vmscan.c 85.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

51 52 53
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
 * lumpy_mode determines how the inactive list is shrunk
 * LUMPY_MODE_SINGLE: Reclaim only order-0 pages
 * LUMPY_MODE_ASYNC:  Do not block
 * LUMPY_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * LUMPY_MODE_CONTIGRECLAIM: For high-order allocations, take a reference
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
 */
typedef unsigned __bitwise__ lumpy_mode;
#define LUMPY_MODE_SINGLE		((__force lumpy_mode)0x01u)
#define LUMPY_MODE_ASYNC		((__force lumpy_mode)0x02u)
#define LUMPY_MODE_SYNC			((__force lumpy_mode)0x04u)
#define LUMPY_MODE_CONTIGRECLAIM	((__force lumpy_mode)0x08u)
68

L
Linus Torvalds 已提交
69 70 71 72
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

73 74 75
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

76 77 78
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

79 80
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
81
	/* This context's GFP mask */
A
Al Viro 已提交
82
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
83 84 85

	int may_writepage;

86 87
	/* Can mapped pages be reclaimed? */
	int may_unmap;
88

89 90 91
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

92
	int swappiness;
93

A
Andy Whitcroft 已提交
94
	int order;
95

96
	/*
97 98
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
99
	 */
100
	lumpy_mode lumpy_reclaim_mode;
101

102 103 104
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

105 106 107 108 109
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
146
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
147 148 149 150

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

151
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
152
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
153
#else
154
#define scanning_global_lru(sc)	(1)
155 156
#endif

157 158 159
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
160
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
161 162
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

163 164 165
	return &zone->reclaim_stat;
}

166 167
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
168
{
169
	if (!scanning_global_lru(sc))
170 171
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

172 173 174 175
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
176 177 178
/*
 * Add a shrinker callback to be called from the vm
 */
179
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
180
{
181 182 183 184
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
185
}
186
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
187 188 189 190

/*
 * Remove one
 */
191
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
192 193 194 195 196
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
197
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
198 199 200 201 202 203 204 205 206 207

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
208
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
209 210 211 212 213 214 215
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
216 217
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
218
 */
219 220
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
221 222
{
	struct shrinker *shrinker;
223
	unsigned long ret = 0;
L
Linus Torvalds 已提交
224 225 226 227 228

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
229
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
230 231 232 233

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
234
		unsigned long max_pass;
L
Linus Torvalds 已提交
235

236
		max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
L
Linus Torvalds 已提交
237
		delta = (4 * scanned) / shrinker->seeks;
238
		delta *= max_pass;
L
Linus Torvalds 已提交
239 240
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
241
		if (shrinker->nr < 0) {
242 243 244
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
245 246 247 248 249 250 251 252 253 254
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
255 256 257 258 259 260 261

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
262
			int nr_before;
L
Linus Torvalds 已提交
263

264 265 266
			nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
								gfp_mask);
L
Linus Torvalds 已提交
267 268
			if (shrink_ret == -1)
				break;
269 270
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
271
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
272 273 274 275 276 277 278 279
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
280
	return ret;
L
Linus Torvalds 已提交
281 282
}

283 284 285
static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc,
				   bool sync)
{
286
	lumpy_mode syncmode = sync ? LUMPY_MODE_SYNC : LUMPY_MODE_ASYNC;
287 288 289 290 291

	/*
	 * Some reclaim have alredy been failed. No worth to try synchronous
	 * lumpy reclaim.
	 */
292
	if (sync && sc->lumpy_reclaim_mode & LUMPY_MODE_SINGLE)
293 294 295 296 297 298 299
		return;

	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 */
300
	sc->lumpy_reclaim_mode = LUMPY_MODE_CONTIGRECLAIM;
301
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
302
		sc->lumpy_reclaim_mode |= syncmode;
303
	else if (sc->order && priority < DEF_PRIORITY - 2)
304
		sc->lumpy_reclaim_mode |= syncmode;
305
	else
306
		sc->lumpy_reclaim_mode = LUMPY_MODE_SINGLE | LUMPY_MODE_ASYNC;
307 308 309 310
}

static void disable_lumpy_reclaim_mode(struct scan_control *sc)
{
311
	sc->lumpy_reclaim_mode = LUMPY_MODE_SINGLE | LUMPY_MODE_ASYNC;
312 313
}

