vmscan.c 94.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

57
/*
58 59 60 61 62
 * reclaim_mode determines how the inactive list is shrunk
 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
 * RECLAIM_MODE_ASYNC:  Do not block
 * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 64
 *			page from the LRU and reclaim all pages within a
 *			naturally aligned range
65
 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66
 *			order-0 pages and then compact the zone
67
 */
68 69 70 71 72 73
typedef unsigned __bitwise__ reclaim_mode_t;
#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
74

L
Linus Torvalds 已提交
75 76 77 78
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

79 80 81
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

82 83 84
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

85 86
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
87
	/* This context's GFP mask */
A
Al Viro 已提交
88
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
89 90 91

	int may_writepage;

92 93
	/* Can mapped pages be reclaimed? */
	int may_unmap;
94

95 96 97
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

98
	int swappiness;
99

A
Andy Whitcroft 已提交
100
	int order;
101

102
	/*
103 104
	 * Intend to reclaim enough continuous memory rather than reclaim
	 * enough amount of memory. i.e, mode for high order allocation.
105
	 */
106
	reclaim_mode_t reclaim_mode;
107

108 109 110
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

111 112 113 114 115
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
152
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
153 154 155 156

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

157
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
158
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
159
#else
160
#define scanning_global_lru(sc)	(1)
161 162
#endif

163 164 165
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
166
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
167 168
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

169 170 171
	return &zone->reclaim_stat;
}

172 173
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
174
{
175
	if (!scanning_global_lru(sc))
176
		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup, zone, lru);
177

178 179 180 181
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
182 183 184
/*
 * Add a shrinker callback to be called from the vm
 */
185
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
186
{
187 188 189 190
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
191
}
192
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
193 194 195 196

/*
 * Remove one
 */
197
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
198 199 200 201 202
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
203
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
204

205 206 207 208 209 210 211 212
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
213 214 215 216 217 218 219 220 221
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
222
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
223 224 225 226 227 228 229
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
230 231
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
232
 */
233
unsigned long shrink_slab(struct shrink_control *shrink,
234
			  unsigned long nr_pages_scanned,
235
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
236 237
{
	struct shrinker *shrinker;
238
	unsigned long ret = 0;
L
Linus Torvalds 已提交
239

240 241
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
242

243 244 245 246 247
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
248 249 250 251

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
252
		unsigned long max_pass;
L
Linus Torvalds 已提交
253

254 255
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
256
		delta *= max_pass;
L
Linus Torvalds 已提交
257 258
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
259
		if (shrinker->nr < 0) {
260 261 262
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
263 264 265 266 267 268 269 270 271 272
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
273 274 275 276 277 278 279

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
280
			int nr_before;
L
Linus Torvalds 已提交
281

282 283 284
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
							this_scan);
L
Linus Torvalds 已提交
285 286
			if (shrink_ret == -1)
				break;
287 288
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
289
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
298 299
out:
	cond_resched();
300
	return ret;
L
Linus Torvalds 已提交
301 302
}

303
static void set_reclaim_mode(int priority, struct scan_control *sc,
304 305
				   bool sync)
{
306
	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
307 308

	/*
309 310 311
	 * Initially assume we are entering either lumpy reclaim or
	 * reclaim/compaction.Depending on the order, we will either set the
	 * sync mode or just reclaim order-0 pages later.
312
	 */
313
	if (COMPACTION_BUILD)
314
		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
315
	else
316
		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
317 318

	/*
319 320 321
	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
	 * restricting when its set to either costly allocations or when
	 * under memory pressure
322 323
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
324
		sc->reclaim_mode |= syncmode;
325
	else if (sc->order && priority < DEF_PRIORITY - 2)
326
		sc->reclaim_mode |= syncmode;
327
	else
328
		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
329 330
}

331
static void reset_reclaim_mode(struct scan_control *sc)
332
{
333
	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
334 335
}

L
Linus Torvalds 已提交
336 337
static inline int is_page_cache_freeable(struct page *page)
{
338 339 340 341 342
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
343
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
344 345
}

346 347
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
348
{
349
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
350 351 352 353 354
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
355 356 357 358

	/* lumpy reclaim for hugepage often need a lot of write */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		return 1;
L
Linus Torvalds 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
377
	lock_page(page);
378 379
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
380 381 382
	unlock_page(page);
}

383 384 385 386 387 388 389 390 391 392 393 394
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
395
/*
A
Andrew Morton 已提交
396 397
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
398
 */
399
static pageout_t pageout(struct page *page, struct address_space *mapping,
400
			 struct scan_control *sc)
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
409
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
425
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
426 427
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
428
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
429 430 431 432 433 434 435
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
436
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
437 438 439 440 441 442 443
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
444 445
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
446 447 448 449 450 451 452
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
453
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
454 455 456
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
457 458 459 460 461 462

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
463
		if (PageWriteback(page) &&
464
		    (sc->reclaim_mode & RECLAIM_MODE_SYNC))
465 466
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
467 468 469 470
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
471
		trace_mm_vmscan_writepage(page,
472
			trace_reclaim_flags(page, sc->reclaim_mode));
473
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
474 475 476 477 478 479
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

480
/*
N
Nick Piggin 已提交
481 482
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
483
 */
N
Nick Piggin 已提交
484
static int __remove_mapping(struct address_space *mapping, struct page *page)
485
{
486 487
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
488

