vmscan.c 102.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
98
	int order;
99

100
	/*
101 102
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
103
	 */
104
	reclaim_mode_t reclaim_mode;
105

106 107 108 109 110
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
111

112 113 114 115 116
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
117 118
};

119 120 121 122 123
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
158
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
159 160 161 162

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

163
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
164 165
static bool global_reclaim(struct scan_control *sc)
{
166
	return !sc->target_mem_cgroup;
167 168
}

169
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170
{
171
	return !mz->mem_cgroup;
172
}
173
#else
174 175 176 177 178
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}

179
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180 181 182
{
	return true;
}
183 184
#endif

185
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186
{
187 188
	if (!scanning_global_lru(mz))
		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
K
KOSAKI Motohiro 已提交
189

190
	return &mz->zone->reclaim_stat;
191 192
}

193 194
static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
				       enum lru_list lru)
195
{
196 197 198 199 200
	if (!scanning_global_lru(mz))
		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
						    zone_to_nid(mz->zone),
						    zone_idx(mz->zone),
						    BIT(lru));
201

202
	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203 204 205
}


L
Linus Torvalds 已提交
206 207 208
/*
 * Add a shrinker callback to be called from the vm
 */
209
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
210
{
211
	atomic_long_set(&shrinker->nr_in_batch, 0);
212 213 214
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
215
}
216
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
217 218 219 220

/*
 * Remove one
 */
221
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
222 223 224 225 226
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
227
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
228

229 230 231 232 233 234 235 236
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
237 238 239 240 241 242 243 244 245
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
246
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
247 248 249 250 251 252 253
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
254 255
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
256
 */
257
unsigned long shrink_slab(struct shrink_control *shrink,
258
			  unsigned long nr_pages_scanned,
259
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
260 261
{
	struct shrinker *shrinker;
262
	unsigned long ret = 0;
L
Linus Torvalds 已提交
263

264 265
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
266

267 268 269 270 271
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
272 273 274

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
275 276
		long total_scan;
		long max_pass;
277
		int shrink_ret = 0;
278 279
		long nr;
		long new_nr;
280 281
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
282

283 284 285 286
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

287 288 289 290 291
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
292
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293 294

		total_scan = nr;
295
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
296
		delta *= max_pass;
L
Linus Torvalds 已提交
297
		do_div(delta, lru_pages + 1);
298 299
		total_scan += delta;
		if (total_scan < 0) {
300 301
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
302 303
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
304 305
		}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

321 322 323 324 325
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
326 327
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
328

329
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
330 331 332
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

333
		while (total_scan >= batch_size) {
334
			int nr_before;
L
Linus Torvalds 已提交
335

336 337
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
338
							batch_size);
L
Linus Torvalds 已提交
339 340
			if (shrink_ret == -1)
				break;
341 342
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
343 344
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
345 346 347 348

			cond_resched();
		}

349 350 351 352 353
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
354 355 356 357 358
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
359 360

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
361 362
	}
	up_read(&shrinker_rwsem);
363 364
out:
	cond_resched();
365
	return ret;
L
Linus Torvalds 已提交
366 367
}

368
static void set_reclaim_mode(int priority, struct scan_control *sc,
369 370
				   bool sync)
{
371
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372 373

	/*
374 375 376
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
377
	 */
378
	if (COMPACTION_BUILD)
379
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380
	else
381
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382 383

	/*
384 385 386
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
387 388
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389
		sc->reclaim_mode |= syncmode;
390
	else if (sc->order && priority < DEF_PRIORITY - 2)
391
		sc->reclaim_mode |= syncmode;
392
	else
393
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394 395
}

396
static void reset_reclaim_mode(struct scan_control *sc)
397
{
398
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399 400
}

L
Linus Torvalds 已提交
401 402
static inline int is_page_cache_freeable(struct page *page)
{
403 404 405 406 407
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
408
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
409 410
}

411 412
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
413
{
414
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
415 416 417 418 419
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
420 421 422 423

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
442
	lock_page(page);
443 444
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
445 446 447
	unlock_page(page);
}

448 449 450 451 452 453 454 455 456 457 458 459
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
460
/*
A
Andrew Morton 已提交
461 462
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
463
 */
464
static pageout_t pageout(struct page *page, struct address_space *mapping,
465
			 struct scan_control *sc)
L
Linus Torvalds 已提交
466 467 468 469 470 471 472 473
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
474
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
490
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
491 492
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
493
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
494 495 496 497 498 499 500
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
501
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
502 503 504 505 506 507 508
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
509 510
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
511 512 513 514 515 516 517
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
518
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
519 520 521
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
522

L
Linus Torvalds 已提交
523 524 525 526
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
527
		trace_mm_vmscan_writepage(page,
528
			trace_reclaim_flags(page, sc->reclaim_mode));
529
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
530 531 532 533 534 535
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

536
/*
N
Nick Piggin 已提交
537 538
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
539
 */
N
Nick Piggin 已提交
540
static int __remove_mapping(struct address_space *mapping, struct page *page)
541
{
542 543
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
544

N
Nick Piggin 已提交
545
	spin_lock_irq(&mapping->tree_lock);
546
	/*
N
Nick Piggin 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
570
	 */
N
Nick Piggin 已提交
571
	if (!page_freeze_refs(page, 2))
572
		goto cannot_free;
N
Nick Piggin 已提交
573 574 575
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
576
		goto cannot_free;
N
Nick Piggin 已提交
577
	}
578 579 580 581

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
582
		spin_unlock_irq(&mapping->tree_lock);
583
		swapcache_free(swap, page);
N
Nick Piggin 已提交
584
	} else {
585 586 587 588
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

