vmscan.c 95.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83 84 85
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
86

87 88 89 90 91
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
92 93
};

94 95 96 97 98
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
133
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
134 135 136 137

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

138
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
139 140
static bool global_reclaim(struct scan_control *sc)
{
141
	return !sc->target_mem_cgroup;
142 143
}

144
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
145
{
146
	return !mz->mem_cgroup;
147
}
148
#else
149 150 151 152 153
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}

154
static bool scanning_global_lru(struct mem_cgroup_zone *mz)
155 156 157
{
	return true;
}
158 159
#endif

160
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
161
{
162 163
	if (!scanning_global_lru(mz))
		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
K
KOSAKI Motohiro 已提交
164

165
	return &mz->zone->reclaim_stat;
166 167
}

168 169
static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
				       enum lru_list lru)
170
{
171 172 173 174 175
	if (!scanning_global_lru(mz))
		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
						    zone_to_nid(mz->zone),
						    zone_idx(mz->zone),
						    BIT(lru));
176

177
	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
178 179 180
}


L
Linus Torvalds 已提交
181 182 183
/*
 * Add a shrinker callback to be called from the vm
 */
184
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
185
{
186
	atomic_long_set(&shrinker->nr_in_batch, 0);
187 188 189
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
190
}
191
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
192 193 194 195

/*
 * Remove one
 */
196
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
197 198 199 200 201
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
202
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
203

204 205 206 207 208 209 210 211
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
221
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
222 223 224 225 226 227 228
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
229 230
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
231
 */
232
unsigned long shrink_slab(struct shrink_control *shrink,
233
			  unsigned long nr_pages_scanned,
234
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
235 236
{
	struct shrinker *shrinker;
237
	unsigned long ret = 0;
L
Linus Torvalds 已提交
238

239 240
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
241

242 243 244 245 246
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
247 248 249

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
250 251
		long total_scan;
		long max_pass;
252
		int shrink_ret = 0;
253 254
		long nr;
		long new_nr;
255 256
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
257

258 259 260 261
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

262 263 264 265 266
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
267
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268 269

		total_scan = nr;
270
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
271
		delta *= max_pass;
L
Linus Torvalds 已提交
272
		do_div(delta, lru_pages + 1);
273 274
		total_scan += delta;
		if (total_scan < 0) {
275 276
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
277 278
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
279 280
		}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

296 297 298 299 300
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
301 302
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
303

304
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
305 306 307
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

308
		while (total_scan >= batch_size) {
309
			int nr_before;
L
Linus Torvalds 已提交
310

311 312
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
313
							batch_size);
L
Linus Torvalds 已提交
314 315
			if (shrink_ret == -1)
				break;
316 317
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
318 319
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
320 321 322 323

			cond_resched();
		}

324 325 326 327 328
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
329 330 331 332 333
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
334 335

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
336 337
	}
	up_read(&shrinker_rwsem);
338 339
out:
	cond_resched();
340
	return ret;
L
Linus Torvalds 已提交
341 342 343 344
}

static inline int is_page_cache_freeable(struct page *page)
{
345 346 347 348 349
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
350
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
351 352
}

353 354
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
355
{
356
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
380
	lock_page(page);
381 382
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
383 384 385
	unlock_page(page);
}

386 387 388 389 390 391 392 393 394 395 396 397
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
398
/*
A
Andrew Morton 已提交
399 400
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
401
 */
402
static pageout_t pageout(struct page *page, struct address_space *mapping,
403
			 struct scan_control *sc)
L
Linus Torvalds 已提交
404 405 406 407 408 409 410 411
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
412
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
428
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
429 430
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
431
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
432 433 434 435 436 437 438
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
439
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
440 441 442 443 444 445 446
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
447 448
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
449 450 451 452 453 454 455
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
456
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
457 458 459
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
460

L
Linus Torvalds 已提交
461 462 463 464
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
465
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
466
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
467 468 469 470 471 472
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

473
/*
N
Nick Piggin 已提交
474 475
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
476
 */
N
Nick Piggin 已提交
477
static int __remove_mapping(struct address_space *mapping, struct page *page)
478
{
479 480
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
481

N
Nick Piggin 已提交
482
	spin_lock_irq(&mapping->tree_lock);
483
	/*
N
Nick Piggin 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
507
	 */
N
Nick Piggin 已提交
508
	if (!page_freeze_refs(page, 2))
509
		goto cannot_free;
N
Nick Piggin 已提交
510 511 512
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
513
		goto cannot_free;
N
Nick Piggin 已提交
514
	}
515 516 517 518

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
519
		spin_unlock_irq(&mapping->tree_lock);
520
		swapcache_free(swap, page);
N
Nick Piggin 已提交
521
	} else {
522 523 524 525
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

526
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
527
		spin_unlock_irq(&mapping->tree_lock);
528
		mem_cgroup_uncharge_cache_page(page);
529 530 531

		if (freepage != NULL)
			freepage(page);
532 533 534 535 536
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
537
	spin_unlock_irq(&mapping->tree_lock);
538 539 540
	return 0;
}

N
Nick Piggin 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
574
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
588
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
589 590 591 592 593 594 595 596
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
597
		/*
598 599 600
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
601
		 * isolation/check_move_unevictable_pages,
602
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
603 604
		 * the page back to the evictable list.
		 *
605
		 * The other side is TestClearPageMlocked() or shmem_lock().
606 607
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

626 627 628 629 630
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
631 632 633
	put_page(page);		/* drop ref from isolate */
}

