vmscan.c 95.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83 84 85
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
86

87 88 89 90 91
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
92 93
};

94 95 96 97 98
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
133
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
134 135 136 137

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

138
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
139 140
static bool global_reclaim(struct scan_control *sc)
{
141
	return !sc->target_mem_cgroup;
142
}
143
#else
144 145 146 147
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
148 149
#endif

150
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
151
{
152
	return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
153 154
}

155 156
static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
				       enum lru_list lru)
157
{
158
	if (!mem_cgroup_disabled())
159 160 161 162
		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
						    zone_to_nid(mz->zone),
						    zone_idx(mz->zone),
						    BIT(lru));
163

164
	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
165 166 167
}


L
Linus Torvalds 已提交
168 169 170
/*
 * Add a shrinker callback to be called from the vm
 */
171
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
172
{
173
	atomic_long_set(&shrinker->nr_in_batch, 0);
174 175 176
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
177
}
178
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
179 180 181 182

/*
 * Remove one
 */
183
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
184 185 186 187 188
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
189
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
190

191 192 193 194 195 196 197 198
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
199 200 201 202 203 204 205 206 207
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
208
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
209 210 211 212 213 214 215
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
216 217
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
218
 */
219
unsigned long shrink_slab(struct shrink_control *shrink,
220
			  unsigned long nr_pages_scanned,
221
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
222 223
{
	struct shrinker *shrinker;
224
	unsigned long ret = 0;
L
Linus Torvalds 已提交
225

226 227
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
228

229 230 231 232 233
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
234 235 236

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
237 238
		long total_scan;
		long max_pass;
239
		int shrink_ret = 0;
240 241
		long nr;
		long new_nr;
242 243
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
244

245 246 247 248
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

249 250 251 252 253
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
254
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
255 256

		total_scan = nr;
257
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
258
		delta *= max_pass;
L
Linus Torvalds 已提交
259
		do_div(delta, lru_pages + 1);
260 261
		total_scan += delta;
		if (total_scan < 0) {
262 263
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
264 265
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
266 267
		}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

283 284 285 286 287
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
288 289
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
290

291
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
292 293 294
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

295
		while (total_scan >= batch_size) {
296
			int nr_before;
L
Linus Torvalds 已提交
297

298 299
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
300
							batch_size);
L
Linus Torvalds 已提交
301 302
			if (shrink_ret == -1)
				break;
303 304
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
305 306
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
307 308 309 310

			cond_resched();
		}

311 312 313 314 315
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
316 317 318 319 320
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
321 322

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
323 324
	}
	up_read(&shrinker_rwsem);
325 326
out:
	cond_resched();
327
	return ret;
L
Linus Torvalds 已提交
328 329 330 331
}

static inline int is_page_cache_freeable(struct page *page)
{
332 333 334 335 336
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
337
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
338 339
}

340 341
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
342
{
343
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
367
	lock_page(page);
368 369
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
370 371 372
	unlock_page(page);
}

373 374 375 376 377 378 379 380 381 382 383 384
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
385
/*
A
Andrew Morton 已提交
386 387
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
388
 */
389
static pageout_t pageout(struct page *page, struct address_space *mapping,
390
			 struct scan_control *sc)
L
Linus Torvalds 已提交
391 392 393 394 395 396 397 398
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
399
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
415
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
416 417
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
418
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
419 420 421 422 423 424 425
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
426
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
427 428 429 430 431 432 433
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
434 435
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
436 437 438 439 440 441 442
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
443
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
444 445 446
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
447

L
Linus Torvalds 已提交
448 449 450 451
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
452
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
453
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
454 455 456 457 458 459
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

460
/*
N
Nick Piggin 已提交
461 462
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
463
 */
N
Nick Piggin 已提交
464
static int __remove_mapping(struct address_space *mapping, struct page *page)
465
{
466 467
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
468

N
Nick Piggin 已提交
469
	spin_lock_irq(&mapping->tree_lock);
470
	/*
N
Nick Piggin 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
494
	 */
N
Nick Piggin 已提交
495
	if (!page_freeze_refs(page, 2))
496
		goto cannot_free;
N
Nick Piggin 已提交
497 498 499
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
500
		goto cannot_free;
N
Nick Piggin 已提交
501
	}
502 503 504 505

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
506
		spin_unlock_irq(&mapping->tree_lock);
507
		swapcache_free(swap, page);
N
Nick Piggin 已提交
508
	} else {
509 510 511 512
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

513
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
514
		spin_unlock_irq(&mapping->tree_lock);
515
		mem_cgroup_uncharge_cache_page(page);
516 517 518

		if (freepage != NULL)
			freepage(page);
519 520 521 522 523
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
524
	spin_unlock_irq(&mapping->tree_lock);
525 526 527
	return 0;
}

N
Nick Piggin 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
561
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
575
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
576 577 578 579 580 581 582 583
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
584
		/*
585 586 587
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
588
		 * isolation/check_move_unevictable_pages,
589
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
590 591
		 * the page back to the evictable list.
		 *
592
		 * The other side is TestClearPageMlocked() or shmem_lock().
593 594
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

613 614 615 616 617
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
618 619 620
	put_page(page);		/* drop ref from isolate */
}

621 622 623
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
624
	PAGEREF_KEEP,
625 626 627 628
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
629
						  struct mem_cgroup_zone *mz,
630 631
						  struct scan_control *sc)
{
632
	int referenced_ptes, referenced_page;
633 634
	unsigned long vm_flags;

635 636
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
637
	referenced_page = TestClearPageReferenced(page);
638 639 640 641 642 643 644 645

