vmscan.c 106.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142 143 144

static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
{
145
	return !mem_cgroup_disabled();
146
}
147
#else
148 149 150 151
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
152 153 154 155 156

static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
{
	return false;
}
157 158
#endif

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

178
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
179
{
180
	if (!mem_cgroup_disabled())
181
		return mem_cgroup_get_lru_size(lruvec, lru);
182

183
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
184 185
}

L
Linus Torvalds 已提交
186
/*
G
Glauber Costa 已提交
187
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
188
 */
G
Glauber Costa 已提交
189
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
190
{
G
Glauber Costa 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

208 209 210
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
211
	return 0;
L
Linus Torvalds 已提交
212
}
213
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
214 215 216 217

/*
 * Remove one
 */
218
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
219 220 221 222 223
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
224
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
225 226

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
		 unsigned long nr_pages_scanned, unsigned long lru_pages)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
	long max_pass;
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

D
Dave Chinner 已提交
242
	max_pass = shrinker->count_objects(shrinker, shrinkctl);
G
Glauber Costa 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	if (max_pass == 0)
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
	delta = (4 * nr_pages_scanned) / shrinker->seeks;
	delta *= max_pass;
	do_div(delta, lru_pages + 1);
	total_scan += delta;
	if (total_scan < 0) {
		printk(KERN_ERR
		"shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
261
		       shrinker->scan_objects, total_scan);
G
Glauber Costa 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
		total_scan = max_pass;
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
	 * max_pass.  This is bad for sustaining a working set in
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
	if (delta < max_pass / 4)
		total_scan = min(total_scan, max_pass / 2);

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
	if (total_scan > max_pass * 2)
		total_scan = max_pass * 2;

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				nr_pages_scanned, lru_pages,
				max_pass, delta, total_scan);

	while (total_scan >= batch_size) {
D
Dave Chinner 已提交
293
		unsigned long ret;
G
Glauber Costa 已提交
294

D
Dave Chinner 已提交
295 296 297 298 299
		shrinkctl->nr_to_scan = batch_size;
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

		count_vm_events(SLABS_SCANNED, batch_size);
		total_scan -= batch_size;

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
	return freed;
320 321
}

L
Linus Torvalds 已提交
322 323 324 325 326 327 328 329
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
330
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
331 332 333 334 335 336 337
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
338 339
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
340
 */
D
Dave Chinner 已提交
341
unsigned long shrink_slab(struct shrink_control *shrinkctl,
342
			  unsigned long nr_pages_scanned,
343
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
344 345
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
346
	unsigned long freed = 0;
L
Linus Torvalds 已提交
347

348 349
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
350

351
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
352 353 354 355 356 357 358
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
359 360
		goto out;
	}
L
Linus Torvalds 已提交
361 362

	list_for_each_entry(shrinker, &shrinker_list, list) {
G
Glauber Costa 已提交
363 364 365
		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
			if (!node_online(shrinkctl->nid))
				continue;
L
Linus Torvalds 已提交
366

G
Glauber Costa 已提交
367 368
			if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
			    (shrinkctl->nid != 0))
L
Linus Torvalds 已提交
369 370
				break;

G
Glauber Costa 已提交
371 372
			freed += shrink_slab_node(shrinkctl, shrinker,
				 nr_pages_scanned, lru_pages);
L
Linus Torvalds 已提交
373 374 375 376

		}
	}
	up_read(&shrinker_rwsem);
377 378
out:
	cond_resched();
D
Dave Chinner 已提交
379
	return freed;
L
Linus Torvalds 已提交
380 381 382 383
}

static inline int is_page_cache_freeable(struct page *page)
{
384 385 386 387 388
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
389
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
390 391
}

392 393
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
394
{
395
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
419
	lock_page(page);
420 421
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
422 423 424
	unlock_page(page);
}

425 426 427 428 429 430 431 432 433 434 435 436
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
437
/*
A
Andrew Morton 已提交
438 439
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
440
 */
441
static pageout_t pageout(struct page *page, struct address_space *mapping,
442
			 struct scan_control *sc)
L
Linus Torvalds 已提交
443 444 445 446 447 448 449 450
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
451
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
467
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
468 469
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
470
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
471 472 473 474 475 476 477
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
478
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
479 480 481 482 483 484 485
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
486 487
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
488 489 490 491 492 493 494
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
495
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
496 497 498
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
499

L
Linus Torvalds 已提交
500 501 502 503
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
504
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
505
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
506 507 508 509 510 511
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

512
/*
N
Nick Piggin 已提交
513 514
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
515
 */
N
Nick Piggin 已提交
516
static int __remove_mapping(struct address_space *mapping, struct page *page)
517
{
518 519
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
520

N
Nick Piggin 已提交
521
	spin_lock_irq(&mapping->tree_lock);
522
	/*
N
Nick Piggin 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
546
	 */
N
Nick Piggin 已提交
547
	if (!page_freeze_refs(page, 2))
548
		goto cannot_free;
N
Nick Piggin 已提交
549 550 551
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
552
		goto cannot_free;
N
Nick Piggin 已提交
553
	}
554 555 556 557

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
558
		spin_unlock_irq(&mapping->tree_lock);
559
		swapcache_free(swap, page);
N
Nick Piggin 已提交
560
	} else {
561 562 563 564
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

565
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
566
		spin_unlock_irq(&mapping->tree_lock);
567
		mem_cgroup_uncharge_cache_page(page);
568 569 570

		if (freepage != NULL)
			freepage(page);
571 572 573 574 575
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
576
	spin_unlock_irq(&mapping->tree_lock);
577 578 579
	return 0;
}

N
Nick Piggin 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
600 601 602 603 604 605 606 607 608 609 610
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
611
	bool is_unevictable;
612
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
613 614 615 616 617 618