634 635 636
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
637
	PAGEREF_KEEP,
638 639 640 641
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
642
						  struct mem_cgroup_zone *mz,
643 644
						  struct scan_control *sc)
{
645
	int referenced_ptes, referenced_page;
646 647
	unsigned long vm_flags;

648
	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
649
	referenced_page = TestClearPageReferenced(page);
650 651 652 653 654 655 656 657

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

677
		if (referenced_page || referenced_ptes > 1)
678 679
			return PAGEREF_ACTIVATE;

680 681 682 683 684 685
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

686 687
		return PAGEREF_KEEP;
	}
688 689

	/* Reclaim if clean, defer dirty pages to writeback */
690
	if (referenced_page && !PageSwapBacked(page))
691 692 693
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
694 695
}

L
Linus Torvalds 已提交
696
/*
A
Andrew Morton 已提交
697
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
698
 */
A
Andrew Morton 已提交
699
static unsigned long shrink_page_list(struct list_head *page_list,
700
				      struct mem_cgroup_zone *mz,
701
				      struct scan_control *sc,
702 703 704
				      int priority,
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
705 706
{
	LIST_HEAD(ret_pages);
707
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
708
	int pgactivate = 0;
709 710
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
711
	unsigned long nr_reclaimed = 0;
712
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
713 714 715 716

	cond_resched();

	while (!list_empty(page_list)) {
717
		enum page_references references;
L
Linus Torvalds 已提交
718 719 720 721 722 723 724 725 726
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
727
		if (!trylock_page(page))
L
Linus Torvalds 已提交
728 729
			goto keep;

N
Nick Piggin 已提交
730
		VM_BUG_ON(PageActive(page));
731
		VM_BUG_ON(page_zone(page) != mz->zone);
L
Linus Torvalds 已提交
732 733

		sc->nr_scanned++;
734

N
Nick Piggin 已提交
735 736
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
737

738
		if (!sc->may_unmap && page_mapped(page))
739 740
			goto keep_locked;

L
Linus Torvalds 已提交
741 742 743 744
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

745 746 747 748
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
749
			nr_writeback++;
750 751
			unlock_page(page);
			goto keep;
752
		}
L
Linus Torvalds 已提交
753

754
		references = page_check_references(page, mz, sc);
755 756
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
757
			goto activate_locked;
758 759
		case PAGEREF_KEEP:
			goto keep_locked;
760 761 762 763
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
764 765 766 767 768

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
769
		if (PageAnon(page) && !PageSwapCache(page)) {
770 771
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
772
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
773
				goto activate_locked;
774
			may_enter_fs = 1;
N
Nick Piggin 已提交
775
		}
L
Linus Torvalds 已提交
776 777 778 779 780 781 782 783

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
784
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
785 786 787 788
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
789 790
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
791 792 793 794 795 796
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
797 798
			nr_dirty++;

799 800
			/*
			 * Only kswapd can writeback filesystem pages to
801 802
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
803
			 */
804 805
			if (page_is_file_cache(page) &&
					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
806 807 808 809 810 811 812 813 814
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

815 816 817
				goto keep_locked;
			}

818
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
819
				goto keep_locked;
820
			if (!may_enter_fs)
L
Linus Torvalds 已提交
821
				goto keep_locked;
822
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
823 824 825
				goto keep_locked;

			/* Page is dirty, try to write it out here */
826
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
827
			case PAGE_KEEP:
828
				nr_congested++;
L
Linus Torvalds 已提交
829 830 831 832
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
833
				if (PageWriteback(page))
834
					goto keep;
835
				if (PageDirty(page))
L
Linus Torvalds 已提交
836
					goto keep;
837

L
Linus Torvalds 已提交
838 839 840 841
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
842
				if (!trylock_page(page))
L
Linus Torvalds 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
862
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
863 864 865 866 867 868 869 870 871 872
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
873
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
874 875
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
892 893
		}

N
Nick Piggin 已提交
894
		if (!mapping || !__remove_mapping(mapping, page))
895
			goto keep_locked;
L
Linus Torvalds 已提交
896

N
Nick Piggin 已提交
897 898 899 900 901 902 903 904
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
905
free_it:
906
		nr_reclaimed++;
907 908 909 910 911 912

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
913 914
		continue;

N
Nick Piggin 已提交
915
cull_mlocked:
916 917
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
918 919 920 921
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
922
activate_locked:
923 924
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
925
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
926
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
927 928 929 930 931 932
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
933
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
934
	}
935

936 937 938 939 940 941
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
942
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
943
		zone_set_flag(mz->zone, ZONE_CONGESTED);
944

945
	free_hot_cold_page_list(&free_pages, 1);
946

L
Linus Torvalds 已提交
947
	list_splice(&ret_pages, page_list);
948
	count_vm_events(PGACTIVATE, pgactivate);
949 950
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
951
	return nr_reclaimed;
L
Linus Torvalds 已提交
952 953
}

A
Andy Whitcroft 已提交
954 955 956 957 958 959 960 961 962 963
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
964
int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
A
Andy Whitcroft 已提交
965
{
966
	bool all_lru_mode;
A
Andy Whitcroft 已提交
967 968 969 970 971 972
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

973 974 975
	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);

A
Andy Whitcroft 已提交
976 977 978 979 980
	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
981
	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
A
Andy Whitcroft 已提交
982 983
		return ret;

984
	if (!all_lru_mode && !!page_is_file_cache(page) != file)
985 986
		return ret;

M
Mel Gorman 已提交
987
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
988 989 990
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
991
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
992