589
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
590
		spin_unlock_irq(&mapping->tree_lock);
591
		mem_cgroup_uncharge_cache_page(page);
592 593 594

		if (freepage != NULL)
			freepage(page);
595 596 597 598 599
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
600
	spin_unlock_irq(&mapping->tree_lock);
601 602 603
	return 0;
}

N
Nick Piggin 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
637
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
651
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
652 653 654 655 656 657 658 659
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
660
		/*
661 662 663 664 665
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
		 * isolation/check_move_unevictable_page,
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666 667
		 * the page back to the evictable list.
		 *
668
		 * The other side is TestClearPageMlocked() or shmem_lock().
669 670
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

689 690 691 692 693
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
694 695 696
	put_page(page);		/* drop ref from isolate */
}

697 698 699
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
700
	PAGEREF_KEEP,
701 702 703 704
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
705
						  struct mem_cgroup_zone *mz,
706 707
						  struct scan_control *sc)
{
708
	int referenced_ptes, referenced_page;
709 710
	unsigned long vm_flags;

711
	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712
	referenced_page = TestClearPageReferenced(page);
713 714

	/* Lumpy reclaim - ignore references */
715
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716 717 718 719 720 721 722 723 724
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

744
		if (referenced_page || referenced_ptes > 1)
745 746
			return PAGEREF_ACTIVATE;

747 748 749 750 751 752
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

753 754
		return PAGEREF_KEEP;
	}
755 756

	/* Reclaim if clean, defer dirty pages to writeback */
757
	if (referenced_page && !PageSwapBacked(page))
758 759 760
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
761 762
}

L
Linus Torvalds 已提交
763
/*
A
Andrew Morton 已提交
764
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
765
 */
A
Andrew Morton 已提交
766
static unsigned long shrink_page_list(struct list_head *page_list,
767
				      struct mem_cgroup_zone *mz,
768
				      struct scan_control *sc,
769 770 771
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
772 773
{
	LIST_HEAD(ret_pages);
774
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
775
	int pgactivate = 0;
776 777
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
778
	unsigned long nr_reclaimed = 0;
779
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
780 781 782 783

	cond_resched();

	while (!list_empty(page_list)) {
784
		enum page_references references;
L
Linus Torvalds 已提交
785 786 787 788 789 790 791 792 793
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
794
		if (!trylock_page(page))
L
Linus Torvalds 已提交
795 796
			goto keep;

N
Nick Piggin 已提交
797
		VM_BUG_ON(PageActive(page));
798
		VM_BUG_ON(page_zone(page) != mz->zone);
L
Linus Torvalds 已提交
799 800

		sc->nr_scanned++;
801

N
Nick Piggin 已提交
802 803
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
804

805
		if (!sc->may_unmap && page_mapped(page))
806 807
			goto keep_locked;

L
Linus Torvalds 已提交
808 809 810 811
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

812 813 814 815
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
816
			nr_writeback++;
817
			/*
818 819 820 821
			 * Synchronous reclaim cannot queue pages for
			 * writeback due to the possibility of stack overflow
			 * but if it encounters a page under writeback, wait
			 * for the IO to complete.
822
			 */
823
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824
			    may_enter_fs)
825
				wait_on_page_writeback(page);
826 827 828 829
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
830
		}
L
Linus Torvalds 已提交
831

832
		references = page_check_references(page, mz, sc);
833 834
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
835
			goto activate_locked;
836 837
		case PAGEREF_KEEP:
			goto keep_locked;
838 839 840 841
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
842 843 844 845 846

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
847
		if (PageAnon(page) && !PageSwapCache(page)) {
848 849
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
850
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
851
				goto activate_locked;
852
			may_enter_fs = 1;
N
Nick Piggin 已提交
853
		}
L
Linus Torvalds 已提交
854 855 856 857 858 859 860 861

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
862
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
863 864 865 866
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
867 868
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
869 870 871 872 873 874
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
875 876
			nr_dirty++;

877 878
			/*
			 * Only kswapd can writeback filesystem pages to
879 880
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
881
			 */
882 883
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884 885 886 887 888 889 890 891 892
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

893 894 895
				goto keep_locked;
			}

896
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
897
				goto keep_locked;
898
			if (!may_enter_fs)
L
Linus Torvalds 已提交
899
				goto keep_locked;
900
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
901 902 903
				goto keep_locked;

			/* Page is dirty, try to write it out here */
904
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
905
			case PAGE_KEEP:
906
				nr_congested++;
L
Linus Torvalds 已提交
907 908 909 910
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
911 912 913
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
914
					goto keep;
915

L
Linus Torvalds 已提交
916 917 918 919
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
920
				if (!trylock_page(page))
L
Linus Torvalds 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
940
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
941 942 943 944 945 946 947 948 949 950
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
951
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
952 953
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
970 971
		}

N
Nick Piggin 已提交
972
		if (!mapping || !__remove_mapping(mapping, page))
973
			goto keep_locked;
L
Linus Torvalds 已提交
974

N
Nick Piggin 已提交
975 976 977 978 979 980 981 982
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
983
free_it:
984
		nr_reclaimed++;
985 986 987 988 989 990

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
991 992
		continue;

N
Nick Piggin 已提交
993
cull_mlocked:
994 995
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
996 997
		unlock_page(page);
		putback_lru_page(page);
998
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
999 1000
		continue;

L
Linus Torvalds 已提交
1001
activate_locked:
1002 1003
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1004
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1005
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
1011
		reset_reclaim_mode(sc);
1012
keep_lumpy:
L
Linus Torvalds 已提交
1013
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1014
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1015
	}
1016

1017 1018 1019 1020 1021 1022
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
1023
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024
		zone_set_flag(mz->zone, ZONE_CONGESTED);
1025