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

619
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
620 621 622 623 624 625
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
626
		is_unevictable = false;
627
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
628 629 630 631 632
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
633
		is_unevictable = true;
L
Lee Schermerhorn 已提交
634
		add_page_to_unevictable_list(page);
635
		/*
636 637 638
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
639
		 * isolation/check_move_unevictable_pages,
640
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641 642
		 * the page back to the evictable list.
		 *
643
		 * The other side is TestClearPageMlocked() or shmem_lock().
644 645
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
646 647 648 649 650 651 652
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
653
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
654 655 656 657 658 659 660 661 662 663
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

664
	if (was_unevictable && !is_unevictable)
665
		count_vm_event(UNEVICTABLE_PGRESCUED);
666
	else if (!was_unevictable && is_unevictable)
667 668
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
669 670 671
	put_page(page);		/* drop ref from isolate */
}

672 673 674
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
675
	PAGEREF_KEEP,
676 677 678 679 680 681
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
682
	int referenced_ptes, referenced_page;
683 684
	unsigned long vm_flags;

685 686
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
687
	referenced_page = TestClearPageReferenced(page);
688 689 690 691 692 693 694 695

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

696
	if (referenced_ptes) {
697
		if (PageSwapBacked(page))
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

715
		if (referenced_page || referenced_ptes > 1)
716 717
			return PAGEREF_ACTIVATE;

718 719 720 721 722 723
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

724 725
		return PAGEREF_KEEP;
	}
726 727

	/* Reclaim if clean, defer dirty pages to writeback */
728
	if (referenced_page && !PageSwapBacked(page))
729 730 731
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
732 733
}

734 735 736 737
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
738 739
	struct address_space *mapping;

740 741 742 743 744 745 746 747 748 749 750 751 752
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
753 754 755 756 757 758 759 760

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
761 762
}

L
Linus Torvalds 已提交
763
/*
A
Andrew Morton 已提交
764
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
765
 */
A
Andrew Morton 已提交
766
static unsigned long shrink_page_list(struct list_head *page_list,
767
				      struct zone *zone,
768
				      struct scan_control *sc,
769
				      enum ttu_flags ttu_flags,
770
				      unsigned long *ret_nr_dirty,
771
				      unsigned long *ret_nr_unqueued_dirty,
772
				      unsigned long *ret_nr_congested,
773
				      unsigned long *ret_nr_writeback,
774
				      unsigned long *ret_nr_immediate,
775
				      bool force_reclaim)
L
Linus Torvalds 已提交
776 777
{
	LIST_HEAD(ret_pages);
778
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
779
	int pgactivate = 0;
780
	unsigned long nr_unqueued_dirty = 0;
781 782
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
783
	unsigned long nr_reclaimed = 0;
784
	unsigned long nr_writeback = 0;
785
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
786 787 788

	cond_resched();

789
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
790 791 792 793
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
794
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
795
		bool dirty, writeback;
L
Linus Torvalds 已提交
796 797 798 799 800 801

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
802
		if (!trylock_page(page))
L
Linus Torvalds 已提交
803 804
			goto keep;

N
Nick Piggin 已提交
805
		VM_BUG_ON(PageActive(page));
806
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
807 808

		sc->nr_scanned++;
809

810
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
811
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
812

813
		if (!sc->may_unmap && page_mapped(page))
814 815
			goto keep_locked;

L
Linus Torvalds 已提交
816 817 818 819
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

820 821 822
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

823 824 825 826 827 828 829 830 831 832 833 834 835
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

836 837 838 839 840 841
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
842
		mapping = page_mapping(page);
843 844
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
845 846
			nr_congested++;

847 848 849 850 851 852 853 854 855 856 857
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
858 859
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
884
		if (PageWriteback(page)) {
885 886 887 888
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
889 890
				nr_immediate++;
				goto keep_locked;
891 892 893

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
894 895 896 897 898 899 900 901 902 903 904 905 906
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
907
				nr_writeback++;
908

909
				goto keep_locked;
910 911 912 913

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
914
			}
915
		}
L
Linus Torvalds 已提交
916

917 918 919
		if (!force_reclaim)
			references = page_check_references(page, sc);

920 921
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
922
			goto activate_locked;
923 924
		case PAGEREF_KEEP:
			goto keep_locked;
925 926 927 928
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
929 930 931 932 933

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
934
		if (PageAnon(page) && !PageSwapCache(page)) {
935 936
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
937
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
938
				goto activate_locked;
939
			may_enter_fs = 1;
L
Linus Torvalds 已提交
940

941 942 943
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
944 945 946 947 948 949

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
950
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
951 952 953 954
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
955 956
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
957 958 959 960 961 962
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
963 964
			/*
			 * Only kswapd can writeback filesystem pages to
965 966
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
967
			 */
968
			if (page_is_file_cache(page) &&
969
					(!current_is_kswapd() ||
970
					 !zone_is_reclaim_dirty(zone))) {
971 972 973 974 975 976 977 978 979
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

980 981 982
				goto keep_locked;
			}

983
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
984
				goto keep_locked;
985
			if (!may_enter_fs)
L
Linus Torvalds 已提交
986
				goto keep_locked;
987
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
988 989 990
				goto keep_locked;

			/* Page is dirty, try to write it out here */
991
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
992 993 994 995 996
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
997
				if (PageWriteback(page))
998
					goto keep;
999
				if (PageDirty(page))
L
Linus Torvalds 已提交
1000
					goto keep;
1001

L
Linus Torvalds 已提交
1002 1003 1004 1005
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1006
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1026
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1037
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1038 1039
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1056 1057
		}

N
Nick Piggin 已提交
1058
		if (!mapping || !__remove_mapping(mapping, page))
1059
			goto keep_locked;
L
Linus Torvalds 已提交
1060

N
Nick Piggin 已提交
1061 1062 1063 1064 1065 1066 1067 1068
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1069
free_it:
1070
		nr_reclaimed++;
1071 1072 1073 1074 1075 1076

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1077 1078
		continue;

N
Nick Piggin 已提交
1079
cull_mlocked:
1080 1081
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1082 1083 1084 1085
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1086
activate_locked:
1087 1088
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1089
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1090
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1097
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1098
	}
1099