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1026

1027 1028 1029
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
H
Hugh Dickins 已提交
1054
 * @mz:		The mem_cgroup_zone to pull pages from.
L
Linus Torvalds 已提交
1055
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1056
 * @nr_scanned:	The number of pages that were scanned.
1057
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1058
 * @mode:	One of the LRU isolation modes
H
Hugh Dickins 已提交
1059
 * @active:	True [1] if isolating active pages
1060
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1061 1062 1063
 *
 * returns how many pages were moved onto *@dst.
 */
1064
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
H
Hugh Dickins 已提交
1065
		struct mem_cgroup_zone *mz, struct list_head *dst,
1066 1067
		unsigned long *nr_scanned, struct scan_control *sc,
		isolate_mode_t mode, int active, int file)
L
Linus Torvalds 已提交
1068
{
H
Hugh Dickins 已提交
1069 1070
	struct lruvec *lruvec;
	struct list_head *src;
1071
	unsigned long nr_taken = 0;
1072
	unsigned long scan;
H
Hugh Dickins 已提交
1073 1074 1075 1076 1077 1078 1079 1080
	int lru = LRU_BASE;

	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
	if (active)
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	src = &lruvec->lists[lru];
L
Linus Torvalds 已提交
1081

1082
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1083 1084
		struct page *page;

L
Linus Torvalds 已提交
1085 1086 1087
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1088
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1089

1090
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1091
		case 0:
1092
			mem_cgroup_lru_del(page);
A
Andy Whitcroft 已提交
1093
			list_move(&page->lru, dst);
1094
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1095 1096 1097 1098 1099 1100
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1101

A
Andy Whitcroft 已提交
1102 1103 1104
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1105 1106
	}

H
Hugh Dickins 已提交
1107
	*nr_scanned = scan;
1108

1109
	trace_mm_vmscan_lru_isolate(sc->order,
1110 1111
			nr_to_scan, scan,
			nr_taken,
1112
			mode, file);
L
Linus Torvalds 已提交
1113 1114 1115
	return nr_taken;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1127 1128 1129
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1145 1146
	VM_BUG_ON(!page_count(page));

1147 1148 1149 1150
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1151
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1152
			int lru = page_lru(page);
1153
			ret = 0;
1154
			get_page(page);
1155
			ClearPageLRU(page);
1156 1157

			del_page_from_lru_list(zone, page, lru);
1158 1159 1160 1161 1162 1163
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1175
	if (!global_reclaim(sc))
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1189
static noinline_for_stack void
1190 1191
putback_inactive_pages(struct mem_cgroup_zone *mz,
		       struct list_head *page_list)
1192
{
1193
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1194 1195
	struct zone *zone = mz->zone;
	LIST_HEAD(pages_to_free);
1196 1197 1198 1199 1200

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1201
		struct page *page = lru_to_page(page_list);
1202
		int lru;
1203

1204 1205 1206 1207 1208 1209 1210 1211
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1212
		SetPageLRU(page);
1213
		lru = page_lru(page);
1214
		add_page_to_lru_list(zone, page, lru);
1215 1216
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1217 1218
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1219
		}
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1231 1232 1233
		}
	}

1234 1235 1236 1237
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1238 1239
}

1240 1241
static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone *mz,
1242
		       struct list_head *page_list,
1243
		       unsigned long *nr_anon,
1244
		       unsigned long *nr_file)
1245
{
1246
	struct zone *zone = mz->zone;
1247
	unsigned int count[NR_LRU_LISTS] = { 0, };
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	unsigned long nr_active = 0;
	struct page *page;
	int lru;

	/*
	 * Count pages and clear active flags
	 */
	list_for_each_entry(page, page_list, lru) {
		int numpages = hpage_nr_pages(page);
		lru = page_lru_base_type(page);
		if (PageActive(page)) {
			lru += LRU_ACTIVE;
			ClearPageActive(page);
			nr_active += numpages;
		}
		count[lru] += numpages;
	}
1265

1266
	preempt_disable();
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];

1281 1282 1283
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
	preempt_enable();
1284 1285
}

L
Linus Torvalds 已提交
1286
/*
A
Andrew Morton 已提交
1287 1288
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1289
 */
1290
static noinline_for_stack unsigned long
1291 1292
shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
		     struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1293 1294
{
	LIST_HEAD(page_list);
1295
	unsigned long nr_scanned;
1296
	unsigned long nr_reclaimed = 0;
1297 1298 1299
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1300 1301
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1302
	isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1303
	struct zone *zone = mz->zone;
1304
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1305

1306
	while (unlikely(too_many_isolated(zone, file, sc))) {
1307
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1308 1309 1310 1311 1312 1313

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1314
	lru_add_drain();
1315 1316

	if (!sc->may_unmap)
1317
		isolate_mode |= ISOLATE_UNMAPPED;
1318
	if (!sc->may_writepage)
1319
		isolate_mode |= ISOLATE_CLEAN;
1320

L
Linus Torvalds 已提交
1321
	spin_lock_irq(&zone->lru_lock);
1322

1323 1324
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
				     sc, isolate_mode, 0, file);
1325
	if (global_reclaim(sc)) {
1326 1327 1328 1329 1330 1331 1332 1333
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1334
	spin_unlock_irq(&zone->lru_lock);
1335

1336
	if (nr_taken == 0)
1337
		return 0;
A
Andy Whitcroft 已提交
1338

1339 1340
	update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);

1341
	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1342
						&nr_dirty, &nr_writeback);
1343

1344 1345
	spin_lock_irq(&zone->lru_lock);

1346 1347 1348
	reclaim_stat->recent_scanned[0] += nr_anon;
	reclaim_stat->recent_scanned[1] += nr_file;