1026
	free_hot_cold_page_list(&free_pages, 1);
1027

L
Linus Torvalds 已提交
1028
	list_splice(&ret_pages, page_list);
1029
	count_vm_events(PGACTIVATE, pgactivate);
1030 1031
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
1032
	return nr_reclaimed;
L
Linus Torvalds 已提交
1033 1034
}

A
Andy Whitcroft 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1045
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
1046
{
1047
	bool all_lru_mode;
A
Andy Whitcroft 已提交
1048 1049 1050 1051 1052 1053
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

1054 1055 1056
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
1057 1058 1059 1060 1061
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
1062
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
1063 1064
		return ret;

1065
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066 1067
		return ret;

L
Lee Schermerhorn 已提交
1068 1069 1070 1071 1072 1073 1074 1075
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1076
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1111

1112 1113 1114
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1142 1143
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1144
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1145 1146 1147
 *
 * returns how many pages were moved onto *@dst.
 */
1148 1149
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1150 1151
		unsigned long *scanned, int order, isolate_mode_t mode,
		int file)
L
Linus Torvalds 已提交
1152
{
1153
	unsigned long nr_taken = 0;
1154 1155 1156
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1157
	unsigned long scan;
L
Linus Torvalds 已提交
1158

1159
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1160 1161 1162 1163 1164 1165
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1166 1167 1168
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1169
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1170

1171
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1172
		case 0:
1173
			mem_cgroup_lru_del(page);
A
Andy Whitcroft 已提交
1174
			list_move(&page->lru, dst);
1175
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1176 1177 1178 1179 1180 1181
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1182

A
Andy Whitcroft 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1195
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1215

A
Andy Whitcroft 已提交
1216 1217
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1218
				break;
1219 1220 1221 1222 1223 1224

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
1225
			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1226 1227
			    !PageSwapCache(cursor_page))
				break;
1228

1229
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1230 1231
				unsigned int isolated_pages;

1232
				mem_cgroup_lru_del(cursor_page);
A
Andy Whitcroft 已提交
1233
				list_move(&cursor_page->lru, dst);
1234 1235 1236
				isolated_pages = hpage_nr_pages(cursor_page);
				nr_taken += isolated_pages;
				nr_lumpy_taken += isolated_pages;
1237
				if (PageDirty(cursor_page))
1238
					nr_lumpy_dirty += isolated_pages;
A
Andy Whitcroft 已提交
1239
				scan++;
1240
				pfn += isolated_pages - 1;
1241
			} else {
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1256 1257
					continue;
				break;
A
Andy Whitcroft 已提交
1258 1259
			}
		}
1260 1261 1262 1263

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1264 1265 1266
	}

	*scanned = scan;
1267 1268 1269 1270 1271

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1272
			mode, file);
L
Linus Torvalds 已提交
1273 1274 1275
	return nr_taken;
}

1276 1277 1278 1279
static unsigned long isolate_pages(unsigned long nr, struct mem_cgroup_zone *mz,
				   struct list_head *dst,
				   unsigned long *scanned, int order,
				   isolate_mode_t mode, int active, int file)
1280
{
1281
	struct lruvec *lruvec;
1282
	int lru = LRU_BASE;
1283 1284

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1285
	if (active)
1286 1287 1288
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
1289
	return isolate_lru_pages(nr, &lruvec->lists[lru], dst,
1290
				 scanned, order, mode, file);
1291 1292
}

A
Andy Whitcroft 已提交
1293 1294 1295 1296
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1297 1298
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1299 1300
{
	int nr_active = 0;
1301
	int lru;
A
Andy Whitcroft 已提交
1302 1303
	struct page *page;

1304
	list_for_each_entry(page, page_list, lru) {
1305
		int numpages = hpage_nr_pages(page);
1306
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1307
		if (PageActive(page)) {
1308
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1309
			ClearPageActive(page);
1310
			nr_active += numpages;
A
Andy Whitcroft 已提交
1311
		}
1312
		if (count)
1313
			count[lru] += numpages;
1314
	}
A
Andy Whitcroft 已提交
1315 1316 1317 1318

	return nr_active;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1330 1331 1332
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1348 1349
	VM_BUG_ON(!page_count(page));

1350 1351 1352 1353
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1354
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1355
			int lru = page_lru(page);
1356
			ret = 0;
1357
			get_page(page);
1358
			ClearPageLRU(page);
1359 1360

			del_page_from_lru_list(zone, page, lru);
1361 1362 1363 1364 1365 1366
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1378
	if (!global_reclaim(sc))
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1392 1393 1394 1395
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1396 1397 1398
putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
		  unsigned long nr_anon, unsigned long nr_file,
		  struct list_head *page_list)
1399 1400
{
	struct page *page;
1401
	LIST_HEAD(pages_to_free);
1402 1403
	struct zone *zone = mz->zone;
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1420
		SetPageLRU(page);
1421
		lru = page_lru(page);
1422
		add_page_to_lru_list(zone, page, lru);
1423 1424
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1425 1426
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1427
		}
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1439 1440 1441 1442 1443 1444
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
1445
	free_hot_cold_page_list(&pages_to_free, 1);
1446 1447
}

1448 1449 1450 1451 1452 1453
static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone *mz,
		       struct scan_control *sc,
		       unsigned long *nr_anon,
		       unsigned long *nr_file,
		       struct list_head *isolated_list)
1454 1455
{
	unsigned long nr_active;
1456
	struct zone *zone = mz->zone;
1457
	unsigned int count[NR_LRU_LISTS] = { 0, };
1458
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1481
/*
1482
 * Returns true if a direct reclaim should wait on pages under writeback.
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1501
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1502 1503
		return false;

