718 1719
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1720

1721
	return active > inactive;
1722 1723
}

H
Hugh Dickins 已提交
1724
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1725
{
H
Hugh Dickins 已提交
1726
	if (is_file_lru(lru))
1727
		return inactive_file_is_low(lruvec);
1728
	else
1729
		return inactive_anon_is_low(lruvec);
1730 1731
}

1732
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1733
				 struct lruvec *lruvec, struct scan_control *sc)
1734
{
1735
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1736
		if (inactive_list_is_low(lruvec, lru))
1737
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1738 1739 1740
		return 0;
	}

1741
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1742 1743
}

1744
static int vmscan_swappiness(struct scan_control *sc)
1745
{
1746
	if (global_reclaim(sc))
1747
		return vm_swappiness;
1748
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1749 1750
}

1751 1752 1753 1754 1755 1756 1757
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1758 1759 1760 1761 1762 1763
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1764 1765
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1766
 */
1767
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1768
			   unsigned long *nr)
1769
{
1770 1771 1772 1773
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1774
	unsigned long anon_prio, file_prio;
1775 1776 1777
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1778
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1779
	enum lru_list lru;
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1791
	if (current_is_kswapd() && zone->all_unreclaimable)
1792
		force_scan = true;
1793
	if (!global_reclaim(sc))
1794
		force_scan = true;
1795 1796

	/* If we have no swap space, do not bother scanning anon pages. */
1797
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1798
		scan_balance = SCAN_FILE;
1799 1800
		goto out;
	}
1801

1802 1803 1804 1805 1806 1807 1808 1809
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1810
		scan_balance = SCAN_FILE;
1811 1812 1813 1814 1815 1816 1817 1818 1819
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1820
		scan_balance = SCAN_EQUAL;
1821 1822 1823
		goto out;
	}

1824 1825 1826 1827
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1828

1829 1830 1831 1832 1833 1834
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1835
	if (global_reclaim(sc)) {
1836
		free = zone_page_state(zone, NR_FREE_PAGES);
1837
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1838
			scan_balance = SCAN_ANON;
1839
			goto out;
1840
		}
1841 1842
	}

1843 1844 1845 1846 1847
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1848
		scan_balance = SCAN_FILE;
1849 1850 1851
		goto out;
	}

1852 1853
	scan_balance = SCAN_FRACT;

1854 1855 1856 1857
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1858
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1859
	file_prio = 200 - anon_prio;
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1872
	spin_lock_irq(&zone->lru_lock);
1873 1874 1875
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1876 1877
	}

1878 1879 1880
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1881 1882 1883
	}

	/*
1884 1885 1886
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1887
	 */
1888
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1889
	ap /= reclaim_stat->recent_rotated[0] + 1;
1890

1891
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1892
	fp /= reclaim_stat->recent_rotated[1] + 1;
1893
	spin_unlock_irq(&zone->lru_lock);
1894

1895 1896 1897 1898
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1899 1900
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1901
		unsigned long size;
1902
		unsigned long scan;
1903

1904
		size = get_lru_size(lruvec, lru);
1905
		scan = size >> sc->priority;
1906

1907 1908
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1931
		nr[lru] = scan;
1932
	}
1933
}
1934

1935 1936 1937 1938 1939 1940
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1941
	unsigned long targets[NR_LRU_LISTS];
1942 1943 1944 1945 1946
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1947
	bool scan_adjusted = false;
1948 1949 1950

	get_scan_count(lruvec, sc, nr);

1951 1952 1953
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1954 1955 1956
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1957 1958 1959
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1960 1961 1962 1963 1964 1965 1966 1967 1968
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1969 1970 1971 1972

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1973
		/*
1974 1975 1976 1977
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1978
		 */
1979
		if (global_reclaim(sc) && !current_is_kswapd())
1980
			break;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2038
/* Use reclaim/compaction for costly allocs or under memory pressure */
2039
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2040
{
2041
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2042
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2043
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2044 2045 2046 2047 2048
		return true;

	return false;
}

2049
/*
M
Mel Gorman 已提交
2050 2051 2052 2053 2054
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2055
 */
2056
static inline bool should_continue_reclaim(struct zone *zone,
2057 2058 2059 2060 2061 2062 2063 2064
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2065
	if (!in_reclaim_compaction(sc))
2066 2067
		return false;