1100
	free_hot_cold_page_list(&free_pages, 1);
1101

L
Linus Torvalds 已提交
1102
	list_splice(&ret_pages, page_list);
1103
	count_vm_events(PGACTIVATE, pgactivate);
1104
	mem_cgroup_uncharge_end();
1105 1106
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1107
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1108
	*ret_nr_writeback += nr_writeback;
1109
	*ret_nr_immediate += nr_immediate;
1110
	return nr_reclaimed;
L
Linus Torvalds 已提交
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1121
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1133 1134
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1135 1136 1137 1138 1139
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1150
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1151 1152 1153 1154 1155 1156 1157
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1158 1159
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1160 1161
		return ret;

A
Andy Whitcroft 已提交
1162
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1197

1198 1199 1200
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1225
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1226
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1227
 * @nr_scanned:	The number of pages that were scanned.
1228
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1229
 * @mode:	One of the LRU isolation modes
1230
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1231 1232 1233
 *
 * returns how many pages were moved onto *@dst.
 */
1234
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1235
		struct lruvec *lruvec, struct list_head *dst,
1236
		unsigned long *nr_scanned, struct scan_control *sc,
1237
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1238
{
H
Hugh Dickins 已提交
1239
	struct list_head *src = &lruvec->lists[lru];
1240
	unsigned long nr_taken = 0;
1241
	unsigned long scan;
L
Linus Torvalds 已提交
1242

1243
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1244
		struct page *page;
1245
		int nr_pages;
A
Andy Whitcroft 已提交
1246

L
Linus Torvalds 已提交
1247 1248 1249
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1250
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1251

1252
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1253
		case 0:
1254 1255
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1256
			list_move(&page->lru, dst);
1257
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1258 1259 1260 1261 1262 1263
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1264

A
Andy Whitcroft 已提交
1265 1266 1267
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1268 1269
	}

H
Hugh Dickins 已提交
1270
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1271 1272
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1273 1274 1275
	return nr_taken;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1287 1288 1289
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1305 1306
	VM_BUG_ON(!page_count(page));

1307 1308
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1309
		struct lruvec *lruvec;
1310 1311

		spin_lock_irq(&zone->lru_lock);
1312
		lruvec = mem_cgroup_page_lruvec(page, zone);
1313
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1314
			int lru = page_lru(page);
1315
			get_page(page);
1316
			ClearPageLRU(page);
1317 1318
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1319 1320 1321 1322 1323 1324
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1325
/*
F
Fengguang Wu 已提交
1326 1327 1328 1329 1330
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1331 1332 1333 1334 1335 1336 1337 1338 1339
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1340
	if (!global_reclaim(sc))
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1359 1360 1361
	return isolated > inactive;
}

1362
static noinline_for_stack void
H
Hugh Dickins 已提交
1363
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1364
{
1365 1366
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1367
	LIST_HEAD(pages_to_free);
1368 1369 1370 1371 1372

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1373
		struct page *page = lru_to_page(page_list);
1374
		int lru;
1375

1376 1377
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1378
		if (unlikely(!page_evictable(page))) {
1379 1380 1381 1382 1383
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1384 1385 1386

		lruvec = mem_cgroup_page_lruvec(page, zone);

1387
		SetPageLRU(page);
1388
		lru = page_lru(page);
1389 1390
		add_page_to_lru_list(page, lruvec, lru);

1391 1392
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1393 1394
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1395
		}
1396 1397 1398
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1399
			del_page_from_lru_list(page, lruvec, lru);
1400 1401 1402 1403 1404 1405 1406

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1407 1408 1409
		}
	}

1410 1411 1412 1413
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1414 1415
}

L
Linus Torvalds 已提交
1416
/*
A
Andrew Morton 已提交
1417 1418
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1419
 */
1420
static noinline_for_stack unsigned long
1421
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1422
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1423 1424
{
	LIST_HEAD(page_list);
1425
	unsigned long nr_scanned;
1426
	unsigned long nr_reclaimed = 0;
1427
	unsigned long nr_taken;
1428 1429
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1430
	unsigned long nr_unqueued_dirty = 0;
1431
	unsigned long nr_writeback = 0;
1432
	unsigned long nr_immediate = 0;
1433
	isolate_mode_t isolate_mode = 0;
1434
	int file = is_file_lru(lru);
1435 1436
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1437

1438
	while (unlikely(too_many_isolated(zone, file, sc))) {
1439
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1440 1441 1442 1443 1444 1445

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1446
	lru_add_drain();
1447 1448

	if (!sc->may_unmap)
1449
		isolate_mode |= ISOLATE_UNMAPPED;
1450
	if (!sc->may_writepage)
1451
		isolate_mode |= ISOLATE_CLEAN;
1452

L
Linus Torvalds 已提交
1453
	spin_lock_irq(&zone->lru_lock);
1454

1455 1456
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1457 1458 1459 1460

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1461
	if (global_reclaim(sc)) {
1462 1463
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1464
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1465
		else
H
Hugh Dickins 已提交
1466
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1467
	}
1468
	spin_unlock_irq(&zone->lru_lock);
1469

1470
	if (nr_taken == 0)
1471
		return 0;
A
Andy Whitcroft 已提交
1472

1473
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1474 1475 1476
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1477

1478 1479
	spin_lock_irq(&zone->lru_lock);

1480
	reclaim_stat->recent_scanned[file] += nr_taken;
1481

Y
Ying Han 已提交
1482 1483 1484 1485 1486 1487 1488 1489
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1490

1491
	putback_inactive_pages(lruvec, &page_list);
1492

1493
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1494 1495 1496 1497

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1509 1510 1511
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1512
	 */
1513
	if (nr_writeback && nr_writeback == nr_taken)
1514
		zone_set_flag(zone, ZONE_WRITEBACK);
1515

1516
	/*
1517 1518
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1519
	 */
1520
	if (global_reclaim(sc)) {
1521 1522 1523 1524 1525 1526 1527
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1546
	}
1547

1548 1549 1550 1551 1552 1553 1554 1555
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1556 1557 1558
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1559
		sc->priority,
M
Mel Gorman 已提交
1560
		trace_shrink_flags(file));
1561
	return nr_reclaimed;
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1581