1504
	/* If we have reclaimed everything on the isolated list, no stall */
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1522
/*
A
Andrew Morton 已提交
1523 1524
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1525
 */
1526
static noinline_for_stack unsigned long
1527 1528
shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
		     struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1529 1530
{
	LIST_HEAD(page_list);
1531
	unsigned long nr_scanned;
1532
	unsigned long nr_reclaimed = 0;
1533 1534 1535
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1536 1537
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1538
	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1539
	struct zone *zone = mz->zone;
1540

1541
	while (unlikely(too_many_isolated(zone, file, sc))) {
1542
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1543 1544 1545 1546 1547 1548

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1549
	set_reclaim_mode(priority, sc, false);
1550 1551 1552
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
		reclaim_mode |= ISOLATE_ACTIVE;

L
Linus Torvalds 已提交
1553
	lru_add_drain();
1554 1555 1556 1557 1558 1559

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1560
	spin_lock_irq(&zone->lru_lock);
1561

1562 1563 1564
	nr_taken = isolate_pages(nr_to_scan, mz, &page_list,
				 &nr_scanned, sc->order,
				 reclaim_mode, 0, file);
1565
	if (global_reclaim(sc)) {
1566 1567 1568 1569 1570 1571 1572 1573
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1574

1575 1576 1577 1578
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1579

1580
	update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1581

1582
	spin_unlock_irq(&zone->lru_lock);
1583

1584
	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1585
						&nr_dirty, &nr_writeback);
1586

1587 1588
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1589
		set_reclaim_mode(priority, sc, true);
1590
		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1591
					priority, &nr_dirty, &nr_writeback);
1592
	}
1593

1594 1595 1596 1597
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1598

1599
	putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1600

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1627 1628 1629 1630
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1631
		trace_shrink_flags(file, sc->reclaim_mode));
1632
	return nr_reclaimed;
L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1652

1653 1654
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1655
				     struct list_head *pages_to_free,
1656 1657 1658 1659 1660
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	if (buffer_heads_over_limit) {
		spin_unlock_irq(&zone->lru_lock);
		list_for_each_entry(page, list, lru) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}
		spin_lock_irq(&zone->lru_lock);
	}
1672 1673

	while (!list_empty(list)) {
1674 1675
		struct lruvec *lruvec;

1676 1677 1678 1679 1680
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1681 1682
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1683
		pgmoved += hpage_nr_pages(page);
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1696 1697 1698 1699 1700 1701
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1702

1703 1704 1705 1706
static void shrink_active_list(unsigned long nr_pages,
			       struct mem_cgroup_zone *mz,
			       struct scan_control *sc,
			       int priority, int file)
L
Linus Torvalds 已提交
1707
{
1708
	unsigned long nr_taken;
1709
	unsigned long pgscanned;
1710
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1711
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1712
	LIST_HEAD(l_active);
1713
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1714
	struct page *page;
1715
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1716
	unsigned long nr_rotated = 0;
1717
	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1718
	struct zone *zone = mz->zone;
L
Linus Torvalds 已提交
1719 1720

	lru_add_drain();
1721 1722 1723 1724 1725 1726

	if (!sc->may_unmap)
		reclaim_mode |= ISOLATE_UNMAPPED;
	if (!sc->may_writepage)
		reclaim_mode |= ISOLATE_CLEAN;

L
Linus Torvalds 已提交
1727
	spin_lock_irq(&zone->lru_lock);
1728 1729 1730 1731

	nr_taken = isolate_pages(nr_pages, mz, &l_hold,
				 &pgscanned, sc->order,
				 reclaim_mode, 1, file);
1732

1733 1734 1735
	if (global_reclaim(sc))
		zone->pages_scanned += pgscanned;

1736
	reclaim_stat->recent_scanned[file] += nr_taken;
1737

1738
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1739
	if (file)
1740
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1741
	else
1742
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1743
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1744 1745 1746 1747 1748 1749
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1750

L
Lee Schermerhorn 已提交
1751 1752 1753 1754 1755
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1756
		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1757
			nr_rotated += hpage_nr_pages(page);
1758 1759 1760 1761 1762 1763 1764 1765 1766
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1767
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1768 1769 1770 1771
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1772

1773
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1774 1775 1776
		list_add(&page->lru, &l_inactive);
	}

1777
	/*
1778
	 * Move pages back to the lru list.
1779
	 */
1780
	spin_lock_irq(&zone->lru_lock);
1781
	/*
1782 1783 1784 1785
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1786
	 */
1787
	reclaim_stat->recent_rotated[file] += nr_rotated;
1788

1789
	move_active_pages_to_lru(zone, &l_active, &l_hold,
1790
						LRU_ACTIVE + file * LRU_FILE);
1791
	move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1792
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1793
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1794
	spin_unlock_irq(&zone->lru_lock);
1795 1796

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1797 1798
}

1799
#ifdef CONFIG_SWAP
1800
static int inactive_anon_is_low_global(struct zone *zone)
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1813 1814 1815 1816 1817 1818 1819 1820
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1821
static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1822
{
1823 1824 1825 1826 1827 1828 1829
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1830 1831 1832 1833 1834
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
						       mz->zone);

	return inactive_anon_is_low_global(mz->zone);
1835
}
1836
#else
1837
static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1838 1839 1840 1841
{
	return 0;
}
#endif
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1855
 * @mz: memory cgroup and zone to check
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1867
static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1868
{
1869 1870 1871
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
						       mz->zone);
1872

1873
	return inactive_file_is_low_global(mz->zone);
1874 1875
}

1876
static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1877 1878
{
	if (file)
1879
		return inactive_file_is_low(mz);
1880
	else
1881
		return inactive_anon_is_low(mz);
1882 1883
}

1884
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1885 1886
				 struct mem_cgroup_zone *mz,
				 struct scan_control *sc, int priority)
1887
{
1888 1889
	int file = is_file_lru(lru);