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2090 2091 2092 2093 2094 2095

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2096
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2097
	if (get_nr_swap_pages() > 0)
2098
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2099 2100 2101 2102 2103
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2104
	switch (compaction_suitable(zone, sc->order)) {
2105 2106 2107 2108 2109 2110 2111 2112
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2113
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2114
{
2115
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2116

2117 2118 2119 2120 2121 2122 2123
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2124

2125 2126
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2127

2128 2129 2130
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2131

2132
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2133

2134
			shrink_lruvec(lruvec, sc);
2135

2136
			/*
2137 2138
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2139
			 * zone.
2140 2141 2142 2143 2144
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2145
			 */
2146 2147
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2148 2149 2150 2151 2152
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2153 2154 2155 2156 2157

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2158 2159
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2160 2161
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2179
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2180 2181 2182 2183 2184 2185 2186 2187
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2188
	if (compaction_deferred(zone, sc->order))
2189 2190 2191 2192 2193 2194 2195 2196 2197
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2198 2199 2200 2201 2202
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2203 2204
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2205 2206
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2207 2208 2209
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2210 2211 2212
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2213 2214
 *
 * This function returns true if a zone is being reclaimed for a costly
2215
 * high-order allocation and compaction is ready to begin. This indicates to
2216 2217
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2218
 */
2219
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2220
{
2221
	struct zoneref *z;
2222
	struct zone *zone;
2223 2224
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2225
	bool aborted_reclaim = false;
2226

2227 2228 2229 2230 2231 2232 2233 2234
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2235 2236
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2237
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2238
			continue;
2239 2240 2241 2242
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2243
		if (global_reclaim(sc)) {
2244 2245
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2246 2247
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2248
				continue;	/* Let kswapd poll it */
2249
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2250
				/*
2251 2252 2253 2254 2255
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2256 2257
				 * noticeable problem, like transparent huge
				 * page allocations.
2258
				 */
2259
				if (compaction_ready(zone, sc)) {
2260
					aborted_reclaim = true;
2261
					continue;
2262
				}
2263
			}
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2277
		}
2278

2279
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2280
	}
2281

2282
	return aborted_reclaim;
2283 2284 2285 2286 2287 2288 2289
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2290
/* All zones in zonelist are unreclaimable? */
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2303 2304
		if (!zone->all_unreclaimable)
			return false;
2305 2306
	}

2307
	return true;
L
Linus Torvalds 已提交
2308
}
2309

L
Linus Torvalds 已提交
2310 2311 2312 2313 2314 2315 2316 2317
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2318 2319 2320 2321
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2322 2323 2324
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2325
 */
2326
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2327 2328
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2329
{
2330
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2331
	struct reclaim_state *reclaim_state = current->reclaim_state;
2332
	struct zoneref *z;
2333
	struct zone *zone;
2334
	unsigned long writeback_threshold;
2335
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2336

2337 2338
	delayacct_freepages_start();

2339
	if (global_reclaim(sc))
2340
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2341

2342
	do {
2343 2344
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2345
		sc->nr_scanned = 0;
2346
		aborted_reclaim = shrink_zones(zonelist, sc);
2347

2348 2349 2350 2351
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2352
		if (global_reclaim(sc)) {
2353
			unsigned long lru_pages = 0;
2354 2355
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2356 2357 2358 2359 2360 2361
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2362
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2363
			if (reclaim_state) {
2364
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2365 2366
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2367
		}
2368
		total_scanned += sc->nr_scanned;
2369
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2370 2371
			goto out;

2372 2373 2374 2375 2376 2377 2378
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384 2385
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2386 2387
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2388 2389
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2390
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2391
		}
2392
	} while (--sc->priority >= 0);
2393

L
Linus Torvalds 已提交
2394
out:
2395 2396
	delayacct_freepages_end();

2397 2398 2399
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2400 2401 2402 2403 2404 2405 2406 2407
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2408 2409
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2410 2411
		return 1;