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

646
	if (referenced_ptes) {
647
		if (PageSwapBacked(page))
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

665
		if (referenced_page || referenced_ptes > 1)
666 667
			return PAGEREF_ACTIVATE;

668 669 670 671 672 673
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

674 675
		return PAGEREF_KEEP;
	}
676 677

	/* Reclaim if clean, defer dirty pages to writeback */
678
	if (referenced_page && !PageSwapBacked(page))
679 680 681
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
682 683
}

L
Linus Torvalds 已提交
684
/*
A
Andrew Morton 已提交
685
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
686
 */
A
Andrew Morton 已提交
687
static unsigned long shrink_page_list(struct list_head *page_list,
688
				      struct mem_cgroup_zone *mz,
689
				      struct scan_control *sc,
690 691 692
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
693 694
{
	LIST_HEAD(ret_pages);
695
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
696
	int pgactivate = 0;
697 698
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
699
	unsigned long nr_reclaimed = 0;
700
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
701 702 703 704

	cond_resched();

	while (!list_empty(page_list)) {
705
		enum page_references references;
L
Linus Torvalds 已提交
706 707 708 709 710 711 712 713 714
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
715
		if (!trylock_page(page))
L
Linus Torvalds 已提交
716 717
			goto keep;

N
Nick Piggin 已提交
718
		VM_BUG_ON(PageActive(page));
719
		VM_BUG_ON(page_zone(page) != mz->zone);
L
Linus Torvalds 已提交
720 721

		sc->nr_scanned++;
722

N
Nick Piggin 已提交
723 724
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
725

726
		if (!sc->may_unmap && page_mapped(page))
727 728
			goto keep_locked;

L
Linus Torvalds 已提交
729 730 731 732
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

733 734 735 736
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
737
			nr_writeback++;
738 739
			unlock_page(page);
			goto keep;
740
		}
L
Linus Torvalds 已提交
741

742
		references = page_check_references(page, mz, sc);
743 744
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
745
			goto activate_locked;
746 747
		case PAGEREF_KEEP:
			goto keep_locked;
748 749 750 751
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
752 753 754 755 756

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
757
		if (PageAnon(page) && !PageSwapCache(page)) {
758 759
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
760
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
761
				goto activate_locked;
762
			may_enter_fs = 1;
N
Nick Piggin 已提交
763
		}
L
Linus Torvalds 已提交
764 765 766 767 768 769 770 771

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
772
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
773 774 775 776
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
777 778
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
779 780 781 782 783 784
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
785 786
			nr_dirty++;

787 788
			/*
			 * Only kswapd can writeback filesystem pages to
789 790
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
791
			 */
792 793
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
794 795 796 797 798 799 800 801 802
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

803 804 805
				goto keep_locked;
			}

806
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
807
				goto keep_locked;
808
			if (!may_enter_fs)
L
Linus Torvalds 已提交
809
				goto keep_locked;
810
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
811 812 813
				goto keep_locked;

			/* Page is dirty, try to write it out here */
814
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
815
			case PAGE_KEEP:
816
				nr_congested++;
L
Linus Torvalds 已提交
817 818 819 820
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
821
				if (PageWriteback(page))
822
					goto keep;
823
				if (PageDirty(page))
L
Linus Torvalds 已提交
824
					goto keep;
825

L
Linus Torvalds 已提交
826 827 828 829
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
830
				if (!trylock_page(page))
L
Linus Torvalds 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
850
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
851 852 853 854 855 856 857 858 859 860
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
861
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
862 863
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
880 881
		}

N
Nick Piggin 已提交
882
		if (!mapping || !__remove_mapping(mapping, page))
883
			goto keep_locked;
L
Linus Torvalds 已提交
884

N
Nick Piggin 已提交
885 886 887 888 889 890 891 892
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
893
free_it:
894
		nr_reclaimed++;
895 896 897 898 899 900

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
901 902
		continue;

N
Nick Piggin 已提交
903
cull_mlocked:
904 905
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
906 907 908 909
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
910
activate_locked:
911 912
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
913
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
914
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
915 916 917 918 919 920
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
921
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
922
	}
923

924 925 926 927 928 929
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
930
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
931
		zone_set_flag(mz->zone, ZONE_CONGESTED);
932

933
	free_hot_cold_page_list(&free_pages, 1);
934

L
Linus Torvalds 已提交
935
	list_splice(&ret_pages, page_list);
936
	count_vm_events(PGACTIVATE, pgactivate);
937 938
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
939
	return nr_reclaimed;
L
Linus Torvalds 已提交
940 941
}

A
Andy Whitcroft 已提交
942 943 944 945 946 947 948 949 950 951
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
952
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
953
{
954
	bool all_lru_mode;
A
Andy Whitcroft 已提交
955 956 957 958 959 960
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

961 962 963
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
964 965 966 967 968
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
969
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
970 971
		return ret;

972
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
973 974
		return ret;

M
Mel Gorman 已提交
975
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
976 977 978
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
979
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
980

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1014

1015 1016 1017
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
H
Hugh Dickins 已提交
1042
 * @mz:		The mem_cgroup_zone to pull pages from.
L
Linus Torvalds 已提交
1043
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1044
 * @nr_scanned:	The number of pages that were scanned.
1045
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1046
 * @mode:	One of the LRU isolation modes
H
Hugh Dickins 已提交
1047
 * @active:	True [1] if isolating active pages
1048
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1049 1050 1051
 *
 * returns how many pages were moved onto *@dst.
 */
1052
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
H
Hugh Dickins 已提交
1053
		struct mem_cgroup_zone *mz, struct list_head *dst,
1054 1055
		unsigned long *nr_scanned, struct scan_control *sc,
		isolate_mode_t mode, int active, int file)
L
Linus Torvalds 已提交
1056
{
H
Hugh Dickins 已提交
1057 1058
	struct lruvec *lruvec;
	struct list_head *src;
1059
	unsigned long nr_taken = 0;
1060
	unsigned long scan;
H
Hugh Dickins 已提交
1061 1062 1063 1064 1065 1066 1067 1068
	int lru = LRU_BASE;