1890
	if (is_active_lru(lru)) {
1891 1892
		if (inactive_list_is_low(mz, file))
			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1893 1894 1895
		return 0;
	}

1896
	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1897 1898
}

1899 1900
static int vmscan_swappiness(struct mem_cgroup_zone *mz,
			     struct scan_control *sc)
1901
{
1902
	if (global_reclaim(sc))
1903
		return vm_swappiness;
1904
	return mem_cgroup_swappiness(mz->mem_cgroup);
1905 1906
}

1907 1908 1909 1910 1911 1912
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1913
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1914
 */
1915 1916
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
			   unsigned long *nr, int priority)
1917 1918 1919 1920
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1921
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1922 1923 1924
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1925
	bool force_scan = false;
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1937
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1938
		force_scan = true;
1939
	if (!global_reclaim(sc))
1940
		force_scan = true;
1941 1942 1943 1944 1945 1946 1947 1948 1949

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1950

1951 1952 1953 1954
	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1955

1956
	if (global_reclaim(sc)) {
1957
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1958 1959
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1960
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1961 1962 1963 1964
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1965
		}
1966 1967
	}

1968 1969 1970 1971
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1972 1973
	anon_prio = vmscan_swappiness(mz, sc);
	file_prio = 200 - vmscan_swappiness(mz, sc);
1974

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1986
	spin_lock_irq(&mz->zone->lru_lock);
1987 1988 1989
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1990 1991
	}

1992 1993 1994
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1995 1996 1997
	}

	/*
1998 1999 2000
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2001
	 */
2002 2003
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
2004

2005 2006
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
2007
	spin_unlock_irq(&mz->zone->lru_lock);
2008

2009 2010 2011 2012 2013 2014 2015
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
2016

2017
		scan = zone_nr_lru_pages(mz, l);
2018 2019
		if (priority || noswap) {
			scan >>= priority;
2020 2021
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
2022 2023
			scan = div64_u64(scan * fraction[file], denominator);
		}
2024
		nr[l] = scan;
2025
	}
2026
}
2027

2028 2029 2030 2031 2032 2033 2034
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
2035
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2036 2037 2038 2039 2040 2041 2042 2043
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2044
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2045 2046
		return false;

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2069 2070 2071 2072 2073 2074

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2075
	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2076
	if (nr_swap_pages > 0)
2077
		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2078 2079 2080 2081 2082
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2083
	switch (compaction_suitable(mz->zone, sc->order)) {
2084 2085 2086 2087 2088 2089 2090 2091
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
2092 2093 2094
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
2095 2096
static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
				   struct scan_control *sc)
L
Linus Torvalds 已提交
2097
{
2098
	unsigned long nr[NR_LRU_LISTS];
2099
	unsigned long nr_to_scan;
2100
	enum lru_list l;
2101
	unsigned long nr_reclaimed, nr_scanned;
2102
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2103
	struct blk_plug plug;
2104

2105 2106
restart:
	nr_reclaimed = 0;
2107
	nr_scanned = sc->nr_scanned;
2108
	get_scan_count(mz, sc, nr, priority);
L
Linus Torvalds 已提交
2109

2110
	blk_start_plug(&plug);
2111 2112
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
2113
		for_each_evictable_lru(l) {
2114
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
2115 2116
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
2117
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
2118

2119
				nr_reclaimed += shrink_list(l, nr_to_scan,
2120
							    mz, sc, priority);
2121
			}
L
Linus Torvalds 已提交
2122
		}
2123 2124 2125 2126 2127 2128 2129 2130
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
2131
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2132
			break;
L
Linus Torvalds 已提交
2133
	}
2134
	blk_finish_plug(&plug);
2135
	sc->nr_reclaimed += nr_reclaimed;
2136

2137 2138 2139 2140
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2141 2142
	if (inactive_anon_is_low(mz))
		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2143

2144
	/* reclaim/compaction might need reclaim to continue */
2145
	if (should_continue_reclaim(mz, nr_reclaimed,
2146 2147 2148
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

2149
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
2150 2151
}

2152 2153 2154
static void shrink_zone(int priority, struct zone *zone,
			struct scan_control *sc)
{
2155 2156
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
2157
		.zone = zone,
2158
		.priority = priority,
2159
	};
2160 2161 2162 2163 2164 2165 2166 2167
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
2168

2169 2170 2171 2172 2173 2174
		shrink_mem_cgroup_zone(priority, &mz, sc);
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
2175 2176 2177 2178
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
2179 2180 2181 2182 2183 2184 2185
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
2186 2187
}

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
	if (compaction_deferred(zone))
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2224 2225 2226 2227 2228
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2229 2230
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2231 2232
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2233 2234 2235
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2236 2237 2238
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2239 2240
 *
 * This function returns true if a zone is being reclaimed for a costly
2241
 * high-order allocation and compaction is ready to begin. This indicates to
2242 2243
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2244
 */
2245
static bool shrink_zones(int priority, struct zonelist *zonelist,
2246
					struct scan_control *sc)
L
Linus Torvalds 已提交
2247
{
2248
	struct zoneref *z;
2249
	struct zone *zone;
2250 2251
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2252
	bool aborted_reclaim = false;
2253

2254 2255
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2256
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2257
			continue;
2258 2259 2260 2261
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2262
		if (global_reclaim(sc)) {
2263 2264
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2265
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2266
				continue;	/* Let kswapd poll it */
2267 2268
			if (COMPACTION_BUILD) {
				/*
2269 2270 2271 2272 2273 2274 2275
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
				 * noticable problem, like transparent huge page
				 * allocations.
2276
				 */
2277
				if (compaction_ready(zone, sc)) {
2278
					aborted_reclaim = true;
2279
					continue;
2280
				}
2281
			}
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2295
		}
2296