2412
	/* top priority shrink_zones still had more to do? don't OOM, then */
2413
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2414 2415 2416
		return 1;

	return 0;
L
Linus Torvalds 已提交
2417 2418
}

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2449 2450 2451 2452
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2453
 */
2454
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2469 2470 2471 2472 2473 2474 2475 2476
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2477 2478 2479 2480 2481

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2482
		goto out;
2483

2484 2485 2486
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2498 2499

		goto check_pending;
2500 2501 2502 2503 2504
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2505 2506 2507 2508 2509 2510 2511

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2512 2513
}

2514
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2515
				gfp_t gfp_mask, nodemask_t *nodemask)
2516
{
2517
	unsigned long nr_reclaimed;
2518
	struct scan_control sc = {
2519
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2520
		.may_writepage = !laptop_mode,
2521
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2522
		.may_unmap = 1,
2523
		.may_swap = 1,
2524
		.order = order,
2525
		.priority = DEF_PRIORITY,
2526
		.target_mem_cgroup = NULL,
2527
		.nodemask = nodemask,
2528
	};
2529 2530 2531
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2532

2533
	/*
2534 2535 2536
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2537
	 */
2538
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2539 2540
		return 1;

2541 2542 2543 2544
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2545
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2546 2547 2548 2549

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2550 2551
}

A
Andrew Morton 已提交
2552
#ifdef CONFIG_MEMCG
2553

2554
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2555
						gfp_t gfp_mask, bool noswap,
2556 2557
						struct zone *zone,
						unsigned long *nr_scanned)
2558 2559
{
	struct scan_control sc = {
2560
		.nr_scanned = 0,
2561
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2562 2563 2564 2565
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2566
		.priority = 0,
2567
		.target_mem_cgroup = memcg,
2568
	};
2569
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2570

2571 2572
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2573

2574
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2575 2576 2577
						      sc.may_writepage,
						      sc.gfp_mask);

2578 2579 2580 2581 2582 2583 2584
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2585
	shrink_lruvec(lruvec, &sc);
2586 2587 2588

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2589
	*nr_scanned = sc.nr_scanned;
2590 2591 2592
	return sc.nr_reclaimed;
}

2593
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2594
					   gfp_t gfp_mask,
2595
					   bool noswap)
2596
{
2597
	struct zonelist *zonelist;
2598
	unsigned long nr_reclaimed;
2599
	int nid;
2600 2601
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2602
		.may_unmap = 1,
2603
		.may_swap = !noswap,
2604
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2605
		.order = 0,
2606
		.priority = DEF_PRIORITY,
2607
		.target_mem_cgroup = memcg,
2608
		.nodemask = NULL, /* we don't care the placement */
2609 2610 2611 2612 2613
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2614 2615
	};

2616 2617 2618 2619 2620
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2621
	nid = mem_cgroup_select_victim_node(memcg);
2622 2623

	zonelist = NODE_DATA(nid)->node_zonelists;
2624 2625 2626 2627 2628

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2629
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2630 2631 2632 2633

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2634 2635 2636
}
#endif

2637
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2638
{
2639
	struct mem_cgroup *memcg;
2640

2641 2642 2643 2644 2645
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2646
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2647

2648
		if (inactive_anon_is_low(lruvec))
2649
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2650
					   sc, LRU_ACTIVE_ANON);
2651 2652 2653

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2654 2655
}

2656 2657 2658 2659 2660 2661 2662
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2663 2664
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2665 2666 2667 2668 2669
		return false;

	return true;
}

2670
/*
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2681 2682 2683 2684
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2685
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2686 2687 2688 2689
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2690
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2691
{
2692
	unsigned long managed_pages = 0;
2693
	unsigned long balanced_pages = 0;
2694 2695
	int i;

2696 2697 2698
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2699

2700 2701 2702
		if (!populated_zone(zone))
			continue;

2703
		managed_pages += zone->managed_pages;
2704 2705 2706 2707 2708 2709 2710 2711 2712

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2713
			balanced_pages += zone->managed_pages;
2714 2715 2716 2717
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2718
			balanced_pages += zone->managed_pages;
2719 2720 2721 2722 2723
		else if (!order)
			return false;
	}

	if (order)
2724
		return balanced_pages >= (managed_pages >> 2);
2725 2726
	else
		return true;
2727 2728
}