Y
Ying Han 已提交
1349 1350 1351 1352 1353 1354 1355 1356
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1357

1358 1359 1360 1361 1362 1363 1364 1365
	putback_inactive_pages(mz, &page_list);

	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1393 1394 1395 1396
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
M
Mel Gorman 已提交
1397
		trace_shrink_flags(file));
1398
	return nr_reclaimed;
L
Linus Torvalds 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1418

1419 1420
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1421
				     struct list_head *pages_to_free,
1422 1423 1424 1425 1426 1427
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

	while (!list_empty(list)) {
1428 1429
		struct lruvec *lruvec;

1430 1431 1432 1433 1434
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1435 1436
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1437
		pgmoved += hpage_nr_pages(page);
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1450 1451 1452 1453 1454 1455
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1456

H
Hugh Dickins 已提交
1457
static void shrink_active_list(unsigned long nr_to_scan,
1458 1459 1460
			       struct mem_cgroup_zone *mz,
			       struct scan_control *sc,
			       int priority, int file)
L
Linus Torvalds 已提交
1461
{
1462
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1463
	unsigned long nr_scanned;
1464
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1465
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1466
	LIST_HEAD(l_active);
1467
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1468
	struct page *page;
1469
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1470
	unsigned long nr_rotated = 0;
1471
	isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1472
	struct zone *zone = mz->zone;
L
Linus Torvalds 已提交
1473 1474

	lru_add_drain();
1475 1476

	if (!sc->may_unmap)
1477
		isolate_mode |= ISOLATE_UNMAPPED;
1478
	if (!sc->may_writepage)
1479
		isolate_mode |= ISOLATE_CLEAN;
1480

L
Linus Torvalds 已提交
1481
	spin_lock_irq(&zone->lru_lock);
1482

1483
	nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1484
				     isolate_mode, 1, file);
1485
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1486
		zone->pages_scanned += nr_scanned;
1487

1488
	reclaim_stat->recent_scanned[file] += nr_taken;
1489

H
Hugh Dickins 已提交
1490
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1491
	if (file)
1492
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1493
	else
1494
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1495
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500 1501
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1502

L
Lee Schermerhorn 已提交
1503 1504 1505 1506 1507
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1508 1509 1510 1511 1512 1513 1514 1515
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1516
		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1517
			nr_rotated += hpage_nr_pages(page);
1518 1519 1520 1521 1522 1523 1524 1525 1526
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1527
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1528 1529 1530 1531
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1532

1533
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1534 1535 1536
		list_add(&page->lru, &l_inactive);
	}

1537
	/*
1538
	 * Move pages back to the lru list.
1539
	 */
1540
	spin_lock_irq(&zone->lru_lock);
1541
	/*
1542 1543 1544 1545
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1546
	 */
1547
	reclaim_stat->recent_rotated[file] += nr_rotated;
1548

1549
	move_active_pages_to_lru(zone, &l_active, &l_hold,
1550
						LRU_ACTIVE + file * LRU_FILE);
1551
	move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1552
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1553
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1554
	spin_unlock_irq(&zone->lru_lock);
1555 1556

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1557 1558
}

1559
#ifdef CONFIG_SWAP
1560
static int inactive_anon_is_low_global(struct zone *zone)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1573 1574 1575 1576 1577 1578 1579 1580
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1581
static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1582
{
1583 1584 1585 1586 1587 1588 1589
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1590 1591 1592 1593 1594
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
						       mz->zone);

	return inactive_anon_is_low_global(mz->zone);
1595
}
1596
#else
1597
static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1598 1599 1600 1601
{
	return 0;
}
#endif
1602

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1615
 * @mz: memory cgroup and zone to check
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1627
static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1628
{
1629 1630 1631
	if (!scanning_global_lru(mz))
		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
						       mz->zone);
1632

1633
	return inactive_file_is_low_global(mz->zone);
1634 1635
}

1636
static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1637 1638
{
	if (file)
1639
		return inactive_file_is_low(mz);
1640
	else
1641
		return inactive_anon_is_low(mz);
1642 1643
}

1644
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1645 1646
				 struct mem_cgroup_zone *mz,
				 struct scan_control *sc, int priority)
1647
{
1648 1649
	int file = is_file_lru(lru);

1650
	if (is_active_lru(lru)) {
1651 1652
		if (inactive_list_is_low(mz, file))
			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1653 1654 1655
		return 0;
	}

1656
	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1657 1658
}

1659 1660
static int vmscan_swappiness(struct mem_cgroup_zone *mz,
			     struct scan_control *sc)
1661
{
1662
	if (global_reclaim(sc))
1663
		return vm_swappiness;
1664
	return mem_cgroup_swappiness(mz->mem_cgroup);
1665 1666
}

1667 1668 1669 1670 1671 1672
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1673
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1674
 */
1675 1676
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
			   unsigned long *nr, int priority)
1677 1678 1679 1680
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1681
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1682
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1683
	enum lru_list lru;
1684
	int noswap = 0;
1685
	bool force_scan = false;
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1697
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1698
		force_scan = true;
1699
	if (!global_reclaim(sc))
1700
		force_scan = true;
1701 1702 1703 1704 1705 1706 1707 1708 1709

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1710

1711 1712 1713 1714
	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1715

1716
	if (global_reclaim(sc)) {
1717
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1718 1719
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1720
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1721 1722 1723 1724
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1725
		}
1726 1727
	}

1728 1729 1730 1731
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1732 1733
	anon_prio = vmscan_swappiness(mz, sc);
	file_prio = 200 - vmscan_swappiness(mz, sc);
1734