L
Linus Torvalds 已提交
314 315
static inline int is_page_cache_freeable(struct page *page)
{
316 317 318 319 320
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
321
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
322 323
}

324 325
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
326
{
327
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
328 329 330 331 332
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
333 334 335 336

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
355
	lock_page_nosync(page);
356 357
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
358 359 360
	unlock_page(page);
}

361 362 363 364 365 366 367 368 369 370 371 372
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
373
/*
A
Andrew Morton 已提交
374 375
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
376
 */
377
static pageout_t pageout(struct page *page, struct address_space *mapping,
378
			 struct scan_control *sc)
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
387
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
403
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
404 405
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
406
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
407 408 409 410 411 412 413
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
414
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
415 416 417 418 419 420 421
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
422 423
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
424 425 426 427 428 429 430
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
431
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
432 433 434
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
435 436 437 438 439 440

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
441
		if (PageWriteback(page) &&
442
		    (sc->lumpy_reclaim_mode & LUMPY_MODE_SYNC))
443 444
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
445 446 447 448
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
449
		trace_mm_vmscan_writepage(page,
450
			trace_reclaim_flags(page, sc->lumpy_reclaim_mode));
451
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
452 453 454 455 456 457
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

458
/*
N
Nick Piggin 已提交
459 460
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
461
 */
N
Nick Piggin 已提交
462
static int __remove_mapping(struct address_space *mapping, struct page *page)
463
{
464 465
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
466

N
Nick Piggin 已提交
467
	spin_lock_irq(&mapping->tree_lock);
468
	/*
N
Nick Piggin 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
492
	 */
N
Nick Piggin 已提交
493
	if (!page_freeze_refs(page, 2))
494
		goto cannot_free;
N
Nick Piggin 已提交
495 496 497
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
498
		goto cannot_free;
N
Nick Piggin 已提交
499
	}
500 501 502 503

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
504
		spin_unlock_irq(&mapping->tree_lock);
505
		swapcache_free(swap, page);
N
Nick Piggin 已提交
506
	} else {
507 508 509 510
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

N
Nick Piggin 已提交
511
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
512
		spin_unlock_irq(&mapping->tree_lock);
513
		mem_cgroup_uncharge_cache_page(page);
514 515 516

		if (freepage != NULL)
			freepage(page);
517 518 519 520 521
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
522
	spin_unlock_irq(&mapping->tree_lock);
523 524 525
	return 0;
}

N
Nick Piggin 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
559
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
573
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
574 575 576 577 578 579 580 581
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
582 583 584 585 586 587 588 589 590 591
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

610 611 612 613 614
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
615 616 617
	put_page(page);		/* drop ref from isolate */
}

618 619 620
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
621
	PAGEREF_KEEP,
622 623 624 625 626 627
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
628
	int referenced_ptes, referenced_page;
629 630
	unsigned long vm_flags;

631 632
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
633 634

	/* Lumpy reclaim - ignore references */
635
	if (sc->lumpy_reclaim_mode & LUMPY_MODE_CONTIGRECLAIM)
636 637 638 639 640 641 642 643 644
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
669 670

	/* Reclaim if clean, defer dirty pages to writeback */
671
	if (referenced_page && !PageSwapBacked(page))
672 673 674
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
675 676
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
695
/*
A
Andrew Morton 已提交
696
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
697
 */
A
Andrew Morton 已提交
698
static unsigned long shrink_page_list(struct list_head *page_list,
699
				      struct zone *zone,
700
				      struct scan_control *sc)
L
Linus Torvalds 已提交
701 702
{
	LIST_HEAD(ret_pages);
703
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
704
	int pgactivate = 0;
705 706
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
707
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
708 709 710 711

	cond_resched();

	while (!list_empty(page_list)) {
712
		enum page_references references;
L
Linus Torvalds 已提交
713 714 715 716 717 718 719 720 721
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
722
		if (!trylock_page(page))
L
Linus Torvalds 已提交
723 724
			goto keep;

N
Nick Piggin 已提交
725
		VM_BUG_ON(PageActive(page));
726
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
727 728

		sc->nr_scanned++;
729

N
Nick Piggin 已提交
730 731
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
732