2729 2730 2731 2732 2733 2734 2735
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2736
					int classzone_idx)
2737 2738 2739
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2755

2756
	return pgdat_balanced(pgdat, order, classzone_idx);
2757 2758
}

2759 2760 2761
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2762 2763
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2764 2765
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2766
 */
2767
static bool kswapd_shrink_zone(struct zone *zone,
2768
			       int classzone_idx,
2769
			       struct scan_control *sc,
2770 2771
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2772 2773
{
	unsigned long nr_slab;
2774 2775
	int testorder = sc->order;
	unsigned long balance_gap;
2776 2777 2778 2779
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2780
	bool lowmem_pressure;
2781 2782 2783

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2815 2816 2817 2818 2819 2820
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2821 2822 2823
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2824 2825
	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
2826

2827 2828
	zone_clear_flag(zone, ZONE_WRITEBACK);

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
	if (!zone->all_unreclaimable &&
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2841
	return sc->nr_scanned >= sc->nr_to_reclaim;
2842 2843
}

L
Linus Torvalds 已提交
2844 2845
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2846
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2847
 *
2848
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2859 2860 2861 2862 2863
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2864
 */
2865
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2866
							int *classzone_idx)
L
Linus Torvalds 已提交
2867 2868
{
	int i;
2869
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2870 2871
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2872 2873
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2874
		.priority = DEF_PRIORITY,
2875
		.may_unmap = 1,
2876
		.may_swap = 1,
2877
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2878
		.order = order,
2879
		.target_mem_cgroup = NULL,
2880
	};
2881
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2882

2883
	do {
L
Linus Torvalds 已提交
2884
		unsigned long lru_pages = 0;
2885
		unsigned long nr_attempted = 0;
2886
		bool raise_priority = true;
2887
		bool pgdat_needs_compaction = (order > 0);
2888 2889

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2890

2891 2892 2893 2894 2895 2896
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2897

2898 2899
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2900

2901 2902
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2903
				continue;
L
Linus Torvalds 已提交
2904

2905 2906 2907 2908
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2909
			age_active_anon(zone, &sc);
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2922
			if (!zone_balanced(zone, order, 0, 0)) {
2923
				end_zone = i;
A
Andrew Morton 已提交
2924
				break;
2925
			} else {
2926 2927 2928 2929
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2930
				zone_clear_flag(zone, ZONE_CONGESTED);
2931
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2932 2933
			}
		}
2934

2935
		if (i < 0)
A
Andrew Morton 已提交
2936 2937
			goto out;

L
Linus Torvalds 已提交
2938 2939 2940
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2941 2942 2943
			if (!populated_zone(zone))
				continue;

2944
			lru_pages += zone_reclaimable_pages(zone);
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2956 2957
		}

2958 2959 2960 2961 2962 2963 2964
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2977
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2978 2979
				continue;

2980 2981
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2982 2983 2984
				continue;

			sc.nr_scanned = 0;
2985

2986
			nr_soft_scanned = 0;
2987 2988 2989
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2990 2991 2992 2993
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
2994

2995
			/*
2996 2997 2998 2999
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3000
			 */
3001 3002 3003
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3004
		}
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3015
		/*
3016 3017 3018 3019 3020 3021
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3022
		 */
3023 3024
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3025

3026 3027 3028
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3029

3030 3031 3032 3033 3034 3035 3036
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3037
		/*
3038 3039
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3040
		 */
3041 3042
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3043
	} while (sc.priority >= 1 &&
3044
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3045

3046
out:
3047
	/*
3048
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3049 3050 3051 3052
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3053
	*classzone_idx = end_zone;
3054
	return order;
L
Linus Torvalds 已提交
3055 3056
}

3057
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3068
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3069 3070 3071 3072 3073 3074 3075 3076 3077
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3078
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3090

3091 3092 3093 3094 3095 3096 3097 3098
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3099 3100 3101
		if (!kthread_should_stop())
			schedule();

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3112 3113
/*
 * The background pageout daemon, started as a kernel thread
3114
 * from the init process.
L
Linus Torvalds 已提交
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3127
	unsigned long order, new_order;
3128
	unsigned balanced_order;
3129
	int classzone_idx, new_classzone_idx;
3130
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3131 3132
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3133