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1746
	spin_lock_irq(&mz->zone->lru_lock);
1747 1748 1749
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1750 1751
	}

1752 1753 1754
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1755 1756 1757
	}

	/*
1758 1759 1760
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1761
	 */
1762 1763
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1764

1765 1766
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1767
	spin_unlock_irq(&mz->zone->lru_lock);
1768

1769 1770 1771 1772
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1773 1774
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1775
		unsigned long scan;
1776

H
Hugh Dickins 已提交
1777
		scan = zone_nr_lru_pages(mz, lru);
1778 1779
		if (priority || noswap) {
			scan >>= priority;
1780 1781
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1782 1783
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1784
		nr[lru] = scan;
1785
	}
1786
}
1787

M
Mel Gorman 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
/* Use reclaim/compaction for costly allocs or under memory pressure */
static bool in_reclaim_compaction(int priority, struct scan_control *sc)
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
			 priority < DEF_PRIORITY - 2))
		return true;

	return false;
}

1799
/*
M
Mel Gorman 已提交
1800 1801 1802 1803 1804
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1805
 */
1806
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1807 1808
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
M
Mel Gorman 已提交
1809
					int priority,
1810 1811 1812 1813 1814 1815
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
M
Mel Gorman 已提交
1816
	if (!in_reclaim_compaction(priority, sc))
1817 1818
		return false;

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1841 1842 1843 1844 1845 1846

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1847
	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1848
	if (nr_swap_pages > 0)
1849
		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1850 1851 1852 1853 1854
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1855
	switch (compaction_suitable(mz->zone, sc->order)) {
1856 1857 1858 1859 1860 1861 1862 1863
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1864 1865 1866
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1867 1868
static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
				   struct scan_control *sc)
L
Linus Torvalds 已提交
1869
{
1870
	unsigned long nr[NR_LRU_LISTS];
1871
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1872
	enum lru_list lru;
1873
	unsigned long nr_reclaimed, nr_scanned;
1874
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1875
	struct blk_plug plug;
1876

1877 1878
restart:
	nr_reclaimed = 0;
1879
	nr_scanned = sc->nr_scanned;
1880
	get_scan_count(mz, sc, nr, priority);
L
Linus Torvalds 已提交
1881

1882
	blk_start_plug(&plug);
1883 1884
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1885 1886
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1887
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1888 1889
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1890

H
Hugh Dickins 已提交
1891
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1892
							    mz, sc, priority);
1893
			}
L
Linus Torvalds 已提交
1894
		}
1895 1896 1897 1898 1899 1900 1901 1902
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1903
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1904
			break;
L
Linus Torvalds 已提交
1905
	}
1906
	blk_finish_plug(&plug);
1907
	sc->nr_reclaimed += nr_reclaimed;
1908

1909 1910 1911 1912
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1913 1914
	if (inactive_anon_is_low(mz))
		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
1915

1916
	/* reclaim/compaction might need reclaim to continue */
1917
	if (should_continue_reclaim(mz, nr_reclaimed,
M
Mel Gorman 已提交
1918 1919
					sc->nr_scanned - nr_scanned,
					priority, sc))
1920 1921
		goto restart;

1922
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1923 1924
}

1925 1926 1927
static void shrink_zone(int priority, struct zone *zone,
			struct scan_control *sc)
{
1928 1929
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1930
		.zone = zone,
1931
		.priority = priority,
1932
	};
1933 1934 1935 1936 1937 1938 1939 1940
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
1941

1942 1943 1944 1945 1946 1947
		shrink_mem_cgroup_zone(priority, &mz, sc);
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1948 1949 1950 1951
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1952 1953 1954 1955 1956 1957 1958
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1959 1960
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1987
	if (compaction_deferred(zone, sc->order))
1988 1989 1990 1991 1992 1993 1994 1995 1996
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1997 1998 1999 2000 2001
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2002 2003
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2004 2005
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2006 2007 2008
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2009 2010 2011
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2012 2013
 *
 * This function returns true if a zone is being reclaimed for a costly
2014
 * high-order allocation and compaction is ready to begin. This indicates to
2015 2016
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2017
 */
2018
static bool shrink_zones(int priority, struct zonelist *zonelist,
2019
					struct scan_control *sc)
L
Linus Torvalds 已提交
2020
{
2021
	struct zoneref *z;
2022
	struct zone *zone;
2023 2024
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2025
	bool aborted_reclaim = false;
2026

2027 2028 2029 2030 2031 2032 2033 2034
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2035 2036
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2037
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2038
			continue;
2039 2040 2041 2042
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2043
		if (global_reclaim(sc)) {
2044 2045
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2046
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2047
				continue;	/* Let kswapd poll it */
2048 2049
			if (COMPACTION_BUILD) {
				/*
2050 2051 2052 2053 2054
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2055 2056
				 * noticeable problem, like transparent huge
				 * page allocations.
2057
				 */
2058
				if (compaction_ready(zone, sc)) {
2059
					aborted_reclaim = true;
2060
					continue;
2061
				}
2062
			}
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2076
		}
2077

2078
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2079
	}
2080

2081
	return aborted_reclaim;
2082 2083 2084 2085 2086 2087 2088
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2089
/* All zones in zonelist are unreclaimable? */
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2102 2103
		if (!zone->all_unreclaimable)
			return false;
2104 2105
	}

2106
	return true;
L
Linus Torvalds 已提交
2107
}
2108

L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115 2116
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2117 2118 2119 2120
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2121 2122 2123
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2124
 */
2125
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2126 2127
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2128 2129
{
	int priority;
2130
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2131
	struct reclaim_state *reclaim_state = current->reclaim_state;
2132
	struct zoneref *z;
2133
	struct zone *zone;
2134
	unsigned long writeback_threshold;
2135
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2136