2297
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2298
	}
2299

2300
	return aborted_reclaim;
2301 2302 2303 2304 2305 2306 2307
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2308
/* All zones in zonelist are unreclaimable? */
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2321 2322
		if (!zone->all_unreclaimable)
			return false;
2323 2324
	}

2325
	return true;
L
Linus Torvalds 已提交
2326
}
2327

L
Linus Torvalds 已提交
2328 2329 2330 2331 2332 2333 2334 2335
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2336 2337 2338 2339
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2340 2341 2342
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2343
 */
2344
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2345 2346
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2347 2348
{
	int priority;
2349
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2350
	struct reclaim_state *reclaim_state = current->reclaim_state;
2351
	struct zoneref *z;
2352
	struct zone *zone;
2353
	unsigned long writeback_threshold;
2354
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2355

2356
	get_mems_allowed();
2357 2358
	delayacct_freepages_start();

2359
	if (global_reclaim(sc))
2360
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2361 2362

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2363
		sc->nr_scanned = 0;
2364
		if (!priority)
2365
			disable_swap_token(sc->target_mem_cgroup);
2366
		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2367

2368 2369 2370 2371
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2372
		if (global_reclaim(sc)) {
2373
			unsigned long lru_pages = 0;
2374 2375
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2376 2377 2378 2379 2380 2381
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2382
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2383
			if (reclaim_state) {
2384
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2385 2386
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2387
		}
2388
		total_scanned += sc->nr_scanned;
2389
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2399 2400
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2401 2402
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2403
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2404 2405 2406
		}

		/* Take a nap, wait for some writeback to complete */
2407
		if (!sc->hibernation_mode && sc->nr_scanned &&
2408 2409 2410 2411
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2412 2413
						&cpuset_current_mems_allowed,
						&preferred_zone);
2414 2415
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2416
	}
2417

L
Linus Torvalds 已提交
2418
out:
2419
	delayacct_freepages_end();
2420
	put_mems_allowed();
2421

2422 2423 2424
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2425 2426 2427 2428 2429 2430 2431 2432
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2433 2434
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2435 2436
		return 1;

2437
	/* top priority shrink_zones still had more to do? don't OOM, then */
2438
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2439 2440 2441
		return 1;

	return 0;
L
Linus Torvalds 已提交
2442 2443
}

2444
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2445
				gfp_t gfp_mask, nodemask_t *nodemask)
2446
{
2447
	unsigned long nr_reclaimed;
2448 2449 2450
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2451
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2452
		.may_unmap = 1,
2453
		.may_swap = 1,
2454
		.order = order,
2455
		.target_mem_cgroup = NULL,
2456
		.nodemask = nodemask,
2457
	};
2458 2459 2460
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2461

2462 2463 2464 2465
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2466
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2467 2468 2469 2470

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2471 2472
}

2473
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2474

2475
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2476
						gfp_t gfp_mask, bool noswap,
2477 2478
						struct zone *zone,
						unsigned long *nr_scanned)
2479 2480
{
	struct scan_control sc = {
2481
		.nr_scanned = 0,
2482
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2483 2484 2485 2486
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2487
		.target_mem_cgroup = memcg,
2488
	};
2489
	struct mem_cgroup_zone mz = {
2490
		.mem_cgroup = memcg,
2491 2492
		.zone = zone,
	};
2493

2494 2495
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2496 2497 2498 2499 2500

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2501 2502 2503 2504 2505 2506 2507
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2508
	shrink_mem_cgroup_zone(0, &mz, &sc);
2509 2510 2511

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2512
	*nr_scanned = sc.nr_scanned;
2513 2514 2515
	return sc.nr_reclaimed;
}

2516
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2517
					   gfp_t gfp_mask,
2518
					   bool noswap)
2519
{
2520
	struct zonelist *zonelist;
2521
	unsigned long nr_reclaimed;
2522
	int nid;
2523 2524
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2525
		.may_unmap = 1,
2526
		.may_swap = !noswap,
2527
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2528
		.order = 0,
2529
		.target_mem_cgroup = memcg,
2530
		.nodemask = NULL, /* we don't care the placement */
2531 2532 2533 2534 2535
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2536 2537
	};

2538 2539 2540 2541 2542
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2543
	nid = mem_cgroup_select_victim_node(memcg);
2544 2545

	zonelist = NODE_DATA(nid)->node_zonelists;
2546 2547 2548 2549 2550

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2551
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2552 2553 2554 2555

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2556 2557 2558
}
#endif

2559 2560 2561
static void age_active_anon(struct zone *zone, struct scan_control *sc,
			    int priority)
{
2562
	struct mem_cgroup *memcg;
2563

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};

		if (inactive_anon_is_low(&mz))
			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
					   sc, priority, 0);

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2580 2581
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2593
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2607 2608
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2609 2610
}

2611
/* is kswapd sleeping prematurely? */
2612 2613
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2614
{
2615
	int i;
2616 2617
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2618 2619 2620

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2621
		return true;
2622

2623
	/* Check the watermark levels */
2624
	for (i = 0; i <= classzone_idx; i++) {
2625 2626 2627 2628 2629
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2630 2631 2632 2633 2634 2635 2636 2637
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2638
			continue;
2639
		}
2640

2641
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2642
							i, 0))
2643 2644 2645
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2646
	}
2647

2648 2649 2650 2651 2652 2653
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2654
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2655 2656
	else
		return !all_zones_ok;
2657 2658
}