L
Linus Torvalds 已提交
3134 3135 3136
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3137
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3138

3139 3140
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3141
	if (!cpumask_empty(cpumask))
3142
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3157
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3158
	set_freezable();
L
Linus Torvalds 已提交
3159

3160
	order = new_order = 0;
3161
	balanced_order = 0;
3162
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3163
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3164
	for ( ; ; ) {
3165
		bool ret;
3166

3167 3168 3169 3170 3171
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3172 3173
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3174 3175 3176 3177 3178 3179
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3180
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3181 3182
			/*
			 * Don't sleep if someone wants a larger 'order'
3183
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3184 3185
			 */
			order = new_order;
3186
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3187
		} else {
3188 3189
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3190
			order = pgdat->kswapd_max_order;
3191
			classzone_idx = pgdat->classzone_idx;
3192 3193
			new_order = order;
			new_classzone_idx = classzone_idx;
3194
			pgdat->kswapd_max_order = 0;
3195
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3196 3197
		}

3198 3199 3200 3201 3202 3203 3204 3205
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3206 3207
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3208 3209 3210
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3211
		}
L
Linus Torvalds 已提交
3212
	}
3213 3214

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3215 3216 3217 3218 3219 3220
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3221
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3222 3223 3224
{
	pg_data_t *pgdat;

3225
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3226 3227
		return;

3228
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3229
		return;
3230
	pgdat = zone->zone_pgdat;
3231
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3232
		pgdat->kswapd_max_order = order;
3233 3234
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3235
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3236
		return;
3237 3238 3239 3240
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3241
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3242 3243
}

3244 3245 3246 3247 3248 3249 3250 3251
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3252
{
3253 3254 3255 3256 3257
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3258
	if (get_nr_swap_pages() > 0)
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3272
	if (get_nr_swap_pages() > 0)
3273 3274 3275 3276
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3277 3278
}

3279
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3280
/*
3281
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3282 3283 3284 3285 3286
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3287
 */
3288
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3289
{
3290 3291
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3292 3293 3294
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3295
		.may_writepage = 1,
3296 3297 3298
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3299
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3300
	};
3301 3302 3303 3304
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3305 3306
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3307

3308 3309 3310 3311
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3312

3313
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3314

3315 3316 3317
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3318

3319
	return nr_reclaimed;
L
Linus Torvalds 已提交
3320
}
3321
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3322 3323 3324 3325 3326

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3327 3328
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3329
{
3330
	int nid;
L
Linus Torvalds 已提交
3331

3332
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3333
		for_each_node_state(nid, N_MEMORY) {
3334
			pg_data_t *pgdat = NODE_DATA(nid);
3335 3336 3337
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3338

3339
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3340
				/* One of our CPUs online: restore mask */
3341
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3342 3343 3344 3345 3346
		}
	}
	return NOTIFY_OK;
}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3363 3364
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3365
		pgdat->kswapd = NULL;
3366 3367 3368 3369
	}
	return ret;
}

3370
/*
3371 3372
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3373 3374 3375 3376 3377
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3378
	if (kswapd) {
3379
		kthread_stop(kswapd);
3380 3381
		NODE_DATA(nid)->kswapd = NULL;
	}
3382 3383
}

L
Linus Torvalds 已提交
3384 3385
static int __init kswapd_init(void)
{
3386
	int nid;
3387

L
Linus Torvalds 已提交
3388
	swap_setup();
3389
	for_each_node_state(nid, N_MEMORY)
3390
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3406
#define RECLAIM_OFF 0
3407
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3408 3409 3410
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3411 3412 3413 3414 3415 3416 3417
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3418 3419 3420 3421 3422 3423
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3424 3425 3426 3427 3428 3429
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3472 3473 3474
/*
 * Try to free up some pages from this zone through reclaim.
 */
3475
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3476
{
3477
	/* Minimum pages needed in order to stay on node */
3478
	const unsigned long nr_pages = 1 << order;
3479 3480
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3481 3482
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3483
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3484
		.may_swap = 1,
3485
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3486
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3487
		.order = order,
3488
		.priority = ZONE_RECLAIM_PRIORITY,
3489
	};
3490 3491 3492
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3493
	unsigned long nr_slab_pages0, nr_slab_pages1;
3494 3495

	cond_resched();
3496 3497 3498 3499 3500 3501
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3502
	lockdep_set_current_reclaim_state(gfp_mask);
3503 3504
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3505