N
Nick Piggin 已提交
489
	spin_lock_irq(&mapping->tree_lock);
490
	/*
N
Nick Piggin 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
514
	 */
N
Nick Piggin 已提交
515
	if (!page_freeze_refs(page, 2))
516
		goto cannot_free;
N
Nick Piggin 已提交
517 518 519
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
520
		goto cannot_free;
N
Nick Piggin 已提交
521
	}
522 523 524 525

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
526
		spin_unlock_irq(&mapping->tree_lock);
527
		swapcache_free(swap, page);
N
Nick Piggin 已提交
528
	} else {
529 530 531 532
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

533
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
534
		spin_unlock_irq(&mapping->tree_lock);
535
		mem_cgroup_uncharge_cache_page(page);
536 537 538

		if (freepage != NULL)
			freepage(page);
539 540 541 542 543
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
544
	spin_unlock_irq(&mapping->tree_lock);
545 546 547
	return 0;
}

N
Nick Piggin 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
581
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
595
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
596 597 598 599 600 601 602 603
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
604 605 606 607 608 609 610 611 612 613
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

632 633 634 635 636
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
637 638 639
	put_page(page);		/* drop ref from isolate */
}

640 641 642
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
643
	PAGEREF_KEEP,
644 645 646 647 648 649
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
650
	int referenced_ptes, referenced_page;
651 652
	unsigned long vm_flags;

653 654
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
655 656

	/* Lumpy reclaim - ignore references */
657
	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
658 659 660 661 662 663 664 665 666
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
691 692

	/* Reclaim if clean, defer dirty pages to writeback */
693
	if (referenced_page && !PageSwapBacked(page))
694 695 696
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
697 698
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
static noinline_for_stack void free_page_list(struct list_head *free_pages)
{
	struct pagevec freed_pvec;
	struct page *page, *tmp;

	pagevec_init(&freed_pvec, 1);

	list_for_each_entry_safe(page, tmp, free_pages, lru) {
		list_del(&page->lru);
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
	}

	pagevec_free(&freed_pvec);
}

L
Linus Torvalds 已提交
717
/*
A
Andrew Morton 已提交
718
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
719
 */
A
Andrew Morton 已提交
720
static unsigned long shrink_page_list(struct list_head *page_list,
721
				      struct zone *zone,
722
				      struct scan_control *sc)
L
Linus Torvalds 已提交
723 724
{
	LIST_HEAD(ret_pages);
725
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
726
	int pgactivate = 0;
727 728
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
729
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
730 731 732 733

	cond_resched();

	while (!list_empty(page_list)) {
734
		enum page_references references;
L
Linus Torvalds 已提交
735 736 737 738 739 740 741 742 743
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
744
		if (!trylock_page(page))
L
Linus Torvalds 已提交
745 746
			goto keep;

N
Nick Piggin 已提交
747
		VM_BUG_ON(PageActive(page));
748
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
749 750

		sc->nr_scanned++;
751

N
Nick Piggin 已提交
752 753
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
754

755
		if (!sc->may_unmap && page_mapped(page))
756 757
			goto keep_locked;

L
Linus Torvalds 已提交
758 759 760 761
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

762 763 764 765 766 767 768 769 770 771 772 773
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
774
			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
775
			    may_enter_fs)
776
				wait_on_page_writeback(page);
777 778 779 780
			else {
				unlock_page(page);
				goto keep_lumpy;
			}
781
		}
L
Linus Torvalds 已提交
782

783 784 785
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
786
			goto activate_locked;
787 788
		case PAGEREF_KEEP:
			goto keep_locked;
789 790 791 792
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
793 794 795 796 797

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
798
		if (PageAnon(page) && !PageSwapCache(page)) {
799 800
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
801
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
802
				goto activate_locked;
803
			may_enter_fs = 1;
N
Nick Piggin 已提交
804
		}
L
Linus Torvalds 已提交
805 806 807 808 809 810 811 812

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
813
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
814 815 816 817
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
818 819
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
820 821 822 823 824 825
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
826 827
			nr_dirty++;

828
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
829
				goto keep_locked;
830
			if (!may_enter_fs)
L
Linus Torvalds 已提交
831
				goto keep_locked;
832
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
833 834 835
				goto keep_locked;

			/* Page is dirty, try to write it out here */
836
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
837
			case PAGE_KEEP:
838
				nr_congested++;
L
Linus Torvalds 已提交
839 840 841 842
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
843 844 845
				if (PageWriteback(page))
					goto keep_lumpy;
				if (PageDirty(page))
L
Linus Torvalds 已提交
846
					goto keep;
847

L
Linus Torvalds 已提交
848 849 850 851
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
852
				if (!trylock_page(page))
L
Linus Torvalds 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
872
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
873 874 875 876 877 878 879 880 881 882
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
883
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
884 885
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
902 903
		}

N
Nick Piggin 已提交
904
		if (!mapping || !__remove_mapping(mapping, page))
905
			goto keep_locked;
L
Linus Torvalds 已提交
906

N
Nick Piggin 已提交
907 908 909 910 911 912 913 914
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
915
free_it:
916
		nr_reclaimed++;
917 918 919 920 921 922

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
923 924
		continue;

N
Nick Piggin 已提交
925
cull_mlocked:
926 927
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
928 929
		unlock_page(page);
		putback_lru_page(page);
930
		reset_reclaim_mode(sc);
N
Nick Piggin 已提交
931 932
		continue;