733
		if (!sc->may_unmap && page_mapped(page))
734 735
			goto keep_locked;

L
Linus Torvalds 已提交
736 737 738 739
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

740 741 742 743 744 745 746 747 748 749 750 751
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
752
			if ((sc->lumpy_reclaim_mode & LUMPY_MODE_SYNC) &&
753
			    may_enter_fs)
754
				wait_on_page_writeback(page);
755 756 757 758
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
759
		}
L
Linus Torvalds 已提交
760

761 762 763
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
764
			goto activate_locked;
765 766
		case PAGEREF_KEEP:
			goto keep_locked;
767 768 769 770
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
771 772 773 774 775

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
776
		if (PageAnon(page) && !PageSwapCache(page)) {
777 778
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
779
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
780
				goto activate_locked;
781
			may_enter_fs = 1;
N
Nick Piggin 已提交
782
		}
L
Linus Torvalds 已提交
783 784 785 786 787 788 789 790

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
791
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
792 793 794 795
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
796 797
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
798 799 800 801 802 803
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
804 805
			nr_dirty++;

806
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
807
				goto keep_locked;
808
			if (!may_enter_fs)
L
Linus Torvalds 已提交
809
				goto keep_locked;
810
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
811 812 813
				goto keep_locked;

			/* Page is dirty, try to write it out here */
814
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
815
			case PAGE_KEEP:
816
				nr_congested++;
L
Linus Torvalds 已提交
817 818 819 820
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
821 822 823
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
824
					goto keep;
825

L
Linus Torvalds 已提交
826 827 828 829
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
830
				if (!trylock_page(page))
L
Linus Torvalds 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
850
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
851 852 853 854 855 856 857 858 859 860
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
861
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
862 863
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
880 881
		}

N
Nick Piggin 已提交
882
		if (!mapping || !__remove_mapping(mapping, page))
883
			goto keep_locked;
L
Linus Torvalds 已提交
884

N
Nick Piggin 已提交
885 886 887 888 889 890 891 892
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
893
free_it:
894
		nr_reclaimed++;
895 896 897 898 899 900

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
901 902
		continue;

N
Nick Piggin 已提交
903
cull_mlocked:
904 905
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
906 907
		unlock_page(page);
		putback_lru_page(page);
908
		disable_lumpy_reclaim_mode(sc);
N
Nick Piggin 已提交
909 910
		continue;

L
Linus Torvalds 已提交
911
activate_locked:
912 913
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
914
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
915
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
916 917 918 919 920
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
921 922
		disable_lumpy_reclaim_mode(sc);
keep_lumpy:
L
Linus Torvalds 已提交
923
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
924
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
925
	}
926

927 928 929 930 931 932
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
933
	if (nr_dirty == nr_congested && nr_dirty != 0)
934 935
		zone_set_flag(zone, ZONE_CONGESTED);

936 937
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
938
	list_splice(&ret_pages, page_list);
939
	count_vm_events(PGACTIVATE, pgactivate);
940
	return nr_reclaimed;
L
Linus Torvalds 已提交
941 942
}

A
Andy Whitcroft 已提交
943 944 945 946 947 948 949 950 951 952
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
953
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

969
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
970 971
		return ret;

L
Lee Schermerhorn 已提交
972 973 974 975 976 977 978 979
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
980
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
981

A
Andy Whitcroft 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1009 1010
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1011
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1012 1013 1014
 *
 * returns how many pages were moved onto *@dst.
 */
1015 1016
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1017
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
1018
{
1019
	unsigned long nr_taken = 0;
1020 1021 1022
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1023
	unsigned long scan;
L
Linus Torvalds 已提交
1024

1025
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1026 1027 1028 1029 1030 1031
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1032 1033 1034
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1035
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1036

1037
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1038 1039
		case 0:
			list_move(&page->lru, dst);
1040
			mem_cgroup_del_lru(page);
1041
			nr_taken++;
A
Andy Whitcroft 已提交
1042 1043 1044 1045 1046
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1047
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1048
			continue;
1049

A
Andy Whitcroft 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1082

A
Andy Whitcroft 已提交
1083 1084
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1085
				break;
1086 1087 1088 1089 1090 1091 1092

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1093 1094
			    !PageSwapCache(cursor_page))
				break;
1095