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
	if (active)
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	src = &lruvec->lists[lru];
L
Linus Torvalds 已提交
1069

1070
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1071 1072
		struct page *page;

L
Linus Torvalds 已提交
1073 1074 1075
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1076
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1077

1078
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1079
		case 0:
1080
			mem_cgroup_lru_del(page);
A
Andy Whitcroft 已提交
1081
			list_move(&page->lru, dst);
1082
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1083 1084 1085 1086 1087 1088
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1089

A
Andy Whitcroft 已提交
1090 1091 1092
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1093 1094
	}

H
Hugh Dickins 已提交
1095
	*nr_scanned = scan;
1096

1097
	trace_mm_vmscan_lru_isolate(sc->order,
1098 1099
			nr_to_scan, scan,
			nr_taken,
1100
			mode, file);
L
Linus Torvalds 已提交
1101 1102 1103
	return nr_taken;
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1115 1116 1117
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1133 1134
	VM_BUG_ON(!page_count(page));

1135 1136 1137 1138
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1139
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1140
			int lru = page_lru(page);
1141
			ret = 0;
1142
			get_page(page);
1143
			ClearPageLRU(page);
1144 1145

			del_page_from_lru_list(zone, page, lru);
1146 1147 1148 1149 1150 1151
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1163
	if (!global_reclaim(sc))
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1177
static noinline_for_stack void
1178 1179
putback_inactive_pages(struct mem_cgroup_zone *mz,
		       struct list_head *page_list)
1180
{
1181
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1182 1183
	struct zone *zone = mz->zone;
	LIST_HEAD(pages_to_free);
1184 1185 1186 1187 1188

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1189
		struct page *page = lru_to_page(page_list);
1190
		int lru;
1191

1192 1193 1194 1195 1196 1197 1198 1199
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1200
		SetPageLRU(page);
1201
		lru = page_lru(page);
1202
		add_page_to_lru_list(zone, page, lru);
1203 1204
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1205 1206
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1207
		}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1219 1220 1221
		}
	}

1222 1223 1224 1225
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1226 1227
}

1228 1229
static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone *mz,
1230
		       struct list_head *page_list,
1231
		       unsigned long *nr_anon,
1232
		       unsigned long *nr_file)
1233
{
1234
	struct zone *zone = mz->zone;
1235
	unsigned int count[NR_LRU_LISTS] = { 0, };
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	unsigned long nr_active = 0;
	struct page *page;
	int lru;

	/*
	 * Count pages and clear active flags
	 */
	list_for_each_entry(page, page_list, lru) {
		int numpages = hpage_nr_pages(page);
		lru = page_lru_base_type(page);
		if (PageActive(page)) {
			lru += LRU_ACTIVE;
			ClearPageActive(page);
			nr_active += numpages;
		}
		count[lru] += numpages;
	}
1253

1254
	preempt_disable();
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];

1269 1270 1271
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
	preempt_enable();
1272 1273
}

L
Linus Torvalds 已提交
1274
/*
A
Andrew Morton 已提交
1275 1276
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1277
 */
1278
static noinline_for_stack unsigned long
1279 1280
shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
		     struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1281 1282
{
	LIST_HEAD(page_list);
1283
	unsigned long nr_scanned;
1284
	unsigned long nr_reclaimed = 0;
1285 1286 1287
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1288 1289
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1290
	isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1291
	struct zone *zone = mz->zone;
1292
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1293

1294
	while (unlikely(too_many_isolated(zone, file, sc))) {
1295
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1296 1297 1298 1299 1300 1301

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1302
	lru_add_drain();
1303 1304

	if (!sc->may_unmap)
1305
		isolate_mode |= ISOLATE_UNMAPPED;
1306
	if (!sc->may_writepage)
1307
		isolate_mode |= ISOLATE_CLEAN;
1308

L
Linus Torvalds 已提交
1309
	spin_lock_irq(&zone->lru_lock);
1310

1311 1312
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
				     sc, isolate_mode, 0, file);
1313
	if (global_reclaim(sc)) {
1314 1315 1316 1317 1318 1319 1320 1321
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1322
	spin_unlock_irq(&zone->lru_lock);
1323

1324
	if (nr_taken == 0)
1325
		return 0;
A
Andy Whitcroft 已提交
1326

1327 1328
	update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);

1329
	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1330
						&nr_dirty, &nr_writeback);
1331

1332 1333
	spin_lock_irq(&zone->lru_lock);

1334 1335 1336
	reclaim_stat->recent_scanned[0] += nr_anon;
	reclaim_stat->recent_scanned[1] += nr_file;

Y
Ying Han 已提交
1337 1338 1339 1340 1341 1342 1343 1344
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1345

1346 1347 1348 1349 1350 1351 1352 1353
	putback_inactive_pages(mz, &page_list);

	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1381 1382 1383 1384
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
M
Mel Gorman 已提交
1385
		trace_shrink_flags(file));
1386
	return nr_reclaimed;
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1406

1407 1408
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1409
				     struct list_head *pages_to_free,
1410 1411 1412 1413 1414 1415
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

	while (!list_empty(list)) {
1416 1417
		struct lruvec *lruvec;