L
Linus Torvalds 已提交
933
activate_locked:
934 935
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
936
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
937
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
938 939 940 941 942
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
943
		reset_reclaim_mode(sc);
944
keep_lumpy:
L
Linus Torvalds 已提交
945
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
946
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
947
	}
948

949 950 951 952 953 954
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
K
KAMEZAWA Hiroyuki 已提交
955
	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
956 957
		zone_set_flag(zone, ZONE_CONGESTED);

958 959
	free_page_list(&free_pages);

L
Linus Torvalds 已提交
960
	list_splice(&ret_pages, page_list);
961
	count_vm_events(PGACTIVATE, pgactivate);
962
	return nr_reclaimed;
L
Linus Torvalds 已提交
963 964
}

A
Andy Whitcroft 已提交
965 966 967 968 969 970 971 972 973 974
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
975
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

991
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
992 993
		return ret;

L
Lee Schermerhorn 已提交
994 995 996 997 998 999 1000 1001
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
1002
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1003

A
Andy Whitcroft 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
1031 1032
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
1033
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
1034 1035 1036
 *
 * returns how many pages were moved onto *@dst.
 */
1037 1038
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
1039
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
1040
{
1041
	unsigned long nr_taken = 0;
1042 1043 1044
	unsigned long nr_lumpy_taken = 0;
	unsigned long nr_lumpy_dirty = 0;
	unsigned long nr_lumpy_failed = 0;
1045
	unsigned long scan;
L
Linus Torvalds 已提交
1046

1047
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1048 1049 1050 1051 1052 1053
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
1054 1055 1056
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1057
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1058

1059
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
1060 1061
		case 0:
			list_move(&page->lru, dst);
1062
			mem_cgroup_del_lru(page);
1063
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1064 1065 1066 1067 1068
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
1069
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
1070
			continue;
1071

A
Andy Whitcroft 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
L
Lucas De Marchi 已提交
1084
		 * as the mem_map is guaranteed valid out to MAX_ORDER,
A
Andy Whitcroft 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
1104

A
Andy Whitcroft 已提交
1105 1106
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
1107
				break;
1108 1109 1110 1111 1112 1113 1114

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1115 1116
			    !PageSwapCache(cursor_page))
				break;
1117

1118
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
1119
				list_move(&cursor_page->lru, dst);
1120
				mem_cgroup_del_lru(cursor_page);
1121
				nr_taken += hpage_nr_pages(page);
1122 1123 1124
				nr_lumpy_taken++;
				if (PageDirty(cursor_page))
					nr_lumpy_dirty++;
A
Andy Whitcroft 已提交
1125
				scan++;
1126
			} else {
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
				/*
				 * Check if the page is freed already.
				 *
				 * We can't use page_count() as that
				 * requires compound_head and we don't
				 * have a pin on the page here. If a
				 * page is tail, we may or may not
				 * have isolated the head, so assume
				 * it's not free, it'd be tricky to
				 * track the head status without a
				 * page pin.
				 */
				if (!PageTail(cursor_page) &&
				    !atomic_read(&cursor_page->_count))
1141 1142
					continue;
				break;
A
Andy Whitcroft 已提交
1143 1144
			}
		}
1145 1146 1147 1148

		/* If we break out of the loop above, lumpy reclaim failed */
		if (pfn < end_pfn)
			nr_lumpy_failed++;
L
Linus Torvalds 已提交
1149 1150 1151
	}

	*scanned = scan;
1152 1153 1154 1155 1156 1157

	trace_mm_vmscan_lru_isolate(order,
			nr_to_scan, scan,
			nr_taken,
			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
			mode);
L
Linus Torvalds 已提交
1158 1159 1160
	return nr_taken;
}

1161 1162 1163 1164
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1165
					int active, int file)
1166
{
1167
	int lru = LRU_BASE;
1168
	if (active)
1169 1170 1171 1172
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1173
								mode, file);
1174 1175
}

A
Andy Whitcroft 已提交
1176 1177 1178 1179
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1180 1181
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1182 1183
{
	int nr_active = 0;
1184
	int lru;
A
Andy Whitcroft 已提交
1185 1186
	struct page *page;

1187
	list_for_each_entry(page, page_list, lru) {
1188
		int numpages = hpage_nr_pages(page);
1189
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1190
		if (PageActive(page)) {
1191
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1192
			ClearPageActive(page);
1193
			nr_active += numpages;
A
Andy Whitcroft 已提交
1194
		}
1195
		if (count)
1196
			count[lru] += numpages;
1197
	}
A
Andy Whitcroft 已提交
1198 1199 1200 1201

	return nr_active;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1213 1214 1215
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1231 1232
	VM_BUG_ON(!page_count(page));

1233 1234 1235 1236
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1237
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1238
			int lru = page_lru(page);
1239
			ret = 0;
1240
			get_page(page);
1241
			ClearPageLRU(page);
1242 1243

			del_page_from_lru_list(zone, page, lru);
1244 1245 1246 1247 1248 1249
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1275 1276 1277 1278
/*
 * TODO: Try merging with migrations version of putback_lru_pages
 */
static noinline_for_stack void
1279
putback_lru_pages(struct zone *zone, struct scan_control *sc,
1280 1281 1282 1283 1284
				unsigned long nr_anon, unsigned long nr_file,
				struct list_head *page_list)
{
	struct page *page;
	struct pagevec pvec;
1285
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	pagevec_init(&pvec, 1);