1096
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1097
				list_move(&cursor_page->lru, dst);
1098
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
1099
				nr_taken++;
1100 1101 1102
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1103
				scan++;
1104
			} else {
1105 1106 1107 1108
				/* the page is freed already. */
				if (!page_count(cursor_page))
					continue;
				break;
A
Andy Whitcroft 已提交
1109 1110
			}
		}
1111 1112 1113 1114

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1115 1116 1117
	}

	*scanned = scan;
1118 1119 1120 1121 1122 1123

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1124 1125 1126
	return nr_taken;
}

1127 1128 1129 1130
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1131
					int active, int file)
1132
{
1133
	int lru = LRU_BASE;
1134
	if (active)
1135 1136 1137 1138
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1139
								mode, file);
1140 1141
}

A
Andy Whitcroft 已提交
1142 1143 1144 1145
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1146 1147
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1148 1149
{
	int nr_active = 0;
1150
	int lru;
A
Andy Whitcroft 已提交
1151 1152
	struct page *page;

1153
	list_for_each_entry(page, page_list, lru) {
1154
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1155
		if (PageActive(page)) {
1156
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1157 1158 1159
			ClearPageActive(page);
			nr_active++;
		}
1160 1161
		if (count)
			count[lru]++;
1162
	}
A
Andy Whitcroft 已提交
1163 1164 1165 1166

	return nr_active;
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1178 1179 1180
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1201
			int lru = page_lru(page);
1202 1203
			ret = 0;
			ClearPageLRU(page);
1204 1205

			del_page_from_lru_list(zone, page, lru);
1206 1207 1208 1209 1210 1211
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1237 1238 1239 1240
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1241
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1242 1243 1244 1245 1246
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1247
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
		SetPageLRU(page);
		lru = page_lru(page);
		add_page_to_lru_list(zone, page, lru);
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
			reclaim_stat->recent_rotated[file]++;
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1337
	if (sc->lumpy_reclaim_mode & LUMPY_MODE_SINGLE)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1358
/*
A
Andrew Morton 已提交
1359 1360
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1361
 */
1362 1363 1364
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1365 1366
{
	LIST_HEAD(page_list);
1367
	unsigned long nr_scanned;
1368
	unsigned long nr_reclaimed = 0;
1369 1370 1371
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1372

1373
	while (unlikely(too_many_isolated(zone, file, sc))) {
1374
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1375 1376 1377 1378 1379 1380

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1381
	set_lumpy_reclaim_mode(priority, sc, false);
L
Linus Torvalds 已提交
1382 1383
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1384

1385 1386 1387
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1388
			sc->lumpy_reclaim_mode & LUMPY_MODE_SINGLE ?
1389
					ISOLATE_INACTIVE : ISOLATE_BOTH,
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1401
			sc->lumpy_reclaim_mode & LUMPY_MODE_SINGLE ?
1402
					ISOLATE_INACTIVE : ISOLATE_BOTH,
1403 1404 1405 1406 1407 1408 1409
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1410

1411 1412 1413 1414
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1415

1416
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1417

1418
	spin_unlock_irq(&zone->lru_lock);
1419

1420
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1421

1422 1423
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1424
		set_lumpy_reclaim_mode(priority, sc, true);
1425
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1426
	}
1427

1428 1429 1430 1431
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1432

1433
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1434 1435 1436 1437 1438 1439

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
		trace_shrink_flags(file, sc->lumpy_reclaim_mode));
1440
	return nr_reclaimed;
L
Linus Torvalds 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1493

A
Andrew Morton 已提交
1494
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1495
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1496
{
1497
	unsigned long nr_taken;
1498
	unsigned long pgscanned;
1499
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1500
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1501
	LIST_HEAD(l_active);
1502
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1503
	struct page *page;
1504
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1505
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1506 1507 1508

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1509
	if (scanning_global_lru(sc)) {
1510 1511 1512 1513
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1514
		zone->pages_scanned += pgscanned;
1515 1516 1517 1518 1519 1520 1521 1522 1523
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1524
	}
1525

1526
	reclaim_stat->recent_scanned[file] += nr_taken;
1527

1528
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1529
	if (file)
1530
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1531
	else
1532
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1533
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1534 1535 1536 1537 1538 1539
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1540