1418 1419 1420 1421 1422
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1423 1424
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1425
		pgmoved += hpage_nr_pages(page);
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1438 1439 1440 1441 1442 1443
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1444

H
Hugh Dickins 已提交
1445
static void shrink_active_list(unsigned long nr_to_scan,
1446 1447 1448
			       struct mem_cgroup_zone *mz,
			       struct scan_control *sc,
			       int priority, int file)
L
Linus Torvalds 已提交
1449
{
1450
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1451
	unsigned long nr_scanned;
1452
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1453
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1454
	LIST_HEAD(l_active);
1455
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1456
	struct page *page;
1457
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1458
	unsigned long nr_rotated = 0;
1459
	isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1460
	struct zone *zone = mz->zone;
L
Linus Torvalds 已提交
1461 1462

	lru_add_drain();
1463 1464

	if (!sc->may_unmap)
1465
		isolate_mode |= ISOLATE_UNMAPPED;
1466
	if (!sc->may_writepage)
1467
		isolate_mode |= ISOLATE_CLEAN;
1468

L
Linus Torvalds 已提交
1469
	spin_lock_irq(&zone->lru_lock);
1470

1471
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1472
				     isolate_mode, 1, file);
1473
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1474
		zone->pages_scanned += nr_scanned;
1475

1476
	reclaim_stat->recent_scanned[file] += nr_taken;
1477

H
Hugh Dickins 已提交
1478
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1479
	if (file)
1480
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1481
	else
1482
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1483
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1484 1485 1486 1487 1488 1489
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1490

L
Lee Schermerhorn 已提交
1491 1492 1493 1494 1495
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1496 1497 1498 1499 1500 1501 1502 1503
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1504 1505
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1506
			nr_rotated += hpage_nr_pages(page);
1507 1508 1509 1510 1511 1512 1513 1514 1515
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1516
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1517 1518 1519 1520
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1521

1522
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1523 1524 1525
		list_add(&page->lru, &l_inactive);
	}

1526
	/*
1527
	 * Move pages back to the lru list.
1528
	 */
1529
	spin_lock_irq(&zone->lru_lock);
1530
	/*
1531 1532 1533 1534
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1535
	 */
1536
	reclaim_stat->recent_rotated[file] += nr_rotated;
1537

1538
	move_active_pages_to_lru(zone, &l_active, &l_hold,
1539
						LRU_ACTIVE + file * LRU_FILE);
1540
	move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1541
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1542
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1543
	spin_unlock_irq(&zone->lru_lock);
1544 1545

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1546 1547
}

1548
#ifdef CONFIG_SWAP
1549
static int inactive_anon_is_low_global(struct zone *zone)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1562 1563 1564 1565 1566 1567 1568 1569
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1570
static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1571
{
1572 1573 1574 1575 1576 1577 1578
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1579
	if (!mem_cgroup_disabled())
1580 1581 1582 1583
		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
						       mz->zone);

	return inactive_anon_is_low_global(mz->zone);
1584
}
1585
#else
1586
static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1587 1588 1589 1590
{
	return 0;
}
#endif
1591

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1604
 * @mz: memory cgroup and zone to check
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1616
static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1617
{
1618
	if (!mem_cgroup_disabled())
1619 1620
		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
						       mz->zone);
1621

1622
	return inactive_file_is_low_global(mz->zone);
1623 1624
}

1625
static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1626 1627
{
	if (file)
1628
		return inactive_file_is_low(mz);
1629
	else
1630
		return inactive_anon_is_low(mz);
1631 1632
}

1633
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1634 1635
				 struct mem_cgroup_zone *mz,
				 struct scan_control *sc, int priority)
1636
{
1637 1638
	int file = is_file_lru(lru);

1639
	if (is_active_lru(lru)) {
1640 1641
		if (inactive_list_is_low(mz, file))
			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1642 1643 1644
		return 0;
	}

1645
	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1646 1647
}

1648 1649
static int vmscan_swappiness(struct mem_cgroup_zone *mz,
			     struct scan_control *sc)
1650
{
1651
	if (global_reclaim(sc))
1652
		return vm_swappiness;
1653
	return mem_cgroup_swappiness(mz->mem_cgroup);
1654 1655
}

1656 1657 1658 1659 1660 1661
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1662
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1663
 */
1664 1665
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
			   unsigned long *nr, int priority)
1666 1667 1668 1669
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1670
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1671
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1672
	enum lru_list lru;
1673
	int noswap = 0;
1674
	bool force_scan = false;
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1686
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1687
		force_scan = true;
1688
	if (!global_reclaim(sc))
1689
		force_scan = true;
1690 1691 1692 1693 1694 1695 1696 1697 1698

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1699

1700 1701 1702 1703
	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1704

1705
	if (global_reclaim(sc)) {
1706
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1707 1708
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1709
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1710 1711 1712 1713
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1714
		}
1715 1716
	}

1717 1718 1719 1720
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1721 1722
	anon_prio = vmscan_swappiness(mz, sc);
	file_prio = 200 - vmscan_swappiness(mz, sc);
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1735
	spin_lock_irq(&mz->zone->lru_lock);
1736 1737 1738
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1739 1740
	}

1741 1742 1743
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1744 1745 1746
	}

	/*
1747 1748 1749
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1750
	 */
1751
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1752
	ap /= reclaim_stat->recent_rotated[0] + 1;
1753

1754
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1755
	fp /= reclaim_stat->recent_rotated[1] + 1;
1756
	spin_unlock_irq(&mz->zone->lru_lock);
1757

1758 1759 1760 1761
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1762 1763
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1764
		unsigned long scan;
1765

