vmscan.c 106.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
208
unsigned long shrink_slab(struct shrink_control *shrink,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218 219 220 221 222
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
223 224 225

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
226 227
		long total_scan;
		long max_pass;
228
		int shrink_ret = 0;
229 230
		long nr;
		long new_nr;
231 232
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
233

234 235 236 237
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

238 239 240 241 242
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
243
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 245

		total_scan = nr;
246
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
		delta *= max_pass;
L
Linus Torvalds 已提交
248
		do_div(delta, lru_pages + 1);
249 250
		total_scan += delta;
		if (total_scan < 0) {
251 252
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
253 254
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
255 256
		}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

272 273 274 275 276
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
277 278
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
279

280
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 282 283
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

284
		while (total_scan >= batch_size) {
285
			int nr_before;
L
Linus Torvalds 已提交
286

287 288
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289
							batch_size);
L
Linus Torvalds 已提交
290 291
			if (shrink_ret == -1)
				break;
292 293
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
294 295
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
296 297 298 299

			cond_resched();
		}

300 301 302 303 304
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
305 306 307 308 309
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 311

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
312 313
	}
	up_read(&shrinker_rwsem);
314 315
out:
	cond_resched();
316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static inline int is_page_cache_freeable(struct page *page)
{
321 322 323 324 325
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
326
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
327 328
}

329 330
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
331
{
332
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
356
	lock_page(page);
357 358
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
359 360 361
	unlock_page(page);
}

362 363 364 365 366 367 368 369 370 371 372 373
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
374
/*
A
Andrew Morton 已提交
375 376
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
377
 */
378
static pageout_t pageout(struct page *page, struct address_space *mapping,
379
			 struct scan_control *sc)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
388
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
405 406
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
407
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
415
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
416 417 418 419 420 421 422
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
423 424
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
432
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
433 434 435
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
436

L
Linus Torvalds 已提交
437 438 439 440
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
441
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
443 444 445 446 447 448
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

449
/*
N
Nick Piggin 已提交
450 451
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
452
 */
N
Nick Piggin 已提交
453
static int __remove_mapping(struct address_space *mapping, struct page *page)
454
{
455 456
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
457

N
Nick Piggin 已提交
458
	spin_lock_irq(&mapping->tree_lock);
459
	/*
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
483
	 */
N
Nick Piggin 已提交
484
	if (!page_freeze_refs(page, 2))
485
		goto cannot_free;
N
Nick Piggin 已提交
486 487 488
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
489
		goto cannot_free;
N
Nick Piggin 已提交
490
	}
491 492 493 494

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
495
		spin_unlock_irq(&mapping->tree_lock);
496
		swapcache_free(swap, page);
N
Nick Piggin 已提交
497
	} else {
498 499 500 501
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

502
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
503
		spin_unlock_irq(&mapping->tree_lock);
504
		mem_cgroup_uncharge_cache_page(page);
505 506 507

		if (freepage != NULL)
			freepage(page);
508 509 510 511 512
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
513
	spin_unlock_irq(&mapping->tree_lock);
514 515 516
	return 0;
}

N
Nick Piggin 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
550
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
551 552 553 554 555 556

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

557
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
558 559 560 561 562 563
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
564
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571 572
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
573
		/*
574 575 576
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
577
		 * isolation/check_move_unevictable_pages,
578
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 580
		 * the page back to the evictable list.
		 *
581
		 * The other side is TestClearPageMlocked() or shmem_lock().
582 583
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
584 585 586 587 588 589 590
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
591
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

602 603 604 605 606
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
607 608 609
	put_page(page);		/* drop ref from isolate */
}

610 611 612
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
613
	PAGEREF_KEEP,
614 615 616 617 618 619
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
620
	int referenced_ptes, referenced_page;
621 622
	unsigned long vm_flags;

623 624
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
625
	referenced_page = TestClearPageReferenced(page);
626 627 628 629 630 631 632 633

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

634
	if (referenced_ptes) {
635
		if (PageSwapBacked(page))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

653
		if (referenced_page || referenced_ptes > 1)
654 655
			return PAGEREF_ACTIVATE;

656 657 658 659 660 661
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

662 663
		return PAGEREF_KEEP;
	}
664 665

	/* Reclaim if clean, defer dirty pages to writeback */
666
	if (referenced_page && !PageSwapBacked(page))
667 668 669
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
670 671
}

672 673 674 675
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
676 677
	struct address_space *mapping;