L
Lee Schermerhorn 已提交
1541 1542 1543 1544 1545
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1546
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1547
			nr_rotated++;
1548 1549 1550 1551 1552 1553 1554 1555 1556
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1557
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1558 1559 1560 1561
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1562

1563
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1564 1565 1566
		list_add(&page->lru, &l_inactive);
	}

1567
	/*
1568
	 * Move pages back to the lru list.
1569
	 */
1570
	spin_lock_irq(&zone->lru_lock);
1571
	/*
1572 1573 1574 1575
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1576
	 */
1577
	reclaim_stat->recent_rotated[file] += nr_rotated;
1578

1579 1580 1581 1582
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1583
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1584
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1585 1586
}

1587
#ifdef CONFIG_SWAP
1588
static int inactive_anon_is_low_global(struct zone *zone)
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1613 1614 1615 1616 1617 1618 1619
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1620
	if (scanning_global_lru(sc))
1621 1622
		low = inactive_anon_is_low_global(zone);
	else
1623
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1624 1625
	return low;
}
1626 1627 1628 1629 1630 1631 1632
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1633

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1670 1671 1672 1673 1674 1675 1676 1677 1678
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1679
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1680 1681
	struct zone *zone, struct scan_control *sc, int priority)
{
1682 1683
	int file = is_file_lru(lru);

1684 1685 1686
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1687 1688 1689
		return 0;
	}

R
Rik van Riel 已提交
1690
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1691 1692
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1713 1714 1715 1716 1717 1718
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1719
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1720
 */
1721 1722
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1723 1724 1725 1726
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1727
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1740

1741 1742 1743 1744
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1745

1746
	if (scanning_global_lru(sc)) {
1747 1748 1749
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1750
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1751 1752 1753 1754
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1755
		}
1756 1757
	}

1758 1759 1760 1761 1762 1763 1764
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1776
	spin_lock_irq(&zone->lru_lock);
1777 1778 1779
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1780 1781
	}

1782 1783 1784
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1785 1786 1787
	}

	/*
1788 1789 1790
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1791
	 */
1792 1793
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1794

1795 1796
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1797
	spin_unlock_irq(&zone->lru_lock);
1798

1799 1800 1801 1802 1803 1804 1805
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1806

1807 1808 1809 1810 1811 1812 1813 1814
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1815
}
1816

L
Linus Torvalds 已提交
1817 1818 1819
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1820
static void shrink_zone(int priority, struct zone *zone,
1821
				struct scan_control *sc)
L
Linus Torvalds 已提交
1822
{
1823
	unsigned long nr[NR_LRU_LISTS];
1824
	unsigned long nr_to_scan;
1825
	enum lru_list l;
1826
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1827
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1828

1829
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1830

1831 1832
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1833
		for_each_evictable_lru(l) {
1834
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1835 1836
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1837
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1838

1839 1840
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1841
			}
L
Linus Torvalds 已提交
1842
		}
1843 1844 1845 1846 1847 1848 1849 1850
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1851
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1852
			break;
L
Linus Torvalds 已提交
1853 1854
	}

1855 1856
	sc->nr_reclaimed = nr_reclaimed;

1857 1858 1859 1860
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1861
	if (inactive_anon_is_low(zone, sc))
1862 1863
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1864
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870 1871
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1872 1873
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1874 1875
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1876 1877 1878
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1879 1880 1881 1882
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1883
static void shrink_zones(int priority, struct zonelist *zonelist,
1884
					struct scan_control *sc)
L
Linus Torvalds 已提交
1885
{
1886
	struct zoneref *z;
1887
	struct zone *zone;
1888

1889 1890
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1891
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1892
			continue;
1893 1894 1895 1896
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1897
		if (scanning_global_lru(sc)) {
1898 1899
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1900
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1901 1902
				continue;	/* Let kswapd poll it */
		}
1903

1904
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1905
	}
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

/*
 * As hibernation is going on, kswapd is freezed so that it can't mark
 * the zone into all_unreclaimable. It can't handle OOM during hibernation.
 * So let's check zone's unreclaimable in direct reclaim as well as kswapd.
 */
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;
	bool all_unreclaimable = true;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
		if (zone_reclaimable(zone)) {
			all_unreclaimable = false;
			break;
		}
	}