H
Hugh Dickins 已提交
1766
		scan = zone_nr_lru_pages(mz, lru);
1767
		if (priority || noswap || !vmscan_swappiness(mz, sc)) {
1768
			scan >>= priority;
1769 1770
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1771 1772
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1773
		nr[lru] = scan;
1774
	}
1775
}
1776

M
Mel Gorman 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/* Use reclaim/compaction for costly allocs or under memory pressure */
static bool in_reclaim_compaction(int priority, struct scan_control *sc)
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
			 priority < DEF_PRIORITY - 2))
		return true;

	return false;
}

1788
/*
M
Mel Gorman 已提交
1789 1790 1791 1792 1793
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1794
 */
1795
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1796 1797
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
M
Mel Gorman 已提交
1798
					int priority,
1799 1800 1801 1802 1803 1804
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
M
Mel Gorman 已提交
1805
	if (!in_reclaim_compaction(priority, sc))
1806 1807
		return false;

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1830 1831 1832 1833 1834 1835

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1836
	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1837
	if (nr_swap_pages > 0)
1838
		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1839 1840 1841 1842 1843
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1844
	switch (compaction_suitable(mz->zone, sc->order)) {
1845 1846 1847 1848 1849 1850 1851 1852
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1853 1854 1855
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1856 1857
static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
				   struct scan_control *sc)
L
Linus Torvalds 已提交
1858
{
1859
	unsigned long nr[NR_LRU_LISTS];
1860
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1861
	enum lru_list lru;
1862
	unsigned long nr_reclaimed, nr_scanned;
1863
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1864
	struct blk_plug plug;
1865

1866 1867
restart:
	nr_reclaimed = 0;
1868
	nr_scanned = sc->nr_scanned;
1869
	get_scan_count(mz, sc, nr, priority);
L
Linus Torvalds 已提交
1870

1871
	blk_start_plug(&plug);
1872 1873
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1874 1875
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1876
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1877 1878
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1879

H
Hugh Dickins 已提交
1880
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1881
							    mz, sc, priority);
1882
			}
L
Linus Torvalds 已提交
1883
		}
1884 1885 1886 1887 1888 1889 1890 1891
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1892
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1893
			break;
L
Linus Torvalds 已提交
1894
	}
1895
	blk_finish_plug(&plug);
1896
	sc->nr_reclaimed += nr_reclaimed;
1897

1898 1899 1900 1901
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1902 1903
	if (inactive_anon_is_low(mz))
		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
1904

1905
	/* reclaim/compaction might need reclaim to continue */
1906
	if (should_continue_reclaim(mz, nr_reclaimed,
M
Mel Gorman 已提交
1907 1908
					sc->nr_scanned - nr_scanned,
					priority, sc))
1909 1910
		goto restart;

1911
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1912 1913
}

1914 1915 1916
static void shrink_zone(int priority, struct zone *zone,
			struct scan_control *sc)
{
1917 1918
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1919
		.zone = zone,
1920
		.priority = priority,
1921
	};
1922 1923 1924 1925 1926 1927 1928 1929
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
1930

1931 1932 1933 1934 1935 1936
		shrink_mem_cgroup_zone(priority, &mz, sc);
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1937 1938 1939 1940
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1941 1942 1943 1944 1945 1946 1947
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1948 1949
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1976
	if (compaction_deferred(zone, sc->order))
1977 1978 1979 1980 1981 1982 1983 1984 1985
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1986 1987 1988 1989 1990
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1991 1992
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1993 1994
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1995 1996 1997
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1998 1999 2000
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2001 2002
 *
 * This function returns true if a zone is being reclaimed for a costly
2003
 * high-order allocation and compaction is ready to begin. This indicates to
2004 2005
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2006
 */
2007
static bool shrink_zones(int priority, struct zonelist *zonelist,
2008
					struct scan_control *sc)
L
Linus Torvalds 已提交
2009
{
2010
	struct zoneref *z;
2011
	struct zone *zone;
2012 2013
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2014
	bool aborted_reclaim = false;
2015

2016 2017 2018 2019 2020 2021 2022 2023
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2024 2025
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2026
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2027
			continue;
2028 2029 2030 2031
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2032
		if (global_reclaim(sc)) {
2033 2034
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2035
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2036
				continue;	/* Let kswapd poll it */
2037 2038
			if (COMPACTION_BUILD) {
				/*
2039 2040 2041 2042 2043
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2044 2045
				 * noticeable problem, like transparent huge
				 * page allocations.
2046
				 */
2047
				if (compaction_ready(zone, sc)) {
2048
					aborted_reclaim = true;
2049
					continue;
2050
				}
2051
			}
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2065
		}
2066

2067
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2068
	}
2069

2070
	return aborted_reclaim;
2071 2072 2073 2074 2075 2076 2077
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2078
/* All zones in zonelist are unreclaimable? */
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2091 2092
		if (!zone->all_unreclaimable)
			return false;
2093 2094
	}

2095
	return true;
L
Linus Torvalds 已提交
2096
}
2097

L
Linus Torvalds 已提交
2098 2099 2100 2101 2102 2103 2104 2105
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2106 2107 2108 2109
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2110 2111 2112
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2113
 */
2114
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2115 2116
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2117 2118
{
	int priority;
2119
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2120
	struct reclaim_state *reclaim_state = current->reclaim_state;
2121
	struct zoneref *z;
2122
	struct zone *zone;
2123
	unsigned long writeback_threshold;
2124
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2125

2126 2127
	delayacct_freepages_start();

2128
	if (global_reclaim(sc))
2129
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2130 2131