678 679 680 681 682 683 684 685 686 687 688 689 690
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
691 692 693 694 695 696 697 698

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
699 700
}

L
Linus Torvalds 已提交
701
/*
A
Andrew Morton 已提交
702
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
703
 */
A
Andrew Morton 已提交
704
static unsigned long shrink_page_list(struct list_head *page_list,
705
				      struct zone *zone,
706
				      struct scan_control *sc,
707
				      enum ttu_flags ttu_flags,
708
				      unsigned long *ret_nr_dirty,
709
				      unsigned long *ret_nr_unqueued_dirty,
710
				      unsigned long *ret_nr_congested,
711
				      unsigned long *ret_nr_writeback,
712
				      unsigned long *ret_nr_immediate,
713
				      bool force_reclaim)
L
Linus Torvalds 已提交
714 715
{
	LIST_HEAD(ret_pages);
716
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
717
	int pgactivate = 0;
718
	unsigned long nr_unqueued_dirty = 0;
719 720
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
721
	unsigned long nr_reclaimed = 0;
722
	unsigned long nr_writeback = 0;
723
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
724 725 726

	cond_resched();

727
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
728 729 730 731
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
732
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
733
		bool dirty, writeback;
L
Linus Torvalds 已提交
734 735 736 737 738 739

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
740
		if (!trylock_page(page))
L
Linus Torvalds 已提交
741 742
			goto keep;

N
Nick Piggin 已提交
743
		VM_BUG_ON(PageActive(page));
744
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
745 746

		sc->nr_scanned++;
747

748
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
749
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
750

751
		if (!sc->may_unmap && page_mapped(page))
752 753
			goto keep_locked;

L
Linus Torvalds 已提交
754 755 756 757
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

758 759 760
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

761 762 763 764 765 766 767 768 769 770 771 772 773
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

774 775 776 777 778 779
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
780
		mapping = page_mapping(page);
781 782
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
783 784
			nr_congested++;

785 786 787 788 789 790 791 792 793 794 795
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
796 797
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
822
		if (PageWriteback(page)) {
823 824 825 826
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
827 828
				nr_immediate++;
				goto keep_locked;
829 830 831

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
832 833 834 835 836 837 838 839 840 841 842 843 844
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
845
				nr_writeback++;
846

847
				goto keep_locked;
848 849 850 851

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
852
			}
853
		}
L
Linus Torvalds 已提交
854

855 856 857
		if (!force_reclaim)
			references = page_check_references(page, sc);

858 859
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
860
			goto activate_locked;
861 862
		case PAGEREF_KEEP:
			goto keep_locked;
863 864 865 866
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
867 868 869 870 871

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
872
		if (PageAnon(page) && !PageSwapCache(page)) {
873 874
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
875
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
876
				goto activate_locked;
877
			may_enter_fs = 1;
L
Linus Torvalds 已提交
878

879 880 881
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
882 883 884 885 886 887

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
888
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
889 890 891 892
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
893 894
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
895 896 897 898 899 900
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
901 902
			/*
			 * Only kswapd can writeback filesystem pages to
903 904
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
905
			 */
906
			if (page_is_file_cache(page) &&
907
					(!current_is_kswapd() ||
908
					 !zone_is_reclaim_dirty(zone))) {
909 910 911 912 913 914 915 916 917
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

918 919 920
				goto keep_locked;
			}

921
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
922
				goto keep_locked;
923
			if (!may_enter_fs)
L
Linus Torvalds 已提交
924
				goto keep_locked;
925
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
926 927 928
				goto keep_locked;

			/* Page is dirty, try to write it out here */
929
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
930 931 932 933 934
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
935
				if (PageWriteback(page))
936
					goto keep;
937
				if (PageDirty(page))
L
Linus Torvalds 已提交
938
					goto keep;
939

L
Linus Torvalds 已提交
940 941 942 943
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
944
				if (!trylock_page(page))
L
Linus Torvalds 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
964
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
965 966 967 968 969 970 971 972 973 974
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
975
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
976 977
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
994 995
		}

N
Nick Piggin 已提交
996
		if (!mapping || !__remove_mapping(mapping, page))
997
			goto keep_locked;
L
Linus Torvalds 已提交
998

N
Nick Piggin 已提交
999 1000 1001 1002 1003 1004 1005 1006
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1007
free_it:
1008
		nr_reclaimed++;
1009 1010 1011 1012 1013 1014

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1015 1016
		continue;