1937
	return all_unreclaimable;
L
Linus Torvalds 已提交
1938
}
1939

L
Linus Torvalds 已提交
1940 1941 1942 1943 1944 1945 1946 1947
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1948 1949 1950 1951
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1952 1953 1954
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1955
 */
1956
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1957
					struct scan_control *sc)
L
Linus Torvalds 已提交
1958 1959
{
	int priority;
1960
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1961
	struct reclaim_state *reclaim_state = current->reclaim_state;
1962
	struct zoneref *z;
1963
	struct zone *zone;
1964
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1965

1966
	get_mems_allowed();
1967 1968
	delayacct_freepages_start();

1969
	if (scanning_global_lru(sc))
1970
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
1971 1972

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1973
		sc->nr_scanned = 0;
1974 1975
		if (!priority)
			disable_swap_token();
1976
		shrink_zones(priority, zonelist, sc);
1977 1978 1979 1980
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1981
		if (scanning_global_lru(sc)) {
1982
			unsigned long lru_pages = 0;
1983 1984
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
1985 1986 1987 1988 1989 1990
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

1991
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1992
			if (reclaim_state) {
1993
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1994 1995
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1996
		}
1997
		total_scanned += sc->nr_scanned;
1998
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2008 2009
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2010
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2011
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2012 2013 2014
		}

		/* Take a nap, wait for some writeback to complete */
2015
		if (!sc->hibernation_mode && sc->nr_scanned &&
2016 2017 2018 2019 2020 2021 2022
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
							NULL, &preferred_zone);
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2023
	}
2024

L
Linus Torvalds 已提交
2025
out:
2026
	delayacct_freepages_end();
2027
	put_mems_allowed();
2028

2029 2030 2031 2032
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

	/* top priority shrink_zones still had more to do? don't OOM, then */
2033
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2034 2035 2036
		return 1;

	return 0;
L
Linus Torvalds 已提交
2037 2038
}

2039
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2040
				gfp_t gfp_mask, nodemask_t *nodemask)
2041
{
2042
	unsigned long nr_reclaimed;
2043 2044 2045
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2046
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2047
		.may_unmap = 1,
2048
		.may_swap = 1,
2049 2050 2051
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
2052
		.nodemask = nodemask,
2053 2054
	};

2055 2056 2057 2058 2059 2060 2061 2062 2063
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2064 2065
}

2066
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2067

2068 2069 2070
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
2071
						struct zone *zone)
2072 2073
{
	struct scan_control sc = {
2074
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2075 2076 2077 2078 2079 2080 2081 2082 2083
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2084 2085 2086 2087 2088

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2089 2090 2091 2092 2093 2094 2095 2096
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2097 2098 2099

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2100 2101 2102
	return sc.nr_reclaimed;
}

2103
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2104 2105 2106
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
2107
{
2108
	struct zonelist *zonelist;
2109
	unsigned long nr_reclaimed;
2110 2111
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2112
		.may_unmap = 1,
2113
		.may_swap = !noswap,
2114
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
2115
		.swappiness = swappiness,
2116 2117
		.order = 0,
		.mem_cgroup = mem_cont,
2118
		.nodemask = NULL, /* we don't care the placement */
2119 2120
	};

2121 2122 2123
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2134 2135 2136
}
#endif

2137
/* is kswapd sleeping prematurely? */
2138
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
2139
{
2140
	int i;
2141 2142 2143 2144 2145 2146

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
2147 2148 2149 2150 2151 2152
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2153
		if (zone->all_unreclaimable)
2154 2155
			continue;

2156
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2157 2158
								0, 0))
			return 1;
2159
	}
2160 2161 2162 2163

	return 0;
}

L
Linus Torvalds 已提交
2164 2165
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2166
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2179 2180 2181 2182 2183
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2184
 */
2185
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
2186 2187 2188 2189
{
	int all_zones_ok;
	int priority;
	int i;
2190
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2191
	struct reclaim_state *reclaim_state = current->reclaim_state;
2192 2193
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2194
		.may_unmap = 1,
2195
		.may_swap = 1,
2196 2197 2198 2199 2200
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2201
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2202
		.order = order,
2203
		.mem_cgroup = NULL,
2204
	};
L
Linus Torvalds 已提交
2205 2206
loop_again:
	total_scanned = 0;
2207
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2208
	sc.may_writepage = !laptop_mode;
2209
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2210 2211 2212 2213