3506
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3507 3508 3509 3510 3511
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3512 3513
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3514
	}
3515

3516 3517
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3518
		/*
3519
		 * shrink_slab() does not currently allow us to determine how
3520 3521 3522 3523
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3524
		 *
3525 3526
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3527
		 */
3528 3529 3530 3531
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3532
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3533 3534 3535 3536 3537 3538 3539 3540
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3541 3542 3543 3544 3545

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3546 3547 3548
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3549 3550
	}

3551
	p->reclaim_state = NULL;
3552
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3553
	lockdep_clear_current_reclaim_state();
3554
	return sc.nr_reclaimed >= nr_pages;
3555
}
3556 3557 3558 3559

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3560
	int ret;
3561 3562

	/*
3563 3564
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3565
	 *
3566 3567 3568 3569 3570
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3571
	 */
3572 3573
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3574
		return ZONE_RECLAIM_FULL;
3575

3576
	if (zone->all_unreclaimable)
3577
		return ZONE_RECLAIM_FULL;
3578

3579
	/*
3580
	 * Do not scan if the allocation should not be delayed.
3581
	 */
3582
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3583
		return ZONE_RECLAIM_NOSCAN;
3584 3585 3586 3587 3588 3589 3590

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3591
	node_id = zone_to_nid(zone);
3592
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3593
		return ZONE_RECLAIM_NOSCAN;
3594 3595

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3596 3597
		return ZONE_RECLAIM_NOSCAN;

3598 3599 3600
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3601 3602 3603
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3604
	return ret;
3605
}
3606
#endif
L
Lee Schermerhorn 已提交
3607 3608 3609 3610 3611 3612

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3613
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3614 3615
 *
 * Reasons page might not be evictable:
3616
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3617
 * (2) page is part of an mlocked VMA
3618
 *
L
Lee Schermerhorn 已提交
3619
 */
3620
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3621
{
3622
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3623
}
3624

3625
#ifdef CONFIG_SHMEM
3626
/**
3627 3628 3629
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3630
 *
3631
 * Checks pages for evictability and moves them to the appropriate lru list.
3632 3633
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3634
 */
3635
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3636
{
3637
	struct lruvec *lruvec;
3638 3639 3640 3641
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3642

3643 3644 3645
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3646

3647 3648 3649 3650 3651 3652 3653 3654
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3655
		lruvec = mem_cgroup_page_lruvec(page, zone);
3656

3657 3658
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3659

3660
		if (page_evictable(page)) {
3661 3662 3663 3664
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3665 3666
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3667
			pgrescued++;
3668
		}
3669
	}
3670

3671 3672 3673 3674
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3675 3676
	}
}
3677
#endif /* CONFIG_SHMEM */
3678

3679
static void warn_scan_unevictable_pages(void)
3680
{
3681
	printk_once(KERN_WARNING
3682
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3683
		    "disabled for lack of a legitimate use case.  If you have "
3684 3685
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3686 3687 3688 3689 3690 3691 3692 3693 3694
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3695
			   void __user *buffer,
3696 3697
			   size_t *length, loff_t *ppos)
{
3698
	warn_scan_unevictable_pages();
3699
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3700 3701 3702 3703
	scan_unevictable_pages = 0;
	return 0;
}

3704
#ifdef CONFIG_NUMA
3705 3706 3707 3708 3709
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3710 3711
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3712 3713
					  char *buf)
{
3714
	warn_scan_unevictable_pages();
3715 3716 3717
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3718 3719
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3720 3721
					const char *buf, size_t count)
{
3722
	warn_scan_unevictable_pages();
3723 3724 3725 3726
	return 1;
}


3727
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3728 3729 3730 3731 3732
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3733
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3734 3735 3736 3737
}

void scan_unevictable_unregister_node(struct node *node)
{
3738
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3739
}
3740
#endif