2137 2138
	delayacct_freepages_start();

2139
	if (global_reclaim(sc))
2140
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2141 2142

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2143
		sc->nr_scanned = 0;
2144
		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2145

2146 2147 2148 2149
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2150
		if (global_reclaim(sc)) {
2151
			unsigned long lru_pages = 0;
2152 2153
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2154 2155 2156 2157 2158 2159
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2160
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2161
			if (reclaim_state) {
2162
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2163 2164
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2165
		}
2166
		total_scanned += sc->nr_scanned;
2167
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2177 2178
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2179 2180
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2181
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2182 2183 2184
		}

		/* Take a nap, wait for some writeback to complete */
2185
		if (!sc->hibernation_mode && sc->nr_scanned &&
2186 2187 2188 2189
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2190 2191
						&cpuset_current_mems_allowed,
						&preferred_zone);
2192 2193
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2194
	}
2195

L
Linus Torvalds 已提交
2196
out:
2197 2198
	delayacct_freepages_end();

2199 2200 2201
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2202 2203 2204 2205 2206 2207 2208 2209
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2210 2211
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2212 2213
		return 1;

2214
	/* top priority shrink_zones still had more to do? don't OOM, then */
2215
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2216 2217 2218
		return 1;

	return 0;
L
Linus Torvalds 已提交
2219 2220
}

2221
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2222
				gfp_t gfp_mask, nodemask_t *nodemask)
2223
{
2224
	unsigned long nr_reclaimed;
2225 2226 2227
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2228
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2229
		.may_unmap = 1,
2230
		.may_swap = 1,
2231
		.order = order,
2232
		.target_mem_cgroup = NULL,
2233
		.nodemask = nodemask,
2234
	};
2235 2236 2237
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2238

2239 2240 2241 2242
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2243
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2244 2245 2246 2247

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2248 2249
}

2250
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2251

2252
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2253
						gfp_t gfp_mask, bool noswap,
2254 2255
						struct zone *zone,
						unsigned long *nr_scanned)
2256 2257
{
	struct scan_control sc = {
2258
		.nr_scanned = 0,
2259
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2260 2261 2262 2263
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2264
		.target_mem_cgroup = memcg,
2265
	};
2266
	struct mem_cgroup_zone mz = {
2267
		.mem_cgroup = memcg,
2268 2269
		.zone = zone,
	};
2270

2271 2272
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2273 2274 2275 2276 2277

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2278 2279 2280 2281 2282 2283 2284
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2285
	shrink_mem_cgroup_zone(0, &mz, &sc);
2286 2287 2288

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2289
	*nr_scanned = sc.nr_scanned;
2290 2291 2292
	return sc.nr_reclaimed;
}

2293
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2294
					   gfp_t gfp_mask,
2295
					   bool noswap)
2296
{
2297
	struct zonelist *zonelist;
2298
	unsigned long nr_reclaimed;
2299
	int nid;
2300 2301
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2302
		.may_unmap = 1,
2303
		.may_swap = !noswap,
2304
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2305
		.order = 0,
2306
		.target_mem_cgroup = memcg,
2307
		.nodemask = NULL, /* we don't care the placement */
2308 2309 2310 2311 2312
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2313 2314
	};

2315 2316 2317 2318 2319
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2320
	nid = mem_cgroup_select_victim_node(memcg);
2321 2322

	zonelist = NODE_DATA(nid)->node_zonelists;
2323 2324 2325 2326 2327

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2328
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2329 2330 2331 2332

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2333 2334 2335
}
#endif

2336 2337 2338
static void age_active_anon(struct zone *zone, struct scan_control *sc,
			    int priority)
{
2339
	struct mem_cgroup *memcg;
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};

		if (inactive_anon_is_low(&mz))
			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
					   sc, priority, 0);

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2370
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2384 2385
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2386 2387
}

2388
/* is kswapd sleeping prematurely? */
2389 2390
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2391
{
2392
	int i;
2393 2394
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2395 2396 2397

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2398
		return true;
2399

2400
	/* Check the watermark levels */
2401
	for (i = 0; i <= classzone_idx; i++) {
2402 2403 2404 2405 2406
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2407 2408 2409 2410 2411 2412 2413 2414
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2415
			continue;
2416
		}
2417

2418
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2419
							i, 0))
2420 2421 2422
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2423
	}
2424

2425 2426 2427 2428 2429 2430
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2431
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2432 2433
	else
		return !all_zones_ok;
2434 2435
}

L
Linus Torvalds 已提交
2436 2437
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2438
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2439
 *
2440
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2451 2452 2453 2454 2455
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2456
 */
2457
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2458
							int *classzone_idx)
L
Linus Torvalds 已提交
2459 2460
{
	int all_zones_ok;
2461
	unsigned long balanced;
L
Linus Torvalds 已提交
2462 2463
	int priority;
	int i;
2464
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2465
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2466
	struct reclaim_state *reclaim_state = current->reclaim_state;
2467 2468
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2469 2470
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2471
		.may_unmap = 1,
2472
		.may_swap = 1,
2473 2474 2475 2476 2477
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2478
		.order = order,
2479
		.target_mem_cgroup = NULL,
2480
	};
2481 2482 2483
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2484 2485
loop_again:
	total_scanned = 0;
2486
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2487
	sc.may_writepage = !laptop_mode;
2488
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2489 2490 2491

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2492
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2493 2494

		all_zones_ok = 1;
2495
		balanced = 0;
L
Linus Torvalds 已提交
2496

2497 2498 2499 2500 2501 2502
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2503