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2214
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2215

2216 2217 2218 2219
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2220 2221
		all_zones_ok = 1;

2222 2223 2224 2225 2226 2227
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2228

2229 2230
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2231

2232
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2233
				continue;
L
Linus Torvalds 已提交
2234

2235 2236 2237 2238
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2239
			if (inactive_anon_is_low(zone, &sc))
2240 2241 2242
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2243
			if (!zone_watermark_ok_safe(zone, order,
2244
					high_wmark_pages(zone), 0, 0)) {
2245
				end_zone = i;
A
Andrew Morton 已提交
2246
				break;
L
Linus Torvalds 已提交
2247 2248
			}
		}
A
Andrew Morton 已提交
2249 2250 2251
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2252 2253 2254
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2255
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2269
			int nr_slab;
L
Linus Torvalds 已提交
2270

2271
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2272 2273
				continue;

2274
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2275 2276 2277
				continue;

			sc.nr_scanned = 0;
2278 2279 2280 2281 2282

			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
2283 2284
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);

2285 2286 2287 2288
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2289
			if (!zone_watermark_ok_safe(zone, order,
2290
					8*high_wmark_pages(zone), end_zone, 0))
2291
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2292
			reclaim_state->reclaimed_slab = 0;
2293 2294
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2295
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2296
			total_scanned += sc.nr_scanned;
2297
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2298
				continue;
2299
			if (nr_slab == 0 && !zone_reclaimable(zone))
2300
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2307
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2308
				sc.may_writepage = 1;
2309

2310
			if (!zone_watermark_ok_safe(zone, order,
2311 2312 2313 2314 2315 2316 2317
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2318
				if (!zone_watermark_ok_safe(zone, order,
2319 2320
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2321 2322 2323 2324 2325 2326 2327 2328 2329
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2330
			}
2331

L
Linus Torvalds 已提交
2332 2333 2334 2335 2336 2337 2338
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2339 2340 2341 2342 2343 2344
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350 2351

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2352
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357
			break;
	}
out:
	if (!all_zones_ok) {
		cond_resched();
2358 2359 2360

		try_to_freeze();

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2378 2379 2380
		goto loop_again;
	}

2381
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2382 2383
}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order)
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
	if (!sleeping_prematurely(pgdat, order, remaining)) {
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
	if (!sleeping_prematurely(pgdat, order, remaining)) {
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2428 2429
/*
 * The background pageout daemon, started as a kernel thread
2430
 * from the init process.
L
Linus Torvalds 已提交
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2446

L
Linus Torvalds 已提交
2447 2448 2449
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2450
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2451

2452 2453
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2454
	if (!cpumask_empty(cpumask))
2455
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2470
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2471
	set_freezable();
L
Linus Torvalds 已提交
2472 2473 2474 2475

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2476
		int ret;
2477

L
Linus Torvalds 已提交
2478 2479 2480 2481 2482 2483 2484 2485 2486
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2487
			kswapd_try_to_sleep(pgdat, order);
L
Linus Torvalds 已提交
2488 2489 2490
			order = pgdat->kswapd_max_order;
		}

2491 2492 2493 2494 2495 2496 2497 2498
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2499 2500
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2501
			balance_pgdat(pgdat, order);
2502
		}
L
Linus Torvalds 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2514
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2515 2516
		return;

2517
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2518
		return;
2519
	pgdat = zone->zone_pgdat;
L
Linus Torvalds 已提交
2520 2521
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2522
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2523
		return;
2524 2525 2526 2527
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2528
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2529 2530
}

2531 2532 2533 2534 2535 2536 2537 2538
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2539
{
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2564 2565
}

2566
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2567
/*
2568
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2569 2570 2571 2572 2573
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2574
 */
2575
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2576
{
2577 2578
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2579 2580 2581
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2582
		.may_writepage = 1,
2583 2584 2585 2586
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2587
	};
2588 2589 2590
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2591

2592 2593 2594 2595
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2596

2597
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2598

2599 2600 2601
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2602

2603
	return nr_reclaimed;
L
Linus Torvalds 已提交
2604
}
2605
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2611
static int __devinit cpu_callback(struct notifier_block *nfb,
2612
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2613
{
2614
	int nid;
L
Linus Torvalds 已提交
2615