	/*
	 * Put back any unfreeable pages.
	 */
	spin_lock(&zone->lru_lock);
	while (!list_empty(page_list)) {
		int lru;
		page = lru_to_page(page_list);
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1304
		SetPageLRU(page);
1305
		lru = page_lru(page);
1306
		add_page_to_lru_list(zone, page, lru);
1307 1308
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1309 1310
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		}
		if (!pagevec_add(&pvec, page)) {
			spin_unlock_irq(&zone->lru_lock);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

	spin_unlock_irq(&zone->lru_lock);
	pagevec_release(&pvec);
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static noinline_for_stack void update_isolated_counts(struct zone *zone,
					struct scan_control *sc,
					unsigned long *nr_anon,
					unsigned long *nr_file,
					struct list_head *isolated_list)
{
	unsigned long nr_active;
	unsigned int count[NR_LRU_LISTS] = { 0, };
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);

	nr_active = clear_active_flags(isolated_list, count);
	__count_vm_events(PGDEACTIVATE, nr_active);

	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
			      -count[LRU_ACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
			      -count[LRU_INACTIVE_FILE]);
	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
			      -count[LRU_ACTIVE_ANON]);
	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
			      -count[LRU_INACTIVE_ANON]);

	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);

	reclaim_stat->recent_scanned[0] += *nr_anon;
	reclaim_stat->recent_scanned[1] += *nr_file;
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * Returns true if the caller should wait to clean dirty/writeback pages.
 *
 * If we are direct reclaiming for contiguous pages and we do not reclaim
 * everything in the list, try again and wait for writeback IO to complete.
 * This will stall high-order allocations noticeably. Only do that when really
 * need to free the pages under high memory pressure.
 */
static inline bool should_reclaim_stall(unsigned long nr_taken,
					unsigned long nr_freed,
					int priority,
					struct scan_control *sc)
{
	int lumpy_stall_priority;

	/* kswapd should not stall on sync IO */
	if (current_is_kswapd())
		return false;

	/* Only stall on lumpy reclaim */
1376
	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		return false;

	/* If we have relaimed everything on the isolated list, no stall */
	if (nr_freed == nr_taken)
		return false;

	/*
	 * For high-order allocations, there are two stall thresholds.
	 * High-cost allocations stall immediately where as lower
	 * order allocations such as stacks require the scanning
	 * priority to be much higher before stalling.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_stall_priority = DEF_PRIORITY;
	else
		lumpy_stall_priority = DEF_PRIORITY / 3;

	return priority <= lumpy_stall_priority;
}

L
Linus Torvalds 已提交
1397
/*
A
Andrew Morton 已提交
1398 1399
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1400
 */
1401 1402 1403
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1404 1405
{
	LIST_HEAD(page_list);
1406
	unsigned long nr_scanned;
1407
	unsigned long nr_reclaimed = 0;
1408 1409 1410
	unsigned long nr_taken;
	unsigned long nr_anon;
	unsigned long nr_file;
1411

1412
	while (unlikely(too_many_isolated(zone, file, sc))) {
1413
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1414 1415 1416 1417 1418 1419

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1420
	set_reclaim_mode(priority, sc, false);
L
Linus Torvalds 已提交
1421 1422
	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1423

1424 1425 1426
	if (scanning_global_lru(sc)) {
		nr_taken = isolate_pages_global(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1427
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1428
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
			zone, 0, file);
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
			&page_list, &nr_scanned, sc->order,
1440
			sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1441
					ISOLATE_BOTH : ISOLATE_INACTIVE,
1442 1443 1444 1445 1446 1447 1448
			zone, sc->mem_cgroup,
			0, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
	}
1449

1450 1451 1452 1453
	if (nr_taken == 0) {
		spin_unlock_irq(&zone->lru_lock);
		return 0;
	}
A
Andy Whitcroft 已提交
1454

1455
	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
L
Linus Torvalds 已提交
1456

1457
	spin_unlock_irq(&zone->lru_lock);
1458

1459
	nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1460

1461 1462
	/* Check if we should syncronously wait for writeback */
	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1463
		set_reclaim_mode(priority, sc, true);
1464
		nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1465
	}
1466

1467 1468 1469 1470
	local_irq_disable();
	if (current_is_kswapd())
		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
N
Nick Piggin 已提交
1471

1472
	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1473 1474 1475 1476 1477

	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
		priority,
1478
		trace_shrink_flags(file, sc->reclaim_mode));
1479
	return nr_reclaimed;
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
1518
		pgmoved += hpage_nr_pages(page);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1532

A
Andrew Morton 已提交
1533
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1534
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1535
{
1536
	unsigned long nr_taken;
1537
	unsigned long pgscanned;
1538
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1539
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1540
	LIST_HEAD(l_active);
1541
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1542
	struct page *page;
1543
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1544
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1545 1546 1547

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1548
	if (scanning_global_lru(sc)) {
1549 1550 1551 1552
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1553
		zone->pages_scanned += pgscanned;
1554 1555 1556 1557 1558 1559 1560 1561 1562
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1563
	}
1564

1565
	reclaim_stat->recent_scanned[file] += nr_taken;
1566

1567
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1568
	if (file)
1569
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1570
	else
1571
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1572
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1573 1574 1575 1576 1577 1578
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1579

L
Lee Schermerhorn 已提交
1580 1581 1582 1583 1584
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1585
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1586
			nr_rotated += hpage_nr_pages(page);
1587 1588 1589 1590 1591 1592 1593 1594 1595
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1596
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1597 1598 1599 1600
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1601