L
Linus Torvalds 已提交
2659 2660
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2661
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2662
 *
2663
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2674 2675 2676 2677 2678
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2679
 */
2680
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2681
							int *classzone_idx)
L
Linus Torvalds 已提交
2682 2683
{
	int all_zones_ok;
2684
	unsigned long balanced;
L
Linus Torvalds 已提交
2685 2686
	int priority;
	int i;
2687
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2688
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2689
	struct reclaim_state *reclaim_state = current->reclaim_state;
2690 2691
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2692 2693
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2694
		.may_unmap = 1,
2695
		.may_swap = 1,
2696 2697 2698 2699 2700
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2701
		.order = order,
2702
		.target_mem_cgroup = NULL,
2703
	};
2704 2705 2706
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2707 2708
loop_again:
	total_scanned = 0;
2709
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2710
	sc.may_writepage = !laptop_mode;
2711
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2712 2713 2714

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2715
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2716

2717 2718
		/* The swap token gets in the way of swapout... */
		if (!priority)
2719
			disable_swap_token(NULL);
2720

L
Linus Torvalds 已提交
2721
		all_zones_ok = 1;
2722
		balanced = 0;
L
Linus Torvalds 已提交
2723

2724 2725 2726 2727 2728 2729
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2730

2731 2732
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2733

2734
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2735
				continue;
L
Linus Torvalds 已提交
2736

2737 2738 2739 2740
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2741
			age_active_anon(zone, &sc, priority);
2742

2743
			if (!zone_watermark_ok_safe(zone, order,
2744
					high_wmark_pages(zone), 0, 0)) {
2745
				end_zone = i;
A
Andrew Morton 已提交
2746
				break;
2747 2748 2749
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2750 2751
			}
		}
A
Andrew Morton 已提交
2752 2753 2754
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2755 2756 2757
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2758
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2772
			int nr_slab;
2773
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2774

2775
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2776 2777
				continue;

2778
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2779 2780 2781
				continue;

			sc.nr_scanned = 0;
2782

2783
			nr_soft_scanned = 0;
2784 2785 2786
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2787 2788 2789 2790 2791
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2792

2793
			/*
2794 2795 2796 2797 2798 2799
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2800
			 */
2801 2802 2803 2804
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2805
			if (!zone_watermark_ok_safe(zone, order,
2806
					high_wmark_pages(zone) + balance_gap,
2807
					end_zone, 0)) {
2808
				shrink_zone(priority, zone, &sc);
2809

2810 2811 2812 2813 2814 2815 2816 2817 2818
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2819 2820 2821 2822 2823 2824
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2825
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2826
				sc.may_writepage = 1;
2827

2828 2829 2830
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2831
				continue;
2832
			}
2833

2834
			if (!zone_watermark_ok_safe(zone, order,
2835 2836 2837 2838 2839 2840 2841
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2842
				if (!zone_watermark_ok_safe(zone, order,
2843 2844
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2845 2846 2847 2848 2849 2850 2851 2852 2853
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2854
				if (i <= *classzone_idx)
2855
					balanced += zone->present_pages;
2856
			}
2857

L
Linus Torvalds 已提交
2858
		}
2859
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2865 2866 2867 2868 2869 2870
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2871 2872 2873 2874 2875 2876 2877

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2878
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2879 2880 2881
			break;
	}
out:
2882 2883 2884

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2885 2886
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2887
	 */
2888
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2889
		cond_resched();
2890 2891 2892

		try_to_freeze();

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2910 2911 2912
		goto loop_again;
	}

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
2940 2941
			if (i <= *classzone_idx)
				balanced += zone->present_pages;
2942 2943 2944
		}
	}

2945 2946 2947 2948 2949 2950
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2951
	*classzone_idx = end_zone;
2952
	return order;
L
Linus Torvalds 已提交
2953 2954
}

2955
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2966
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2967 2968 2969 2970 2971 2972 2973 2974 2975
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2976
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2999 3000
/*
 * The background pageout daemon, started as a kernel thread
3001
 * from the init process.
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3014
	unsigned long order, new_order;
3015
	unsigned balanced_order;
3016
	int classzone_idx, new_classzone_idx;
3017
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3018 3019
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3020

L
Linus Torvalds 已提交
3021 3022 3023
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3024
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3025

3026 3027
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3028
	if (!cpumask_empty(cpumask))
3029
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3044
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3045
	set_freezable();
L
Linus Torvalds 已提交
3046

3047
	order = new_order = 0;
3048
	balanced_order = 0;
3049
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3050
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3051
	for ( ; ; ) {
3052
		int ret;
3053

3054 3055 3056 3057 3058
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3059 3060
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3061 3062 3063 3064 3065 3066
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3067
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3068 3069
			/*
			 * Don't sleep if someone wants a larger 'order'
3070
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3071 3072
			 */
			order = new_order;
3073
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3074
		} else {
3075 3076
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3077
			order = pgdat->kswapd_max_order;
3078
			classzone_idx = pgdat->classzone_idx;
3079 3080
			new_order = order;
			new_classzone_idx = classzone_idx;
3081
			pgdat->kswapd_max_order = 0;
3082
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3083 3084
		}

3085 3086 3087 3088 3089 3090 3091 3092
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3093 3094
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3095 3096 3097
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3098
		}
L
Linus Torvalds 已提交
3099 3100 3101 3102 3103 3104 3105
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3106
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3107 3108 3109
{
	pg_data_t *pgdat;

3110
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3111 3112
		return;

3113
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3114
		return;
3115
	pgdat = zone->zone_pgdat;
3116
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3117
		pgdat->kswapd_max_order = order;
3118 3119
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3120
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3121
		return;
3122 3123 3124 3125
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3126
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3137
{
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3162 3163
}

3164
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3165
/*
3166
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3167 3168 3169 3170 3171
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3172
 */
3173
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3174
{
3175 3176
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3177 3178 3179
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3180
		.may_writepage = 1,
3181 3182 3183
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
3184
	};
3185 3186 3187 3188
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3189 3190
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3191