2616
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2617
		for_each_node_state(nid, N_HIGH_MEMORY) {
2618
			pg_data_t *pgdat = NODE_DATA(nid);
2619 2620 2621
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2622

2623
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2624
				/* One of our CPUs online: restore mask */
2625
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2626 2627 2628 2629 2630
		}
	}
	return NOTIFY_OK;
}

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2664 2665
static int __init kswapd_init(void)
{
2666
	int nid;
2667

L
Linus Torvalds 已提交
2668
	swap_setup();
2669
	for_each_node_state(nid, N_HIGH_MEMORY)
2670
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2671 2672 2673 2674 2675
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2686
#define RECLAIM_OFF 0
2687
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2688 2689 2690
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2691 2692 2693 2694 2695 2696 2697
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2698 2699 2700 2701 2702 2703
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2704 2705 2706 2707 2708 2709
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2752 2753 2754
/*
 * Try to free up some pages from this zone through reclaim.
 */
2755
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2756
{
2757
	/* Minimum pages needed in order to stay on node */
2758
	const unsigned long nr_pages = 1 << order;
2759 2760
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2761
	int priority;
2762 2763
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2764
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2765
		.may_swap = 1,
2766 2767
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2768
		.gfp_mask = gfp_mask,
2769
		.swappiness = vm_swappiness,
2770
		.order = order,
2771
	};
2772
	unsigned long nr_slab_pages0, nr_slab_pages1;
2773 2774

	cond_resched();
2775 2776 2777 2778 2779 2780
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2781
	lockdep_set_current_reclaim_state(gfp_mask);
2782 2783
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2784

2785
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2786 2787 2788 2789 2790 2791
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2792
			shrink_zone(priority, zone, &sc);
2793
			priority--;
2794
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2795
	}
2796

2797 2798
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
2799
		/*
2800
		 * shrink_slab() does not currently allow us to determine how
2801 2802 2803 2804
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2805
		 *
2806 2807
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2808
		 */
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
			if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
2822 2823 2824 2825 2826

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2827 2828 2829
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2830 2831
	}

2832
	p->reclaim_state = NULL;
2833
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2834
	lockdep_clear_current_reclaim_state();
2835
	return sc.nr_reclaimed >= nr_pages;
2836
}
2837 2838 2839 2840

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2841
	int ret;
2842 2843

	/*
2844 2845
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2846
	 *
2847 2848 2849 2850 2851
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2852
	 */
2853 2854
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2855
		return ZONE_RECLAIM_FULL;
2856

2857
	if (zone->all_unreclaimable)
2858
		return ZONE_RECLAIM_FULL;
2859

2860
	/*
2861
	 * Do not scan if the allocation should not be delayed.
2862
	 */
2863
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2864
		return ZONE_RECLAIM_NOSCAN;
2865 2866 2867 2868 2869 2870 2871

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2872
	node_id = zone_to_nid(zone);
2873
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2874
		return ZONE_RECLAIM_NOSCAN;
2875 2876

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2877 2878
		return ZONE_RECLAIM_NOSCAN;

2879 2880 2881
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2882 2883 2884
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2885
	return ret;
2886
}
2887
#endif
L
Lee Schermerhorn 已提交
2888 2889 2890 2891 2892 2893 2894

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2895 2896
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2897 2898
 *
 * Reasons page might not be evictable:
2899
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2900
 * (2) page is part of an mlocked VMA
2901
 *
L
Lee Schermerhorn 已提交
2902 2903 2904 2905
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2906 2907 2908
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2909 2910
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2911 2912 2913

	return 1;
}
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2933
		enum lru_list l = page_lru_base_type(page);
2934

2935 2936
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2937
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2938 2939 2940 2941 2942 2943 2944 2945
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2946
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3018
static void scan_zone_unevictable_pages(struct zone *zone)
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3060
static void scan_all_zones_unevictable_pages(void)
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3076
			   void __user *buffer,
3077 3078
			   size_t *length, loff_t *ppos)
{
3079
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3080 3081 3082 3083 3084 3085 3086 3087

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3088
#ifdef CONFIG_NUMA
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3135
#endif