1602
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1603 1604 1605
		list_add(&page->lru, &l_inactive);
	}

1606
	/*
1607
	 * Move pages back to the lru list.
1608
	 */
1609
	spin_lock_irq(&zone->lru_lock);
1610
	/*
1611 1612 1613 1614
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1615
	 */
1616
	reclaim_stat->recent_rotated[file] += nr_rotated;
1617

1618 1619 1620 1621
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1622
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1623
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1624 1625
}

1626
#ifdef CONFIG_SWAP
1627
static int inactive_anon_is_low_global(struct zone *zone)
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1652 1653 1654 1655 1656 1657 1658
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1659
	if (scanning_global_lru(sc))
1660 1661
		low = inactive_anon_is_low_global(zone);
	else
1662
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1663 1664
	return low;
}
1665 1666 1667 1668 1669 1670 1671
#else
static inline int inactive_anon_is_low(struct zone *zone,
					struct scan_control *sc)
{
	return 0;
}
#endif
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1709 1710 1711 1712 1713 1714 1715 1716 1717
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1718
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1719 1720
	struct zone *zone, struct scan_control *sc, int priority)
{
1721 1722
	int file = is_file_lru(lru);

1723 1724 1725
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1726 1727 1728
		return 0;
	}

R
Rik van Riel 已提交
1729
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1730 1731 1732 1733 1734 1735 1736 1737
}

/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1738
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1739
 */
1740 1741
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1742 1743 1744 1745
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1746
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1747 1748 1749
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	int force_scan = 0;


	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);

	if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) {
		/* kswapd does zone balancing and need to scan this zone */
		if (scanning_global_lru(sc) && current_is_kswapd())
			force_scan = 1;
		/* memcg may have small limit and need to avoid priority drop */
		if (!scanning_global_lru(sc))
			force_scan = 1;
	}
1766 1767 1768 1769 1770 1771 1772 1773 1774

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1775

1776
	if (scanning_global_lru(sc)) {
1777 1778 1779
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1780
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1781 1782 1783 1784
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1785
		}
1786 1787
	}

1788 1789 1790 1791 1792 1793 1794
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1806
	spin_lock_irq(&zone->lru_lock);
1807 1808 1809
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1810 1811
	}

1812 1813 1814
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1815 1816 1817
	}

	/*
1818 1819 1820
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1821
	 */
1822 1823
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1824

1825 1826
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1827
	spin_unlock_irq(&zone->lru_lock);
1828

1829 1830 1831 1832 1833 1834 1835
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1836

1837 1838 1839 1840 1841
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858

		/*
		 * If zone is small or memcg is small, nr[l] can be 0.
		 * This results no-scan on this priority and priority drop down.
		 * For global direct reclaim, it can visit next zone and tend
		 * not to have problems. For global kswapd, it's for zone
		 * balancing and it need to scan a small amounts. When using
		 * memcg, priority drop can cause big latency. So, it's better
		 * to scan small amount. See may_noscan above.
		 */
		if (!scan && force_scan) {
			if (file)
				scan = SWAP_CLUSTER_MAX;
			else if (!noswap)
				scan = SWAP_CLUSTER_MAX;
		}
		nr[l] = scan;
1859
	}
1860
}
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
/*
 * Reclaim/compaction depends on a number of pages being freed. To avoid
 * disruption to the system, a small number of order-0 pages continue to be
 * rotated and reclaimed in the normal fashion. However, by the time we get
 * back to the allocator and call try_to_compact_zone(), we ensure that
 * there are enough free pages for it to be likely successful
 */
static inline bool should_continue_reclaim(struct zone *zone,
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1878
	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1879 1880
		return false;

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
				zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
	switch (compaction_suitable(zone, sc->order)) {
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1925 1926 1927
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1928
static void shrink_zone(int priority, struct zone *zone,
1929
				struct scan_control *sc)
L
Linus Torvalds 已提交
1930
{
1931
	unsigned long nr[NR_LRU_LISTS];
1932
	unsigned long nr_to_scan;
1933
	enum lru_list l;
1934
	unsigned long nr_reclaimed, nr_scanned;
1935
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1936

1937 1938
restart:
	nr_reclaimed = 0;
1939
	nr_scanned = sc->nr_scanned;
1940
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1941

1942 1943
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1944
		for_each_evictable_lru(l) {
1945
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1946 1947
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1948
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1949

1950 1951
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1952
			}
L
Linus Torvalds 已提交
1953
		}
1954 1955 1956 1957 1958 1959 1960 1961
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1962
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1963
			break;
L
Linus Torvalds 已提交
1964
	}
1965
	sc->nr_reclaimed += nr_reclaimed;
1966

1967 1968 1969 1970
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1971
	if (inactive_anon_is_low(zone, sc))
1972 1973
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1974 1975 1976 1977 1978
	/* reclaim/compaction might need reclaim to continue */
	if (should_continue_reclaim(zone, nr_reclaimed,
					sc->nr_scanned - nr_scanned, sc))
		goto restart;

1979
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1980 1981 1982 1983 1984 1985 1986
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1987 1988
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1989 1990
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1991 1992 1993
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1994 1995 1996 1997
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1998
static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1999
					struct scan_control *sc)
L
Linus Torvalds 已提交
2000
{
2001
	struct zoneref *z;
2002
	struct zone *zone;
2003 2004 2005
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
	unsigned long total_scanned = 0;
2006