1582
static void move_active_pages_to_lru(struct lruvec *lruvec,
1583
				     struct list_head *list,
1584
				     struct list_head *pages_to_free,
1585 1586
				     enum lru_list lru)
{
1587
	struct zone *zone = lruvec_zone(lruvec);
1588 1589
	unsigned long pgmoved = 0;
	struct page *page;
1590
	int nr_pages;
1591 1592 1593

	while (!list_empty(list)) {
		page = lru_to_page(list);
1594
		lruvec = mem_cgroup_page_lruvec(page, zone);
1595 1596 1597 1598

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1599 1600
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1601
		list_move(&page->lru, &lruvec->lists[lru]);
1602
		pgmoved += nr_pages;
1603

1604 1605 1606
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1607
			del_page_from_lru_list(page, lruvec, lru);
1608 1609 1610 1611 1612 1613 1614

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1615 1616 1617 1618 1619 1620
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1621

H
Hugh Dickins 已提交
1622
static void shrink_active_list(unsigned long nr_to_scan,
1623
			       struct lruvec *lruvec,
1624
			       struct scan_control *sc,
1625
			       enum lru_list lru)
L
Linus Torvalds 已提交
1626
{
1627
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1628
	unsigned long nr_scanned;
1629
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1630
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1631
	LIST_HEAD(l_active);
1632
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1633
	struct page *page;
1634
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1635
	unsigned long nr_rotated = 0;
1636
	isolate_mode_t isolate_mode = 0;
1637
	int file = is_file_lru(lru);
1638
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1639 1640

	lru_add_drain();
1641 1642

	if (!sc->may_unmap)
1643
		isolate_mode |= ISOLATE_UNMAPPED;
1644
	if (!sc->may_writepage)
1645
		isolate_mode |= ISOLATE_CLEAN;
1646

L
Linus Torvalds 已提交
1647
	spin_lock_irq(&zone->lru_lock);
1648

1649 1650
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1651
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1652
		zone->pages_scanned += nr_scanned;
1653

1654
	reclaim_stat->recent_scanned[file] += nr_taken;
1655

H
Hugh Dickins 已提交
1656
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1657
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1658
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1665

1666
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1667 1668 1669 1670
			putback_lru_page(page);
			continue;
		}

1671 1672 1673 1674 1675 1676 1677 1678
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1679 1680
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1681
			nr_rotated += hpage_nr_pages(page);
1682 1683 1684 1685 1686 1687 1688 1689 1690
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1691
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1692 1693 1694 1695
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1696

1697
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1698 1699 1700
		list_add(&page->lru, &l_inactive);
	}

1701
	/*
1702
	 * Move pages back to the lru list.
1703
	 */
1704
	spin_lock_irq(&zone->lru_lock);
1705
	/*
1706 1707 1708 1709
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1710
	 */
1711
	reclaim_stat->recent_rotated[file] += nr_rotated;
1712

1713 1714
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1715
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1716
	spin_unlock_irq(&zone->lru_lock);
1717 1718

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1719 1720
}

1721
#ifdef CONFIG_SWAP
1722
static int inactive_anon_is_low_global(struct zone *zone)
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1735 1736
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1737
 * @lruvec: LRU vector to check
1738 1739 1740 1741
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1742
static int inactive_anon_is_low(struct lruvec *lruvec)
1743
{
1744 1745 1746 1747 1748 1749 1750
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1751
	if (!mem_cgroup_disabled())
1752
		return mem_cgroup_inactive_anon_is_low(lruvec);
1753

1754
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1755
}
1756
#else
1757
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1758 1759 1760 1761
{
	return 0;
}
#endif
1762

1763 1764
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1765
 * @lruvec: LRU vector to check
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1777
static int inactive_file_is_low(struct lruvec *lruvec)
1778
{
1779 1780 1781 1782 1783
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1784

1785
	return active > inactive;
1786 1787
}

H
Hugh Dickins 已提交
1788
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1789
{
H
Hugh Dickins 已提交
1790
	if (is_file_lru(lru))
1791
		return inactive_file_is_low(lruvec);
1792
	else
1793
		return inactive_anon_is_low(lruvec);
1794 1795
}

1796
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1797
				 struct lruvec *lruvec, struct scan_control *sc)
1798
{
1799
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1800
		if (inactive_list_is_low(lruvec, lru))
1801
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1802 1803 1804
		return 0;
	}

1805
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1806 1807
}

1808
static int vmscan_swappiness(struct scan_control *sc)
1809
{
1810
	if (global_reclaim(sc))
1811
		return vm_swappiness;
1812
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1813 1814
}

1815 1816 1817 1818 1819 1820 1821
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1822 1823 1824 1825 1826 1827
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1828 1829
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1830
 */
1831
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1832
			   unsigned long *nr)
1833
{
1834 1835 1836 1837
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1838
	unsigned long anon_prio, file_prio;
1839 1840 1841
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1842
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1843
	enum lru_list lru;
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1855
	if (current_is_kswapd() && !zone_reclaimable(zone))
1856
		force_scan = true;
1857
	if (!global_reclaim(sc))
1858
		force_scan = true;
1859 1860

	/* If we have no swap space, do not bother scanning anon pages. */
1861
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1862
		scan_balance = SCAN_FILE;
1863 1864
		goto out;
	}
1865

1866 1867 1868 1869 1870 1871 1872 1873
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1874
		scan_balance = SCAN_FILE;
1875 1876 1877 1878 1879 1880 1881 1882 1883
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1884
		scan_balance = SCAN_EQUAL;
1885 1886 1887
		goto out;
	}

1888 1889 1890 1891
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1892

1893 1894 1895 1896 1897 1898
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1899
	if (global_reclaim(sc)) {
1900
		free = zone_page_state(zone, NR_FREE_PAGES);
1901
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1902
			scan_balance = SCAN_ANON;
1903
			goto out;
1904
		}
1905 1906
	}