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2132
		sc->nr_scanned = 0;
2133
		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2134

2135 2136 2137 2138
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2139
		if (global_reclaim(sc)) {
2140
			unsigned long lru_pages = 0;
2141 2142
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2143 2144 2145 2146 2147 2148
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2149
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2150
			if (reclaim_state) {
2151
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2152 2153
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2154
		}
2155
		total_scanned += sc->nr_scanned;
2156
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2157 2158 2159 2160 2161 2162 2163 2164 2165
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2166 2167
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2168 2169
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2170
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2171 2172 2173
		}

		/* Take a nap, wait for some writeback to complete */
2174
		if (!sc->hibernation_mode && sc->nr_scanned &&
2175 2176 2177 2178
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2179 2180
						&cpuset_current_mems_allowed,
						&preferred_zone);
2181 2182
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2183
	}
2184

L
Linus Torvalds 已提交
2185
out:
2186 2187
	delayacct_freepages_end();

2188 2189 2190
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2191 2192 2193 2194 2195 2196 2197 2198
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2199 2200
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2201 2202
		return 1;

2203
	/* top priority shrink_zones still had more to do? don't OOM, then */
2204
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2205 2206 2207
		return 1;

	return 0;
L
Linus Torvalds 已提交
2208 2209
}

2210
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2211
				gfp_t gfp_mask, nodemask_t *nodemask)
2212
{
2213
	unsigned long nr_reclaimed;
2214 2215 2216
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2217
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2218
		.may_unmap = 1,
2219
		.may_swap = 1,
2220
		.order = order,
2221
		.target_mem_cgroup = NULL,
2222
		.nodemask = nodemask,
2223
	};
2224 2225 2226
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2227

2228 2229 2230 2231
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2232
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2233 2234 2235 2236

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2237 2238
}

2239
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2240

2241
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2242
						gfp_t gfp_mask, bool noswap,
2243 2244
						struct zone *zone,
						unsigned long *nr_scanned)
2245 2246
{
	struct scan_control sc = {
2247
		.nr_scanned = 0,
2248
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2249 2250 2251 2252
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2253
		.target_mem_cgroup = memcg,
2254
	};
2255
	struct mem_cgroup_zone mz = {
2256
		.mem_cgroup = memcg,
2257 2258
		.zone = zone,
	};
2259

2260 2261
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2262 2263 2264 2265 2266

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2267 2268 2269 2270 2271 2272 2273
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2274
	shrink_mem_cgroup_zone(0, &mz, &sc);
2275 2276 2277

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2278
	*nr_scanned = sc.nr_scanned;
2279 2280 2281
	return sc.nr_reclaimed;
}

2282
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2283
					   gfp_t gfp_mask,
2284
					   bool noswap)
2285
{
2286
	struct zonelist *zonelist;
2287
	unsigned long nr_reclaimed;
2288
	int nid;
2289 2290
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2291
		.may_unmap = 1,
2292
		.may_swap = !noswap,
2293
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2294
		.order = 0,
2295
		.target_mem_cgroup = memcg,
2296
		.nodemask = NULL, /* we don't care the placement */
2297 2298 2299 2300 2301
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2302 2303
	};

2304 2305 2306 2307 2308
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2309
	nid = mem_cgroup_select_victim_node(memcg);
2310 2311

	zonelist = NODE_DATA(nid)->node_zonelists;
2312 2313 2314 2315 2316

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2317
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2318 2319 2320 2321

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2322 2323 2324
}
#endif

2325 2326 2327
static void age_active_anon(struct zone *zone, struct scan_control *sc,
			    int priority)
{
2328
	struct mem_cgroup *memcg;
2329

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};

		if (inactive_anon_is_low(&mz))
			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
					   sc, priority, 0);

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2346 2347
}

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2359
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2373 2374
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2375 2376
}

2377
/* is kswapd sleeping prematurely? */
2378 2379
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2380
{
2381
	int i;
2382 2383
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2384 2385 2386

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2387
		return true;
2388

2389
	/* Check the watermark levels */
2390
	for (i = 0; i <= classzone_idx; i++) {
2391 2392 2393 2394 2395
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2396 2397 2398 2399 2400 2401 2402 2403
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2404
			continue;
2405
		}
2406

2407
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2408
							i, 0))
2409 2410 2411
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2412
	}
2413

2414 2415 2416 2417 2418 2419
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2420
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2421 2422
	else
		return !all_zones_ok;
2423 2424
}

L
Linus Torvalds 已提交
2425 2426
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2427
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2428
 *
2429
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2440 2441 2442 2443 2444
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2445
 */
2446
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2447
							int *classzone_idx)
L
Linus Torvalds 已提交
2448 2449
{
	int all_zones_ok;
2450
	unsigned long balanced;
L
Linus Torvalds 已提交
2451 2452
	int priority;
	int i;
2453
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2454
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2455
	struct reclaim_state *reclaim_state = current->reclaim_state;
2456 2457
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2458 2459
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2460
		.may_unmap = 1,
2461
		.may_swap = 1,
2462 2463 2464 2465 2466
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2467
		.order = order,
2468
		.target_mem_cgroup = NULL,
2469
	};
2470 2471 2472
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2473 2474
loop_again:
	total_scanned = 0;
2475
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2476
	sc.may_writepage = !laptop_mode;
2477
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2478 2479 2480

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2481
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2482 2483

		all_zones_ok = 1;
2484
		balanced = 0;
L
Linus Torvalds 已提交
2485

2486 2487 2488 2489 2490 2491
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2492

2493 2494
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2495

2496
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2497
				continue;
L
Linus Torvalds 已提交
2498