3192 3193 3194 3195
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3196

3197
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3198

3199 3200 3201
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3202

3203
	return nr_reclaimed;
L
Linus Torvalds 已提交
3204
}
3205
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3206 3207 3208 3209 3210

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3211
static int __devinit cpu_callback(struct notifier_block *nfb,
3212
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3213
{
3214
	int nid;
L
Linus Torvalds 已提交
3215

3216
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3217
		for_each_node_state(nid, N_HIGH_MEMORY) {
3218
			pg_data_t *pgdat = NODE_DATA(nid);
3219 3220 3221
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3222

3223
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3224
				/* One of our CPUs online: restore mask */
3225
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3226 3227 3228 3229 3230
		}
	}
	return NOTIFY_OK;
}

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3264 3265
static int __init kswapd_init(void)
{
3266
	int nid;
3267

L
Linus Torvalds 已提交
3268
	swap_setup();
3269
	for_each_node_state(nid, N_HIGH_MEMORY)
3270
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3271 3272 3273 3274 3275
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3286
#define RECLAIM_OFF 0
3287
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3288 3289 3290
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3291 3292 3293 3294 3295 3296 3297
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3298 3299 3300 3301 3302 3303
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3304 3305 3306 3307 3308 3309
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3352 3353 3354
/*
 * Try to free up some pages from this zone through reclaim.
 */
3355
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3356
{
3357
	/* Minimum pages needed in order to stay on node */
3358
	const unsigned long nr_pages = 1 << order;
3359 3360
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3361
	int priority;
3362 3363
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3364
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3365
		.may_swap = 1,
3366 3367
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3368
		.gfp_mask = gfp_mask,
3369
		.order = order,
3370
	};
3371 3372 3373
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3374
	unsigned long nr_slab_pages0, nr_slab_pages1;
3375 3376

	cond_resched();
3377 3378 3379 3380 3381 3382
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3383
	lockdep_set_current_reclaim_state(gfp_mask);
3384 3385
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3386

3387
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3388 3389 3390 3391 3392 3393
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3394
			shrink_zone(priority, zone, &sc);
3395
			priority--;
3396
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3397
	}
3398

3399 3400
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3401
		/*
3402
		 * shrink_slab() does not currently allow us to determine how
3403 3404 3405 3406
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3407
		 *
3408 3409
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3410
		 */
3411 3412 3413 3414
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3415
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3416 3417 3418 3419 3420 3421 3422 3423
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3424 3425 3426 3427 3428

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3429 3430 3431
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3432 3433
	}

3434
	p->reclaim_state = NULL;
3435
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3436
	lockdep_clear_current_reclaim_state();
3437
	return sc.nr_reclaimed >= nr_pages;
3438
}
3439 3440 3441 3442

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3443
	int ret;
3444 3445

	/*
3446 3447
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3448
	 *
3449 3450 3451 3452 3453
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3454
	 */
3455 3456
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3457
		return ZONE_RECLAIM_FULL;
3458

3459
	if (zone->all_unreclaimable)
3460
		return ZONE_RECLAIM_FULL;
3461

3462
	/*
3463
	 * Do not scan if the allocation should not be delayed.
3464
	 */
3465
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3466
		return ZONE_RECLAIM_NOSCAN;
3467 3468 3469 3470 3471 3472 3473

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3474
	node_id = zone_to_nid(zone);
3475
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3476
		return ZONE_RECLAIM_NOSCAN;
3477 3478

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3479 3480
		return ZONE_RECLAIM_NOSCAN;

3481 3482 3483
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3484 3485 3486
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3487
	return ret;
3488
}
3489
#endif
L
Lee Schermerhorn 已提交
3490 3491 3492 3493 3494 3495 3496

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3497 3498
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3499 3500
 *
 * Reasons page might not be evictable:
3501
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3502
 * (2) page is part of an mlocked VMA
3503
 *
L
Lee Schermerhorn 已提交
3504 3505 3506 3507
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3508 3509 3510
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3511 3512
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3513 3514 3515

	return 1;
}
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
3530
	struct lruvec *lruvec;
3531

3532
	VM_BUG_ON(PageActive(page));
3533 3534 3535
retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3536
		enum lru_list l = page_lru_base_type(page);
3537

3538
		__dec_zone_state(zone, NR_UNEVICTABLE);
3539 3540 3541
		lruvec = mem_cgroup_lru_move_lists(zone, page,
						   LRU_UNEVICTABLE, l);
		list_move(&page->lru, &lruvec->lists[l]);
3542 3543 3544 3545 3546 3547 3548
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
3549 3550 3551
		lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
						   LRU_UNEVICTABLE);
		list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3611

3612
static void warn_scan_unevictable_pages(void)
3613
{
3614
	printk_once(KERN_WARNING
3615
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3616
		    "disabled for lack of a legitimate use case.  If you have "
3617 3618
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3619 3620 3621 3622 3623 3624 3625 3626 3627
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3628
			   void __user *buffer,
3629 3630
			   size_t *length, loff_t *ppos)
{
3631
	warn_scan_unevictable_pages();
3632
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3633 3634 3635 3636
	scan_unevictable_pages = 0;
	return 0;
}

3637
#ifdef CONFIG_NUMA
3638 3639 3640 3641 3642
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3643 3644
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3645 3646
					  char *buf)
{
3647
	warn_scan_unevictable_pages();
3648 3649 3650
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3651 3652
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3653 3654
					const char *buf, size_t count)
{
3655
	warn_scan_unevictable_pages();
3656 3657 3658 3659
	return 1;
}


3660
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3661 3662 3663 3664 3665
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3666
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3667 3668 3669 3670
}

void scan_unevictable_unregister_node(struct node *node)
{
3671
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3672
}
3673
#endif