1907 1908 1909 1910 1911
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1912
		scan_balance = SCAN_FILE;
1913 1914 1915
		goto out;
	}

1916 1917
	scan_balance = SCAN_FRACT;

1918 1919 1920 1921
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1922
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1923
	file_prio = 200 - anon_prio;
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1936
	spin_lock_irq(&zone->lru_lock);
1937 1938 1939
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1940 1941
	}

1942 1943 1944
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1945 1946 1947
	}

	/*
1948 1949 1950
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1951
	 */
1952
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1953
	ap /= reclaim_stat->recent_rotated[0] + 1;
1954

1955
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1956
	fp /= reclaim_stat->recent_rotated[1] + 1;
1957
	spin_unlock_irq(&zone->lru_lock);
1958

1959 1960 1961 1962
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1963 1964
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1965
		unsigned long size;
1966
		unsigned long scan;
1967

1968
		size = get_lru_size(lruvec, lru);
1969
		scan = size >> sc->priority;
1970

1971 1972
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1995
		nr[lru] = scan;
1996
	}
1997
}
1998

1999 2000 2001 2002 2003 2004
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
2005
	unsigned long targets[NR_LRU_LISTS];
2006 2007 2008 2009 2010
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2011
	bool scan_adjusted = false;
2012 2013 2014

	get_scan_count(lruvec, sc, nr);

2015 2016 2017
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2018 2019 2020
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2021 2022 2023
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2024 2025 2026 2027 2028 2029 2030 2031 2032
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2033 2034 2035 2036

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

2037
		/*
2038 2039 2040 2041
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
2042
		 */
2043
		if (global_reclaim(sc) && !current_is_kswapd())
2044
			break;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2102
/* Use reclaim/compaction for costly allocs or under memory pressure */
2103
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2104
{
2105
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2106
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2107
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2108 2109 2110 2111 2112
		return true;

	return false;
}

2113
/*
M
Mel Gorman 已提交
2114 2115 2116 2117 2118
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2119
 */
2120
static inline bool should_continue_reclaim(struct zone *zone,
2121 2122 2123 2124 2125 2126 2127 2128
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2129
	if (!in_reclaim_compaction(sc))
2130 2131
		return false;

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2154 2155 2156 2157 2158 2159

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2160
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2161
	if (get_nr_swap_pages() > 0)
2162
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2163 2164 2165 2166 2167
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2168
	switch (compaction_suitable(zone, sc->order)) {
2169 2170 2171 2172 2173 2174 2175 2176
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2177
static void
2178
__shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
L
Linus Torvalds 已提交
2179
{
2180
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2181

2182 2183 2184 2185 2186 2187
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2188 2189 2190
		struct mem_cgroup *memcg = NULL;
		mem_cgroup_iter_filter filter = (soft_reclaim) ?
			mem_cgroup_soft_reclaim_eligible : NULL;
2191

2192 2193
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2194

2195
		while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) {
2196
			struct lruvec *lruvec;
2197

2198
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2199

2200
			shrink_lruvec(lruvec, sc);
2201

2202
			/*
2203 2204
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2205
			 * zone.
2206 2207 2208 2209 2210
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2211
			 */
2212 2213
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2214 2215 2216
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2217
		}
2218 2219 2220 2221 2222

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2223 2224
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2225 2226
}

2227 2228 2229 2230 2231 2232

static void shrink_zone(struct zone *zone, struct scan_control *sc)
{
	bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
	unsigned long nr_scanned = sc->nr_scanned;

2233
	__shrink_zone(zone, sc, do_soft_reclaim);
2234 2235 2236 2237 2238 2239 2240 2241 2242

	/*
	 * No group is over the soft limit or those that are do not have
	 * pages in the zone we are reclaiming so we have to reclaim everybody
	 */
	if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
		__shrink_zone(zone, sc, false);
		return;
	}
2243 2244
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2262
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2263 2264 2265 2266 2267 2268 2269 2270
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2271
	if (compaction_deferred(zone, sc->order))
2272 2273 2274 2275 2276 2277 2278 2279 2280
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2281 2282 2283 2284 2285
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2286 2287
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2288 2289
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2290 2291 2292
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2293 2294 2295
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2296 2297
 *
 * This function returns true if a zone is being reclaimed for a costly
2298
 * high-order allocation and compaction is ready to begin. This indicates to
2299 2300
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2301
 */
2302
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2303
{
2304
	struct zoneref *z;
2305
	struct zone *zone;
2306
	bool aborted_reclaim = false;
2307

2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2316 2317
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2318
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2319
			continue;
2320 2321 2322 2323
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2324
		if (global_reclaim(sc)) {
2325 2326
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2327 2328
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2329
				continue;	/* Let kswapd poll it */
2330
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2331
				/*
2332 2333 2334 2335 2336
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2337 2338
				 * noticeable problem, like transparent huge
				 * page allocations.
2339
				 */
2340
				if (compaction_ready(zone, sc)) {
2341
					aborted_reclaim = true;
2342
					continue;
2343
				}
2344
			}
2345
			/* need some check for avoid more shrink_zone() */
2346
		}
2347

2348
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2349
	}
2350

2351
	return aborted_reclaim;
2352 2353
}

2354
/* All zones in zonelist are unreclaimable? */
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2367
		if (zone_reclaimable(zone))
2368
			return false;
2369 2370
	}

2371
	return true;
L
Linus Torvalds 已提交
2372
}
2373

L
Linus Torvalds 已提交
2374 2375 2376 2377 2378 2379 2380 2381
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2382 2383 2384 2385
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2386 2387 2388
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2389
 */
2390
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2391 2392
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2393
{
2394
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2395
	struct reclaim_state *reclaim_state = current->reclaim_state;
2396
	struct zoneref *z;
2397
	struct zone *zone;
2398
	unsigned long writeback_threshold;
2399
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2400

2401 2402
	delayacct_freepages_start();

2403
	if (global_reclaim(sc))
2404
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2405

2406
	do {
2407 2408
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2409
		sc->nr_scanned = 0;
2410
		aborted_reclaim = shrink_zones(zonelist, sc);
2411