2499 2500 2501 2502
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2503
			age_active_anon(zone, &sc, priority);
2504

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2516
			if (!zone_watermark_ok_safe(zone, order,
2517
					high_wmark_pages(zone), 0, 0)) {
2518
				end_zone = i;
A
Andrew Morton 已提交
2519
				break;
2520 2521 2522
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2523 2524
			}
		}
A
Andrew Morton 已提交
2525 2526 2527
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2528 2529 2530
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2531
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2545
			int nr_slab, testorder;
2546
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2547

2548
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2549 2550
				continue;

2551
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2552 2553 2554
				continue;

			sc.nr_scanned = 0;
2555

2556
			nr_soft_scanned = 0;
2557 2558 2559
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2560 2561 2562 2563 2564
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2565

2566
			/*
2567 2568 2569 2570 2571 2572
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2573
			 */
2574 2575 2576 2577
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2591
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2592
				    !zone_watermark_ok_safe(zone, testorder,
2593
					high_wmark_pages(zone) + balance_gap,
2594
					end_zone, 0)) {
2595
				shrink_zone(priority, zone, &sc);
2596

2597 2598 2599 2600 2601 2602 2603 2604 2605
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2612
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2613
				sc.may_writepage = 1;
2614

2615 2616 2617
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2618
				continue;
2619
			}
2620

2621
			if (!zone_watermark_ok_safe(zone, testorder,
2622 2623 2624 2625 2626 2627 2628
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2629
				if (!zone_watermark_ok_safe(zone, order,
2630 2631
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2632 2633 2634 2635 2636 2637 2638 2639 2640
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2641
				if (i <= *classzone_idx)
2642
					balanced += zone->present_pages;
2643
			}
2644

L
Linus Torvalds 已提交
2645
		}
2646
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2652 2653 2654 2655 2656 2657
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662 2663 2664

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2665
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2666 2667 2668
			break;
	}
out:
2669 2670 2671

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2672 2673
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2674
	 */
2675
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2676
		cond_resched();
2677 2678 2679

		try_to_freeze();

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2697 2698 2699
		goto loop_again;
	}

2700 2701 2702 2703 2704 2705 2706 2707 2708
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2709 2710
		int zones_need_compaction = 1;

2711 2712 2713 2714 2715 2716 2717 2718 2719
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

2720
			/* Would compaction fail due to lack of free memory? */
2721 2722
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2723 2724
				goto loop_again;

2725 2726 2727 2728 2729 2730 2731
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2732 2733 2734 2735 2736
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2737 2738 2739
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2740 2741 2742

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2743 2744
	}

2745 2746 2747 2748 2749 2750
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2751
	*classzone_idx = end_zone;
2752
	return order;
L
Linus Torvalds 已提交
2753 2754
}

2755
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2766
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2767 2768 2769 2770 2771 2772 2773 2774 2775
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2776
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2799 2800
/*
 * The background pageout daemon, started as a kernel thread
2801
 * from the init process.
L
Linus Torvalds 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2814
	unsigned long order, new_order;
2815
	unsigned balanced_order;
2816
	int classzone_idx, new_classzone_idx;
2817
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2818 2819
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2820

L
Linus Torvalds 已提交
2821 2822 2823
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2824
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2825

2826 2827
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2828
	if (!cpumask_empty(cpumask))
2829
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2844
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2845
	set_freezable();
L
Linus Torvalds 已提交
2846

2847
	order = new_order = 0;
2848
	balanced_order = 0;
2849
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2850
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2851
	for ( ; ; ) {
2852
		int ret;
2853

2854 2855 2856 2857 2858
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2859 2860
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2861 2862 2863 2864 2865 2866
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2867
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2868 2869
			/*
			 * Don't sleep if someone wants a larger 'order'
2870
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2871 2872
			 */
			order = new_order;
2873
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2874
		} else {
2875 2876
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2877
			order = pgdat->kswapd_max_order;
2878
			classzone_idx = pgdat->classzone_idx;
2879 2880
			new_order = order;
			new_classzone_idx = classzone_idx;
2881
			pgdat->kswapd_max_order = 0;
2882
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2883 2884
		}

2885 2886 2887 2888 2889 2890 2891 2892
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2893 2894
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2895 2896 2897
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2898
		}
L
Linus Torvalds 已提交
2899 2900 2901 2902 2903 2904 2905
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2906
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2907 2908 2909
{
	pg_data_t *pgdat;

2910
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2911 2912
		return;

2913
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2914
		return;
2915
	pgdat = zone->zone_pgdat;
2916
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2917
		pgdat->kswapd_max_order = order;
2918 2919
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2920
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2921
		return;
2922 2923 2924 2925
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2926
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2927 2928
}

2929 2930 2931 2932 2933 2934 2935 2936
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2937
{
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2962 2963
}

2964
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2965
/*
2966
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2967 2968 2969 2970 2971
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2972
 */
2973
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2974
{
2975 2976
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2977 2978 2979
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2980
		.may_writepage = 1,
2981 2982 2983
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
2984
	};
2985 2986 2987 2988
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2989 2990
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2991

2992 2993 2994 2995
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2996

2997
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2998

2999 3000 3001
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3002

3003
	return nr_reclaimed;
L
Linus Torvalds 已提交
3004
}
3005
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3006 3007 3008 3009 3010

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3011
static int __devinit cpu_callback(struct notifier_block *nfb,
3012
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3013
{
3014
	int nid;
L
Linus Torvalds 已提交
3015

3016
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3017
		for_each_node_state(nid, N_HIGH_MEMORY) {
3018
			pg_data_t *pgdat = NODE_DATA(nid);
3019 3020 3021
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3022