2007 2008
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2009
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2010
			continue;
2011 2012 2013 2014
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2015
		if (scanning_global_lru(sc)) {
2016 2017
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2018
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2019 2020
				continue;	/* Let kswapd poll it */
		}
2021

2022 2023 2024 2025 2026 2027 2028
		nr_soft_scanned = 0;
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							sc->order, sc->gfp_mask,
							&nr_soft_scanned);
		sc->nr_reclaimed += nr_soft_reclaimed;
		total_scanned += nr_soft_scanned;

2029
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
2030
	}
2031 2032

	return total_scanned;
2033 2034 2035 2036 2037 2038 2039
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2040
/* All zones in zonelist are unreclaimable? */
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2053 2054
		if (!zone->all_unreclaimable)
			return false;
2055 2056
	}

2057
	return true;
L
Linus Torvalds 已提交
2058
}
2059

L
Linus Torvalds 已提交
2060 2061 2062 2063 2064 2065 2066 2067
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2068 2069 2070 2071
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2072 2073 2074
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2075
 */
2076
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2077 2078
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2079 2080
{
	int priority;
2081
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2082
	struct reclaim_state *reclaim_state = current->reclaim_state;
2083
	struct zoneref *z;
2084
	struct zone *zone;
2085
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
2086

2087
	get_mems_allowed();
2088 2089
	delayacct_freepages_start();

2090
	if (scanning_global_lru(sc))
2091
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2092 2093

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2094
		sc->nr_scanned = 0;
2095
		if (!priority)
2096
			disable_swap_token(sc->mem_cgroup);
2097
		total_scanned += shrink_zones(priority, zonelist, sc);
2098 2099 2100 2101
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2102
		if (scanning_global_lru(sc)) {
2103
			unsigned long lru_pages = 0;
2104 2105
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2106 2107 2108 2109 2110 2111
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2112
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2113
			if (reclaim_state) {
2114
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2115 2116
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2117
		}
2118
		total_scanned += sc->nr_scanned;
2119
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2129 2130
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2131
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2132
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2133 2134 2135
		}

		/* Take a nap, wait for some writeback to complete */
2136
		if (!sc->hibernation_mode && sc->nr_scanned &&
2137 2138 2139 2140
		    priority < DEF_PRIORITY - 2) {
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2141 2142
						&cpuset_current_mems_allowed,
						&preferred_zone);
2143 2144
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2145
	}
2146

L
Linus Torvalds 已提交
2147
out:
2148
	delayacct_freepages_end();
2149
	put_mems_allowed();
2150

2151 2152 2153
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2154 2155 2156 2157 2158 2159 2160 2161
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2162
	/* top priority shrink_zones still had more to do? don't OOM, then */
2163
	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2164 2165 2166
		return 1;

	return 0;
L
Linus Torvalds 已提交
2167 2168
}

2169
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2170
				gfp_t gfp_mask, nodemask_t *nodemask)
2171
{
2172
	unsigned long nr_reclaimed;
2173 2174 2175
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2176
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2177
		.may_unmap = 1,
2178
		.may_swap = 1,
2179 2180 2181
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
2182
		.nodemask = nodemask,
2183
	};
2184 2185 2186
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2187

2188 2189 2190 2191
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2192
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2193 2194 2195 2196

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2197 2198
}

2199
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2200

2201 2202 2203
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
2204 2205
						struct zone *zone,
						unsigned long *nr_scanned)
2206 2207
{
	struct scan_control sc = {
2208
		.nr_scanned = 0,
2209
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2210 2211 2212 2213 2214 2215 2216
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
2217

2218 2219
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2220 2221 2222 2223 2224

	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
						      sc.may_writepage,
						      sc.gfp_mask);

2225 2226 2227 2228 2229 2230 2231 2232
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
2233 2234 2235

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2236
	*nr_scanned = sc.nr_scanned;
2237 2238 2239
	return sc.nr_reclaimed;
}

2240
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
2241 2242 2243
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
2244
{
2245
	struct zonelist *zonelist;
2246
	unsigned long nr_reclaimed;
2247
	int nid;
2248 2249
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2250
		.may_unmap = 1,
2251
		.may_swap = !noswap,
2252
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
2253
		.swappiness = swappiness,
2254 2255
		.order = 0,
		.mem_cgroup = mem_cont,
2256
		.nodemask = NULL, /* we don't care the placement */
2257 2258 2259 2260 2261
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2262 2263
	};

2264 2265 2266 2267 2268 2269 2270 2271
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
	nid = mem_cgroup_select_victim_node(mem_cont);

	zonelist = NODE_DATA(nid)->node_zonelists;
2272 2273 2274 2275 2276

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2277
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2278 2279 2280 2281

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2282 2283 2284
}
#endif

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2296
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

	return balanced_pages > (present_pages >> 2);
}

2313
/* is kswapd sleeping prematurely? */
2314 2315
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2316
{
2317
	int i;
2318 2319
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2320 2321 2322

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2323
		return true;
2324

2325
	/* Check the watermark levels */
2326 2327 2328 2329 2330 2331
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2332 2333 2334 2335 2336 2337 2338 2339
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2340
			continue;
2341
		}
2342

2343
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2344
							classzone_idx, 0))
2345 2346 2347
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2348
	}
2349

2350 2351 2352 2353 2354 2355
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2356
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2357 2358
	else
		return !all_zones_ok;
2359 2360
}