2412
		/*
2413 2414 2415 2416
		 * Don't shrink slabs when reclaiming memory from over limit
		 * cgroups but do shrink slab at least once when aborting
		 * reclaim for compaction to avoid unevenly scanning file/anon
		 * LRU pages over slab pages.
2417
		 */
2418
		if (global_reclaim(sc)) {
2419
			unsigned long lru_pages = 0;
D
Dave Chinner 已提交
2420 2421

			nodes_clear(shrink->nodes_to_scan);
2422 2423
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2424 2425 2426 2427
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
D
Dave Chinner 已提交
2428 2429
				node_set(zone_to_nid(zone),
					 shrink->nodes_to_scan);
2430 2431
			}

2432
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2433
			if (reclaim_state) {
2434
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2435 2436
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2437
		}
2438
		total_scanned += sc->nr_scanned;
2439
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2440 2441
			goto out;

2442 2443 2444 2445 2446 2447 2448
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2449 2450 2451 2452 2453 2454 2455
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2456 2457
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2458 2459
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2460
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2461
		}
2462
	} while (--sc->priority >= 0 && !aborted_reclaim);
2463

L
Linus Torvalds 已提交
2464
out:
2465 2466
	delayacct_freepages_end();

2467 2468 2469
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2470 2471 2472 2473 2474 2475 2476 2477
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2478 2479
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2480 2481
		return 1;

2482
	/* top priority shrink_zones still had more to do? don't OOM, then */
2483
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2484 2485 2486
		return 1;

	return 0;
L
Linus Torvalds 已提交
2487 2488
}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2519 2520 2521 2522
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2523
 */
2524
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2539 2540 2541 2542 2543 2544 2545 2546
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2547 2548 2549 2550 2551

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2552
		goto out;
2553

2554 2555 2556
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2568 2569

		goto check_pending;
2570 2571 2572 2573 2574
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2575 2576 2577 2578 2579 2580 2581

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2582 2583
}

2584
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2585
				gfp_t gfp_mask, nodemask_t *nodemask)
2586
{
2587
	unsigned long nr_reclaimed;
2588
	struct scan_control sc = {
2589
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2590
		.may_writepage = !laptop_mode,
2591
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2592
		.may_unmap = 1,
2593
		.may_swap = 1,
2594
		.order = order,
2595
		.priority = DEF_PRIORITY,
2596
		.target_mem_cgroup = NULL,
2597
		.nodemask = nodemask,
2598
	};
2599 2600 2601
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2602

2603
	/*
2604 2605 2606
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2607
	 */
2608
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2609 2610
		return 1;

2611 2612 2613 2614
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2615
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2616 2617 2618 2619

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2620 2621
}

A
Andrew Morton 已提交
2622
#ifdef CONFIG_MEMCG
2623

2624
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2625
						gfp_t gfp_mask, bool noswap,
2626 2627
						struct zone *zone,
						unsigned long *nr_scanned)
2628 2629
{
	struct scan_control sc = {
2630
		.nr_scanned = 0,
2631
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2632 2633 2634 2635
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2636
		.priority = 0,
2637
		.target_mem_cgroup = memcg,
2638
	};
2639
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2640

2641 2642
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2643

2644
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2645 2646 2647
						      sc.may_writepage,
						      sc.gfp_mask);

2648 2649 2650 2651 2652 2653 2654
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2655
	shrink_lruvec(lruvec, &sc);
2656 2657 2658

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2659
	*nr_scanned = sc.nr_scanned;
2660 2661 2662
	return sc.nr_reclaimed;
}

2663
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2664
					   gfp_t gfp_mask,
2665
					   bool noswap)
2666
{
2667
	struct zonelist *zonelist;
2668
	unsigned long nr_reclaimed;
2669
	int nid;
2670 2671
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2672
		.may_unmap = 1,
2673
		.may_swap = !noswap,
2674
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2675
		.order = 0,
2676
		.priority = DEF_PRIORITY,
2677
		.target_mem_cgroup = memcg,
2678
		.nodemask = NULL, /* we don't care the placement */
2679 2680 2681 2682 2683
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2684 2685
	};

2686 2687 2688 2689 2690
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2691
	nid = mem_cgroup_select_victim_node(memcg);
2692 2693

	zonelist = NODE_DATA(nid)->node_zonelists;
2694 2695 2696 2697 2698

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2699
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2700 2701 2702 2703

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2704 2705 2706
}
#endif

2707
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2708
{
2709
	struct mem_cgroup *memcg;
2710

2711 2712 2713 2714 2715
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2716
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2717

2718
		if (inactive_anon_is_low(lruvec))
2719
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2720
					   sc, LRU_ACTIVE_ANON);
2721 2722 2723

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2724 2725
}

2726 2727 2728 2729 2730 2731 2732
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2733 2734
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2735 2736 2737 2738 2739
		return false;

	return true;
}

2740
/*
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2751 2752 2753 2754
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2755
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2756 2757 2758 2759
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2760
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2761
{
2762
	unsigned long managed_pages = 0;
2763
	unsigned long balanced_pages = 0;
2764 2765
	int i;

2766 2767 2768
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2769

2770 2771 2772
		if (!populated_zone(zone))
			continue;

2773
		managed_pages += zone->managed_pages;
2774 2775 2776 2777 2778 2779 2780 2781

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2782
		if (!zone_reclaimable(zone)) {
2783
			balanced_pages += zone->managed_pages;
2784 2785 2786 2787
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2788
			balanced_pages += zone->managed_pages;
2789 2790 2791 2792 2793
		else if (!order)
			return false;
	}

	if (order)
2794
		return balanced_pages >= (managed_pages >> 2);
2795 2796
	else
		return true;
2797 2798
}

2799 2800 2801 2802 2803 2804 2805
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2806
					int classzone_idx)
2807 2808 2809
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2825