3023
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3024
				/* One of our CPUs online: restore mask */
3025
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030
		}
	}
	return NOTIFY_OK;
}

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3064 3065
static int __init kswapd_init(void)
{
3066
	int nid;
3067

L
Linus Torvalds 已提交
3068
	swap_setup();
3069
	for_each_node_state(nid, N_HIGH_MEMORY)
3070
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3086
#define RECLAIM_OFF 0
3087
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3088 3089 3090
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3091 3092 3093 3094 3095 3096 3097
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3098 3099 3100 3101 3102 3103
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3104 3105 3106 3107 3108 3109
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3152 3153 3154
/*
 * Try to free up some pages from this zone through reclaim.
 */
3155
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3156
{
3157
	/* Minimum pages needed in order to stay on node */
3158
	const unsigned long nr_pages = 1 << order;
3159 3160
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3161
	int priority;
3162 3163
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3164
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3165
		.may_swap = 1,
3166 3167
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3168
		.gfp_mask = gfp_mask,
3169
		.order = order,
3170
	};
3171 3172 3173
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3174
	unsigned long nr_slab_pages0, nr_slab_pages1;
3175 3176

	cond_resched();
3177 3178 3179 3180 3181 3182
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3183
	lockdep_set_current_reclaim_state(gfp_mask);
3184 3185
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3186

3187
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3188 3189 3190 3191 3192 3193
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3194
			shrink_zone(priority, zone, &sc);
3195
			priority--;
3196
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3197
	}
3198

3199 3200
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3201
		/*
3202
		 * shrink_slab() does not currently allow us to determine how
3203 3204 3205 3206
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3207
		 *
3208 3209
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3210
		 */
3211 3212 3213 3214
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3215
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3216 3217 3218 3219 3220 3221 3222 3223
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3224 3225 3226 3227 3228

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3229 3230 3231
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3232 3233
	}

3234
	p->reclaim_state = NULL;
3235
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3236
	lockdep_clear_current_reclaim_state();
3237
	return sc.nr_reclaimed >= nr_pages;
3238
}
3239 3240 3241 3242

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3243
	int ret;
3244 3245

	/*
3246 3247
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3248
	 *
3249 3250 3251 3252 3253
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3254
	 */
3255 3256
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3257
		return ZONE_RECLAIM_FULL;
3258

3259
	if (zone->all_unreclaimable)
3260
		return ZONE_RECLAIM_FULL;
3261

3262
	/*
3263
	 * Do not scan if the allocation should not be delayed.
3264
	 */
3265
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3266
		return ZONE_RECLAIM_NOSCAN;
3267 3268 3269 3270 3271 3272 3273

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3274
	node_id = zone_to_nid(zone);
3275
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3276
		return ZONE_RECLAIM_NOSCAN;
3277 3278

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3279 3280
		return ZONE_RECLAIM_NOSCAN;

3281 3282 3283
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3284 3285 3286
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3287
	return ret;
3288
}
3289
#endif
L
Lee Schermerhorn 已提交
3290 3291 3292 3293 3294 3295 3296

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3297 3298
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3299 3300
 *
 * Reasons page might not be evictable:
3301
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3302
 * (2) page is part of an mlocked VMA
3303
 *
L
Lee Schermerhorn 已提交
3304 3305 3306 3307
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3308 3309 3310
	if (mapping_unevictable(page_mapping(page)))
		return 0;

3311
	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
N
Nick Piggin 已提交
3312
		return 0;
L
Lee Schermerhorn 已提交
3313 3314 3315

	return 1;
}
3316

3317
#ifdef CONFIG_SHMEM
3318
/**
3319 3320 3321
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3322
 *
3323
 * Checks pages for evictability and moves them to the appropriate lru list.
3324 3325
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3326
 */
3327
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3328
{
3329
	struct lruvec *lruvec;
3330 3331 3332 3333
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3334

3335 3336 3337
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3338

3339 3340 3341 3342 3343 3344 3345 3346
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3347

3348 3349
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3350

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
			__dec_zone_state(zone, NR_UNEVICTABLE);
			lruvec = mem_cgroup_lru_move_lists(zone, page,
						LRU_UNEVICTABLE, lru);
			list_move(&page->lru, &lruvec->lists[lru]);
			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
			pgrescued++;
3362
		}
3363
	}
3364

3365 3366 3367 3368
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3369 3370
	}
}
3371
#endif /* CONFIG_SHMEM */
3372

3373
static void warn_scan_unevictable_pages(void)
3374
{
3375
	printk_once(KERN_WARNING
3376
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3377
		    "disabled for lack of a legitimate use case.  If you have "
3378 3379
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3380 3381 3382 3383 3384 3385 3386 3387 3388
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3389
			   void __user *buffer,
3390 3391
			   size_t *length, loff_t *ppos)
{
3392
	warn_scan_unevictable_pages();
3393
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3394 3395 3396 3397
	scan_unevictable_pages = 0;
	return 0;
}

3398
#ifdef CONFIG_NUMA
3399 3400 3401 3402 3403
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3404 3405
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3406 3407
					  char *buf)
{
3408
	warn_scan_unevictable_pages();
3409 3410 3411
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3412 3413
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3414 3415
					const char *buf, size_t count)
{
3416
	warn_scan_unevictable_pages();
3417 3418 3419 3420
	return 1;
}


3421
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3422 3423 3424 3425 3426
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3427
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3428 3429 3430 3431
}

void scan_unevictable_unregister_node(struct node *node)
{
3432
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3433
}
3434
#endif