L
Linus Torvalds 已提交
2361 2362
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2363
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2364
 *
2365
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2376 2377 2378 2379 2380
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2381
 */
2382
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2383
							int *classzone_idx)
L
Linus Torvalds 已提交
2384 2385
{
	int all_zones_ok;
2386
	unsigned long balanced;
L
Linus Torvalds 已提交
2387 2388
	int priority;
	int i;
2389
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2390
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2391
	struct reclaim_state *reclaim_state = current->reclaim_state;
2392 2393
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2394 2395
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2396
		.may_unmap = 1,
2397
		.may_swap = 1,
2398 2399 2400 2401 2402
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2403
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2404
		.order = order,
2405
		.mem_cgroup = NULL,
2406
	};
2407 2408 2409
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2410 2411
loop_again:
	total_scanned = 0;
2412
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2413
	sc.may_writepage = !laptop_mode;
2414
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2415 2416 2417

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		unsigned long lru_pages = 0;
2418
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2419

2420 2421
		/* The swap token gets in the way of swapout... */
		if (!priority)
2422
			disable_swap_token(NULL);
2423

L
Linus Torvalds 已提交
2424
		all_zones_ok = 1;
2425
		balanced = 0;
L
Linus Torvalds 已提交
2426

2427 2428 2429 2430 2431 2432
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2433

2434 2435
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2436

2437
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2438
				continue;
L
Linus Torvalds 已提交
2439

2440 2441 2442 2443
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2444
			if (inactive_anon_is_low(zone, &sc))
2445 2446 2447
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2448
			if (!zone_watermark_ok_safe(zone, order,
2449
					high_wmark_pages(zone), 0, 0)) {
2450
				end_zone = i;
2451
				*classzone_idx = i;
A
Andrew Morton 已提交
2452
				break;
L
Linus Torvalds 已提交
2453 2454
			}
		}
A
Andrew Morton 已提交
2455 2456 2457
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2458 2459 2460
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2461
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2475
			int nr_slab;
2476
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2477

2478
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2479 2480
				continue;

2481
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2482 2483 2484
				continue;

			sc.nr_scanned = 0;
2485

2486
			nr_soft_scanned = 0;
2487 2488 2489
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2490 2491 2492 2493 2494
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2495

2496
			/*
2497 2498 2499 2500 2501 2502
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2503
			 */
2504 2505 2506 2507
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2508
			if (!zone_watermark_ok_safe(zone, order,
2509 2510
					high_wmark_pages(zone) + balance_gap,
					end_zone, 0))
2511
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2512
			reclaim_state->reclaimed_slab = 0;
2513
			nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2514
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2515
			total_scanned += sc.nr_scanned;
2516

2517
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2518
				continue;
2519
			if (nr_slab == 0 &&
2520
			    !zone_reclaimable(zone))
2521
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2522 2523 2524 2525 2526 2527
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2528
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2529
				sc.may_writepage = 1;
2530

2531
			if (!zone_watermark_ok_safe(zone, order,
2532 2533 2534 2535 2536 2537 2538
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2539
				if (!zone_watermark_ok_safe(zone, order,
2540 2541
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2542 2543 2544 2545 2546 2547 2548 2549 2550
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2551
				if (i <= *classzone_idx)
2552
					balanced += zone->present_pages;
2553
			}
2554

L
Linus Torvalds 已提交
2555
		}
2556
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2557 2558 2559 2560 2561
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2562 2563 2564 2565 2566 2567
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2568 2569 2570 2571 2572 2573 2574

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2575
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2576 2577 2578
			break;
	}
out:
2579 2580 2581

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2582 2583
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2584
	 */
2585
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2586
		cond_resched();
2587 2588 2589

		try_to_freeze();

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2607 2608 2609
		goto loop_again;
	}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
				continue;

			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
	}

2640 2641 2642 2643 2644 2645
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2646
	*classzone_idx = end_zone;
2647
	return order;
L
Linus Torvalds 已提交
2648 2649
}

2650
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2661
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2662 2663 2664 2665 2666 2667 2668 2669 2670
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2671
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2694 2695
/*
 * The background pageout daemon, started as a kernel thread
2696
 * from the init process.
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
2710
	int classzone_idx;
L
Linus Torvalds 已提交
2711 2712
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2713

L
Linus Torvalds 已提交
2714 2715 2716
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2717
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2718

2719 2720
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2721
	if (!cpumask_empty(cpumask))
2722
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2737
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2738
	set_freezable();
L
Linus Torvalds 已提交
2739 2740

	order = 0;
2741
	classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
2742 2743
	for ( ; ; ) {
		unsigned long new_order;
2744
		int new_classzone_idx;
2745
		int ret;
2746

L
Linus Torvalds 已提交
2747
		new_order = pgdat->kswapd_max_order;
2748
		new_classzone_idx = pgdat->classzone_idx;
L
Linus Torvalds 已提交
2749
		pgdat->kswapd_max_order = 0;
2750 2751
		pgdat->classzone_idx = MAX_NR_ZONES - 1;
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2752 2753
			/*
			 * Don't sleep if someone wants a larger 'order'
2754
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2755 2756
			 */
			order = new_order;
2757
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2758
		} else {
2759
			kswapd_try_to_sleep(pgdat, order, classzone_idx);
L
Linus Torvalds 已提交
2760
			order = pgdat->kswapd_max_order;
2761
			classzone_idx = pgdat->classzone_idx;
2762 2763
			pgdat->kswapd_max_order = 0;
			pgdat->classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
2764 2765
		}