2504 2505
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2506

2507
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2508
				continue;
L
Linus Torvalds 已提交
2509

2510 2511 2512 2513
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2514
			age_active_anon(zone, &sc, priority);
2515

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2527
			if (!zone_watermark_ok_safe(zone, order,
2528
					high_wmark_pages(zone), 0, 0)) {
2529
				end_zone = i;
A
Andrew Morton 已提交
2530
				break;
2531 2532 2533
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2534 2535
			}
		}
A
Andrew Morton 已提交
2536 2537 2538
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2539 2540 2541
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2542
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2556
			int nr_slab, testorder;
2557
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2558

2559
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2560 2561
				continue;

2562
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2563 2564 2565
				continue;

			sc.nr_scanned = 0;
2566

2567
			nr_soft_scanned = 0;
2568 2569 2570
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2571 2572 2573 2574 2575
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2576

2577
			/*
2578 2579 2580 2581 2582 2583
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2584
			 */
2585 2586 2587 2588
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2602
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2603
				    !zone_watermark_ok_safe(zone, testorder,
2604
					high_wmark_pages(zone) + balance_gap,
2605
					end_zone, 0)) {
2606
				shrink_zone(priority, zone, &sc);
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2617 2618 2619 2620 2621 2622
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2623
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2624
				sc.may_writepage = 1;
2625

2626 2627 2628
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2629
				continue;
2630
			}
2631

2632
			if (!zone_watermark_ok_safe(zone, testorder,
2633 2634 2635 2636 2637 2638 2639
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2640
				if (!zone_watermark_ok_safe(zone, order,
2641 2642
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2643 2644 2645 2646 2647 2648 2649 2650 2651
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2652
				if (i <= *classzone_idx)
2653
					balanced += zone->present_pages;
2654
			}
2655

L
Linus Torvalds 已提交
2656
		}
2657
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2663 2664 2665 2666 2667 2668
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2669 2670 2671 2672 2673 2674 2675

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2676
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2677 2678 2679
			break;
	}
out:
2680 2681 2682

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2683 2684
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2685
	 */
2686
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2687
		cond_resched();
2688 2689 2690

		try_to_freeze();

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2708 2709 2710
		goto loop_again;
	}

2711 2712 2713 2714 2715 2716 2717 2718 2719
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2720 2721
		int zones_need_compaction = 1;

2722 2723 2724 2725 2726 2727 2728 2729 2730
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

2731
			/* Would compaction fail due to lack of free memory? */
2732 2733
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2734 2735
				goto loop_again;

2736 2737 2738 2739 2740 2741 2742
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2743 2744 2745 2746 2747
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2748 2749 2750
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2751 2752 2753

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2754 2755
	}

2756 2757 2758 2759 2760 2761
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2762
	*classzone_idx = end_zone;
2763
	return order;
L
Linus Torvalds 已提交
2764 2765
}

2766
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2777
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2778 2779 2780 2781 2782 2783 2784 2785 2786
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2787
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2810 2811
/*
 * The background pageout daemon, started as a kernel thread
2812
 * from the init process.
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2825
	unsigned long order, new_order;
2826
	unsigned balanced_order;
2827
	int classzone_idx, new_classzone_idx;
2828
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2829 2830
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2831

L
Linus Torvalds 已提交
2832 2833 2834
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2835
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2836

2837 2838
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2839
	if (!cpumask_empty(cpumask))
2840
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2855
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2856
	set_freezable();
L
Linus Torvalds 已提交
2857

2858
	order = new_order = 0;
2859
	balanced_order = 0;
2860
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2861
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2862
	for ( ; ; ) {
2863
		int ret;
2864

2865 2866 2867 2868 2869
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2870 2871
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2872 2873 2874 2875 2876 2877
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2878
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2879 2880
			/*
			 * Don't sleep if someone wants a larger 'order'
2881
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2882 2883
			 */
			order = new_order;
2884
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2885
		} else {
2886 2887
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2888
			order = pgdat->kswapd_max_order;
2889
			classzone_idx = pgdat->classzone_idx;
2890 2891
			new_order = order;
			new_classzone_idx = classzone_idx;
2892
			pgdat->kswapd_max_order = 0;
2893
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2894 2895
		}

2896 2897 2898 2899 2900 2901 2902 2903
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2904 2905
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2906 2907 2908
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2909
		}
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914 2915 2916
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2917
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2918 2919 2920
{
	pg_data_t *pgdat;

2921
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2922 2923
		return;

2924
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2925
		return;
2926
	pgdat = zone->zone_pgdat;
2927
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2928
		pgdat->kswapd_max_order = order;
2929 2930
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2931
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2932
		return;
2933 2934 2935 2936
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2937
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2938 2939
}

2940 2941 2942 2943 2944 2945 2946 2947
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2948
{
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2973 2974
}

2975
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2976
/*
2977
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2978 2979 2980 2981 2982
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2983
 */
2984
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2985
{
2986 2987
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2988 2989 2990
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2991
		.may_writepage = 1,
2992 2993 2994
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
L
Linus Torvalds 已提交
2995
	};
2996 2997 2998 2999
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3000 3001
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3002

3003 3004 3005 3006
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3007

3008
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3009

3010 3011 3012
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3013

3014
	return nr_reclaimed;
L
Linus Torvalds 已提交
3015
}
3016
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3022
static int __devinit cpu_callback(struct notifier_block *nfb,
3023
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
3024
{
3025
	int nid;
L
Linus Torvalds 已提交
3026