2826
	return pgdat_balanced(pgdat, order, classzone_idx);
2827 2828
}

2829 2830 2831
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2832 2833
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2834 2835
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2836
 */
2837
static bool kswapd_shrink_zone(struct zone *zone,
2838
			       int classzone_idx,
2839
			       struct scan_control *sc,
2840 2841
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2842
{
2843 2844
	int testorder = sc->order;
	unsigned long balance_gap;
2845 2846 2847 2848
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2849
	bool lowmem_pressure;
2850 2851 2852

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2884
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2885 2886
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2887 2888

	reclaim_state->reclaimed_slab = 0;
2889
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2890 2891
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2892 2893 2894
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2895 2896
	zone_clear_flag(zone, ZONE_WRITEBACK);

2897 2898 2899 2900 2901 2902
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2903
	if (zone_reclaimable(zone) &&
2904 2905 2906 2907 2908
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2909
	return sc->nr_scanned >= sc->nr_to_reclaim;
2910 2911
}

L
Linus Torvalds 已提交
2912 2913
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2914
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2915
 *
2916
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2927 2928 2929 2930 2931
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2932
 */
2933
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2934
							int *classzone_idx)
L
Linus Torvalds 已提交
2935 2936
{
	int i;
2937
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2938 2939
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2940
		.priority = DEF_PRIORITY,
2941
		.may_unmap = 1,
2942
		.may_swap = 1,
2943
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2944
		.order = order,
2945
		.target_mem_cgroup = NULL,
2946
	};
2947
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2948

2949
	do {
L
Linus Torvalds 已提交
2950
		unsigned long lru_pages = 0;
2951
		unsigned long nr_attempted = 0;
2952
		bool raise_priority = true;
2953
		bool pgdat_needs_compaction = (order > 0);
2954 2955

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2956

2957 2958 2959 2960 2961 2962
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2963

2964 2965
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2966

2967 2968
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2969
				continue;
L
Linus Torvalds 已提交
2970

2971 2972 2973 2974
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2975
			age_active_anon(zone, &sc);
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2988
			if (!zone_balanced(zone, order, 0, 0)) {
2989
				end_zone = i;
A
Andrew Morton 已提交
2990
				break;
2991
			} else {
2992 2993 2994 2995
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2996
				zone_clear_flag(zone, ZONE_CONGESTED);
2997
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2998 2999
			}
		}
3000

3001
		if (i < 0)
A
Andrew Morton 已提交
3002 3003
			goto out;

L
Linus Torvalds 已提交
3004 3005 3006
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3007 3008 3009
			if (!populated_zone(zone))
				continue;

3010
			lru_pages += zone_reclaimable_pages(zone);
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3022 3023
		}

3024 3025 3026 3027 3028 3029 3030
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3043
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3044 3045
				continue;

3046 3047
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3048 3049 3050
				continue;

			sc.nr_scanned = 0;
3051

3052
			/*
3053 3054 3055 3056
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3057
			 */
3058 3059 3060
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3061
		}
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3072
		/*
3073 3074 3075 3076 3077 3078
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3079
		 */
3080 3081
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3082

3083 3084 3085
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3086

3087 3088 3089 3090 3091 3092 3093
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3094
		/*
3095 3096
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3097
		 */
3098 3099
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3100
	} while (sc.priority >= 1 &&
3101
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3102

3103
out:
3104
	/*
3105
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3106 3107 3108 3109
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3110
	*classzone_idx = end_zone;
3111
	return order;
L
Linus Torvalds 已提交
3112 3113
}

3114
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3125
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3126 3127 3128 3129 3130 3131 3132 3133 3134
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3135
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3147

3148 3149 3150 3151 3152 3153 3154 3155
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3156 3157 3158
		if (!kthread_should_stop())
			schedule();

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3169 3170
/*
 * The background pageout daemon, started as a kernel thread
3171
 * from the init process.
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3184
	unsigned long order, new_order;
3185
	unsigned balanced_order;
3186
	int classzone_idx, new_classzone_idx;
3187
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3188 3189
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3190

L
Linus Torvalds 已提交
3191 3192 3193
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3194
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3195

3196 3197
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3198
	if (!cpumask_empty(cpumask))
3199
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3214
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3215
	set_freezable();
L
Linus Torvalds 已提交
3216

3217
	order = new_order = 0;
3218
	balanced_order = 0;
3219
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3220
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3221
	for ( ; ; ) {
3222
		bool ret;
3223

3224 3225 3226 3227 3228
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3229 3230
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3231 3232 3233 3234 3235 3236
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3237
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3238 3239
			/*
			 * Don't sleep if someone wants a larger 'order'
3240
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3241 3242
			 */
			order = new_order;
3243
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3244
		} else {
3245 3246
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3247
			order = pgdat->kswapd_max_order;
3248
			classzone_idx = pgdat->classzone_idx;
3249 3250
			new_order = order;
			new_classzone_idx = classzone_idx;
3251
			pgdat->kswapd_max_order = 0;
3252
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3253 3254
		}

3255 3256 3257 3258 3259 3260 3261 3262
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3263 3264
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3265 3266 3267
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3268
		}
L
Linus Torvalds 已提交
3269
	}
3270 3271

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3272 3273 3274 3275 3276 3277
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3278
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3279 3280 3281
{
	pg_data_t *pgdat;

3282
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3283 3284
		return;

3285
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3286
		return;
3287
	pgdat = zone->zone_pgdat;
3288
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3289
		pgdat->kswapd_max_order = order;
3290 3291
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3292
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3293
		return;
3294
	if (zone_balanced(zone, order, 0, 0))
3295 3296 3297
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3298
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3299 3300
}

3301 3302 3303 3304 3305 3306 3307 3308
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3309
{
3310 3311 3312 3313 3314
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3315
	if (get_nr_swap_pages() > 0)
3316 3317 3318 3319 3320 3321
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

3322
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3323
/*
3324
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3325 3326 3327 3328 3329
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3330
 */
3331
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3332
{
3333 3334
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3335 3336 3337
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3338
		.may_writepage = 1,
3339 3340 3341
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3342
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3343
	};
3344 3345 3346 3347
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3348 3349
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3350