2766 2767 2768 2769 2770 2771 2772 2773
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2774 2775
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2776
			order = balance_pgdat(pgdat, order, &classzone_idx);
2777
		}
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782 2783 2784
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2785
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2786 2787 2788
{
	pg_data_t *pgdat;

2789
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2790 2791
		return;

2792
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2793
		return;
2794
	pgdat = zone->zone_pgdat;
2795
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2796
		pgdat->kswapd_max_order = order;
2797 2798
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2799
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2800
		return;
2801 2802 2803 2804
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2805
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2806 2807
}

2808 2809 2810 2811 2812 2813 2814 2815
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2816
{
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2841 2842
}

2843
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2844
/*
2845
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2846 2847 2848 2849 2850
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2851
 */
2852
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2853
{
2854 2855
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2856 2857 2858
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2859
		.may_writepage = 1,
2860 2861 2862 2863
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2864
	};
2865 2866 2867 2868
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2869 2870
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2871

2872 2873 2874 2875
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2876

2877
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2878

2879 2880 2881
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2882

2883
	return nr_reclaimed;
L
Linus Torvalds 已提交
2884
}
2885
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2891
static int __devinit cpu_callback(struct notifier_block *nfb,
2892
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2893
{
2894
	int nid;
L
Linus Torvalds 已提交
2895

2896
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2897
		for_each_node_state(nid, N_HIGH_MEMORY) {
2898
			pg_data_t *pgdat = NODE_DATA(nid);
2899 2900 2901
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2902

2903
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2904
				/* One of our CPUs online: restore mask */
2905
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2906 2907 2908 2909 2910
		}
	}
	return NOTIFY_OK;
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2944 2945
static int __init kswapd_init(void)
{
2946
	int nid;
2947

L
Linus Torvalds 已提交
2948
	swap_setup();
2949
	for_each_node_state(nid, N_HIGH_MEMORY)
2950
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2966
#define RECLAIM_OFF 0
2967
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2968 2969 2970
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2971 2972 2973 2974 2975 2976 2977
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2978 2979 2980 2981 2982 2983
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2984 2985 2986 2987 2988 2989
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3032 3033 3034
/*
 * Try to free up some pages from this zone through reclaim.
 */
3035
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3036
{
3037
	/* Minimum pages needed in order to stay on node */
3038
	const unsigned long nr_pages = 1 << order;
3039 3040
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3041
	int priority;
3042 3043
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3044
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3045
		.may_swap = 1,
3046 3047
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3048
		.gfp_mask = gfp_mask,
3049
		.swappiness = vm_swappiness,
3050
		.order = order,
3051
	};
3052 3053 3054
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3055
	unsigned long nr_slab_pages0, nr_slab_pages1;
3056 3057

	cond_resched();
3058 3059 3060 3061 3062 3063
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3064
	lockdep_set_current_reclaim_state(gfp_mask);
3065 3066
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3067

3068
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3069 3070 3071 3072 3073 3074
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
3075
			shrink_zone(priority, zone, &sc);
3076
			priority--;
3077
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3078
	}
3079

3080 3081
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3082
		/*
3083
		 * shrink_slab() does not currently allow us to determine how
3084 3085 3086 3087
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3088
		 *
3089 3090
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3091
		 */
3092 3093 3094 3095
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3096
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3097 3098 3099 3100 3101 3102 3103 3104
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3105 3106 3107 3108 3109

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3110 3111 3112
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3113 3114
	}

3115
	p->reclaim_state = NULL;
3116
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3117
	lockdep_clear_current_reclaim_state();
3118
	return sc.nr_reclaimed >= nr_pages;
3119
}
3120 3121 3122 3123

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3124
	int ret;
3125 3126

	/*
3127 3128
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3129
	 *
3130 3131 3132 3133 3134
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3135
	 */
3136 3137
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3138
		return ZONE_RECLAIM_FULL;
3139

3140
	if (zone->all_unreclaimable)
3141
		return ZONE_RECLAIM_FULL;
3142

3143
	/*
3144
	 * Do not scan if the allocation should not be delayed.
3145
	 */
3146
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3147
		return ZONE_RECLAIM_NOSCAN;
3148 3149 3150 3151 3152 3153 3154

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3155
	node_id = zone_to_nid(zone);
3156
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3157
		return ZONE_RECLAIM_NOSCAN;
3158 3159

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3160 3161
		return ZONE_RECLAIM_NOSCAN;

3162 3163 3164
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3165 3166 3167
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3168
	return ret;
3169
}
3170
#endif
L
Lee Schermerhorn 已提交
3171 3172 3173 3174 3175 3176 3177

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3178 3179
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3180 3181
 *
 * Reasons page might not be evictable:
3182
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3183
 * (2) page is part of an mlocked VMA
3184
 *
L
Lee Schermerhorn 已提交
3185 3186 3187 3188
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3189 3190 3191
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
3192 3193
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
3194 3195 3196

	return 1;
}
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
3216
		enum lru_list l = page_lru_base_type(page);
3217

3218 3219
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
3220
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3221 3222 3223 3224 3225 3226 3227 3228
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
3229
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3301
static void scan_zone_unevictable_pages(struct zone *zone)
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
3343
static void scan_all_zones_unevictable_pages(void)
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3359
			   void __user *buffer,
3360 3361
			   size_t *length, loff_t *ppos)
{
3362
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3363 3364 3365 3366 3367 3368 3369 3370

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

3371
#ifdef CONFIG_NUMA
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}
3418
#endif