3027
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3028
		for_each_node_state(nid, N_HIGH_MEMORY) {
3029
			pg_data_t *pgdat = NODE_DATA(nid);
3030 3031 3032
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3033

3034
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3035
				/* One of our CPUs online: restore mask */
3036
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3037 3038 3039 3040 3041
		}
	}
	return NOTIFY_OK;
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
3075 3076
static int __init kswapd_init(void)
{
3077
	int nid;
3078

L
Linus Torvalds 已提交
3079
	swap_setup();
3080
	for_each_node_state(nid, N_HIGH_MEMORY)
3081
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3082 3083 3084 3085 3086
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3097
#define RECLAIM_OFF 0
3098
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3099 3100 3101
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3102 3103 3104 3105 3106 3107 3108
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3109 3110 3111 3112 3113 3114
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3115 3116 3117 3118 3119 3120
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3163 3164 3165
/*
 * Try to free up some pages from this zone through reclaim.
 */
3166
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3167
{
3168
	/* Minimum pages needed in order to stay on node */
3169
	const unsigned long nr_pages = 1 << order;
3170 3171
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3172
	int priority;
3173 3174
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3175
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3176
		.may_swap = 1,
3177 3178
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3179
		.gfp_mask = gfp_mask,
3180
		.order = order,
3181
	};
3182 3183 3184
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3185
	unsigned long nr_slab_pages0, nr_slab_pages1;
3186 3187

	cond_resched();
3188 3189 3190 3191 3192 3193
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3194
	lockdep_set_current_reclaim_state(gfp_mask);
3195 3196
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3197

3198
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3199 3200 3201 3202 3203 3204
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3205
			shrink_zone(priority, zone, &sc);
3206
			priority--;
3207
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3208
	}
3209

3210 3211
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3212
		/*
3213
		 * shrink_slab() does not currently allow us to determine how
3214 3215 3216 3217
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3218
		 *
3219 3220
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3221
		 */
3222 3223 3224 3225
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3226
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3227 3228 3229 3230 3231 3232 3233 3234
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3235 3236 3237 3238 3239

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3240 3241 3242
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3243 3244
	}

3245
	p->reclaim_state = NULL;
3246
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3247
	lockdep_clear_current_reclaim_state();
3248
	return sc.nr_reclaimed >= nr_pages;
3249
}
3250 3251 3252 3253

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3254
	int ret;
3255 3256

	/*
3257 3258
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3259
	 *
3260 3261 3262 3263 3264
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3265
	 */
3266 3267
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3268
		return ZONE_RECLAIM_FULL;
3269

3270
	if (zone->all_unreclaimable)
3271
		return ZONE_RECLAIM_FULL;
3272

3273
	/*
3274
	 * Do not scan if the allocation should not be delayed.
3275
	 */
3276
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3277
		return ZONE_RECLAIM_NOSCAN;
3278 3279 3280 3281 3282 3283 3284

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3285
	node_id = zone_to_nid(zone);
3286
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3287
		return ZONE_RECLAIM_NOSCAN;
3288 3289

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3290 3291
		return ZONE_RECLAIM_NOSCAN;

3292 3293 3294
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3295 3296 3297
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3298
	return ret;
3299
}
3300
#endif
L
Lee Schermerhorn 已提交
3301 3302 3303 3304 3305 3306 3307

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3308 3309
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3310 3311
 *
 * Reasons page might not be evictable:
3312
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3313
 * (2) page is part of an mlocked VMA
3314
 *
L
Lee Schermerhorn 已提交
3315 3316 3317 3318
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3319 3320 3321
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3322 3323
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3324 3325 3326

	return 1;
}
3327

3328
#ifdef CONFIG_SHMEM
3329
/**
3330 3331 3332
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3333
 *
3334
 * Checks pages for evictability and moves them to the appropriate lru list.
3335 3336
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3337
 */
3338
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3339
{
3340
	struct lruvec *lruvec;
3341 3342 3343 3344
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3345

3346 3347 3348
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3349

3350 3351 3352 3353 3354 3355 3356 3357
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3358

3359 3360
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3361

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
			__dec_zone_state(zone, NR_UNEVICTABLE);
			lruvec = mem_cgroup_lru_move_lists(zone, page,
						LRU_UNEVICTABLE, lru);
			list_move(&page->lru, &lruvec->lists[lru]);
			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
			pgrescued++;
3373
		}
3374
	}
3375

3376 3377 3378 3379
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3380 3381
	}
}
3382
#endif /* CONFIG_SHMEM */
3383

3384
static void warn_scan_unevictable_pages(void)
3385
{
3386
	printk_once(KERN_WARNING
3387
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3388
		    "disabled for lack of a legitimate use case.  If you have "
3389 3390
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3391 3392 3393 3394 3395 3396 3397 3398 3399
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3400
			   void __user *buffer,
3401 3402
			   size_t *length, loff_t *ppos)
{
3403
	warn_scan_unevictable_pages();
3404
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3405 3406 3407 3408
	scan_unevictable_pages = 0;
	return 0;
}

3409
#ifdef CONFIG_NUMA
3410 3411 3412 3413 3414
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3415 3416
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3417 3418
					  char *buf)
{
3419
	warn_scan_unevictable_pages();
3420 3421 3422
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3423 3424
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3425 3426
					const char *buf, size_t count)
{
3427
	warn_scan_unevictable_pages();
3428 3429 3430 3431
	return 1;
}


3432
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3433 3434 3435 3436 3437
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3438
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3439 3440 3441 3442
}

void scan_unevictable_unregister_node(struct node *node)
{
3443
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3444
}
3445
#endif