3351 3352 3353 3354
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3355

3356
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3357

3358 3359 3360
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3361

3362
	return nr_reclaimed;
L
Linus Torvalds 已提交
3363
}
3364
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3365 3366 3367 3368 3369

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3370 3371
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3372
{
3373
	int nid;
L
Linus Torvalds 已提交
3374

3375
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3376
		for_each_node_state(nid, N_MEMORY) {
3377
			pg_data_t *pgdat = NODE_DATA(nid);
3378 3379 3380
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3381

3382
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3383
				/* One of our CPUs online: restore mask */
3384
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3385 3386 3387 3388 3389
		}
	}
	return NOTIFY_OK;
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3406 3407
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3408
		pgdat->kswapd = NULL;
3409 3410 3411 3412
	}
	return ret;
}

3413
/*
3414 3415
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3416 3417 3418 3419 3420
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3421
	if (kswapd) {
3422
		kthread_stop(kswapd);
3423 3424
		NODE_DATA(nid)->kswapd = NULL;
	}
3425 3426
}

L
Linus Torvalds 已提交
3427 3428
static int __init kswapd_init(void)
{
3429
	int nid;
3430

L
Linus Torvalds 已提交
3431
	swap_setup();
3432
	for_each_node_state(nid, N_MEMORY)
3433
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3434 3435 3436 3437 3438
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3449
#define RECLAIM_OFF 0
3450
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3451 3452 3453
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3454 3455 3456 3457 3458 3459 3460
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3461 3462 3463 3464 3465 3466
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3467 3468 3469 3470 3471 3472
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3515 3516 3517
/*
 * Try to free up some pages from this zone through reclaim.
 */
3518
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3519
{
3520
	/* Minimum pages needed in order to stay on node */
3521
	const unsigned long nr_pages = 1 << order;
3522 3523
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3524 3525
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3526
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3527
		.may_swap = 1,
3528
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3529
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3530
		.order = order,
3531
		.priority = ZONE_RECLAIM_PRIORITY,
3532
	};
3533 3534 3535
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3536
	unsigned long nr_slab_pages0, nr_slab_pages1;
3537 3538

	cond_resched();
3539 3540 3541 3542 3543 3544
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3545
	lockdep_set_current_reclaim_state(gfp_mask);
3546 3547
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3548

3549
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3550 3551 3552 3553 3554
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3555 3556
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3557
	}
3558

3559 3560
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3561
		/*
3562
		 * shrink_slab() does not currently allow us to determine how
3563 3564 3565 3566
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3567
		 */
D
Dave Chinner 已提交
3568 3569
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3570 3571 3572 3573
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3574
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3575 3576 3577 3578 3579 3580 3581 3582
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3583 3584 3585 3586 3587

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3588 3589 3590
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3591 3592
	}

3593
	p->reclaim_state = NULL;
3594
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3595
	lockdep_clear_current_reclaim_state();
3596
	return sc.nr_reclaimed >= nr_pages;
3597
}
3598 3599 3600 3601

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3602
	int ret;
3603 3604

	/*
3605 3606
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3607
	 *
3608 3609 3610 3611 3612
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3613
	 */
3614 3615
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3616
		return ZONE_RECLAIM_FULL;
3617

3618
	if (!zone_reclaimable(zone))
3619
		return ZONE_RECLAIM_FULL;
3620

3621
	/*
3622
	 * Do not scan if the allocation should not be delayed.
3623
	 */
3624
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3625
		return ZONE_RECLAIM_NOSCAN;
3626 3627 3628 3629 3630 3631 3632

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3633
	node_id = zone_to_nid(zone);
3634
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3635
		return ZONE_RECLAIM_NOSCAN;
3636 3637

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3638 3639
		return ZONE_RECLAIM_NOSCAN;

3640 3641 3642
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3643 3644 3645
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3646
	return ret;
3647
}
3648
#endif
L
Lee Schermerhorn 已提交
3649 3650 3651 3652 3653 3654

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3655
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3656 3657
 *
 * Reasons page might not be evictable:
3658
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3659
 * (2) page is part of an mlocked VMA
3660
 *
L
Lee Schermerhorn 已提交
3661
 */
3662
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3663
{
3664
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3665
}
3666

3667
#ifdef CONFIG_SHMEM
3668
/**
3669 3670 3671
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3672
 *
3673
 * Checks pages for evictability and moves them to the appropriate lru list.
3674 3675
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3676
 */
3677
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3678
{
3679
	struct lruvec *lruvec;
3680 3681 3682 3683
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3684

3685 3686 3687
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3688

3689 3690 3691 3692 3693 3694 3695 3696
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3697
		lruvec = mem_cgroup_page_lruvec(page, zone);
3698

3699 3700
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3701

3702
		if (page_evictable(page)) {
3703 3704 3705 3706
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3707 3708
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3709
			pgrescued++;
3710
		}
3711
	}
3712

3713 3714 3715 3716
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3717 3718
	}
}
3719
#endif /* CONFIG_SHMEM */
3720

3721
static void warn_scan_unevictable_pages(void)
3722
{
3723
	printk_once(KERN_WARNING
3724
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3725
		    "disabled for lack of a legitimate use case.  If you have "
3726 3727
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3728 3729 3730 3731 3732 3733 3734 3735 3736
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3737
			   void __user *buffer,
3738 3739
			   size_t *length, loff_t *ppos)
{
3740
	warn_scan_unevictable_pages();
3741
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3742 3743 3744 3745
	scan_unevictable_pages = 0;
	return 0;
}

3746
#ifdef CONFIG_NUMA
3747 3748 3749 3750 3751
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3752 3753
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3754 3755
					  char *buf)
{
3756
	warn_scan_unevictable_pages();
3757 3758 3759
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3760 3761
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3762 3763
					const char *buf, size_t count)
{
3764
	warn_scan_unevictable_pages();
3765 3766 3767 3768
	return 1;
}


3769
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3770 3771 3772 3773 3774
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3775
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3776 3777 3778 3779
}

void scan_unevictable_unregister_node(struct node *node)
{
3780
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3781
}
3782
#endif