N
Nick Piggin 已提交
1017
cull_mlocked:
1018 1019
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1020 1021 1022 1023
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1024
activate_locked:
1025 1026
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1027
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1028
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1029 1030 1031 1032 1033 1034
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1035
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1036
	}
1037

1038
	free_hot_cold_page_list(&free_pages, 1);
1039

L
Linus Torvalds 已提交
1040
	list_splice(&ret_pages, page_list);
1041
	count_vm_events(PGACTIVATE, pgactivate);
1042
	mem_cgroup_uncharge_end();
1043 1044
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1045
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1046
	*ret_nr_writeback += nr_writeback;
1047
	*ret_nr_immediate += nr_immediate;
1048
	return nr_reclaimed;
L
Linus Torvalds 已提交
1049 1050
}

1051 1052 1053 1054 1055 1056 1057 1058
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1059
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1071 1072
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1073 1074 1075 1076 1077
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1088
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1089 1090 1091 1092 1093 1094 1095
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1096 1097
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1098 1099
		return ret;

A
Andy Whitcroft 已提交
1100
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1135

1136 1137 1138
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1163
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1164
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1165
 * @nr_scanned:	The number of pages that were scanned.
1166
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1167
 * @mode:	One of the LRU isolation modes
1168
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1169 1170 1171
 *
 * returns how many pages were moved onto *@dst.
 */
1172
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1173
		struct lruvec *lruvec, struct list_head *dst,
1174
		unsigned long *nr_scanned, struct scan_control *sc,
1175
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1176
{
H
Hugh Dickins 已提交
1177
	struct list_head *src = &lruvec->lists[lru];
1178
	unsigned long nr_taken = 0;
1179
	unsigned long scan;
L
Linus Torvalds 已提交
1180

1181
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1182
		struct page *page;
1183
		int nr_pages;
A
Andy Whitcroft 已提交
1184

L
Linus Torvalds 已提交
1185 1186 1187
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1188
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1189

1190
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1191
		case 0:
1192 1193
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1194
			list_move(&page->lru, dst);
1195
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1196 1197 1198 1199 1200 1201
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1202

A
Andy Whitcroft 已提交
1203 1204 1205
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1206 1207
	}

H
Hugh Dickins 已提交
1208
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1209 1210
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1211 1212 1213
	return nr_taken;
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1225 1226 1227
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1243 1244
	VM_BUG_ON(!page_count(page));

1245 1246
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1247
		struct lruvec *lruvec;
1248 1249

		spin_lock_irq(&zone->lru_lock);
1250
		lruvec = mem_cgroup_page_lruvec(page, zone);
1251
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1252
			int lru = page_lru(page);
1253
			get_page(page);
1254
			ClearPageLRU(page);
1255 1256
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1257 1258 1259 1260 1261 1262
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1263
/*
F
Fengguang Wu 已提交
1264 1265 1266 1267 1268
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1269 1270 1271 1272 1273 1274 1275 1276 1277
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1278
	if (!global_reclaim(sc))
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1297 1298 1299
	return isolated > inactive;
}

1300
static noinline_for_stack void
H
Hugh Dickins 已提交
1301
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1302
{
1303 1304
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1305
	LIST_HEAD(pages_to_free);
1306 1307 1308 1309 1310

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1311
		struct page *page = lru_to_page(page_list);
1312
		int lru;
1313

1314 1315
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1316
		if (unlikely(!page_evictable(page))) {
1317 1318 1319 1320 1321
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1322 1323 1324

		lruvec = mem_cgroup_page_lruvec(page, zone);

1325
		SetPageLRU(page);
1326
		lru = page_lru(page);
1327 1328
		add_page_to_lru_list(page, lruvec, lru);

1329 1330
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1331 1332
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1333
		}
1334 1335 1336
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1337
			del_page_from_lru_list(page, lruvec, lru);
1338 1339 1340 1341 1342 1343 1344

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1345 1346 1347
		}
	}

1348 1349 1350 1351
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1352 1353
}

L
Linus Torvalds 已提交
1354
/*
A
Andrew Morton 已提交
1355 1356
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1357
 */
1358
static noinline_for_stack unsigned long
1359
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1360
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1361 1362
{
	LIST_HEAD(page_list);
1363
	unsigned long nr_scanned;
1364
	unsigned long nr_reclaimed = 0;
1365
	unsigned long nr_taken;
1366 1367
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1368
	unsigned long nr_unqueued_dirty = 0;
1369
	unsigned long nr_writeback = 0;
1370
	unsigned long nr_immediate = 0;
1371
	isolate_mode_t isolate_mode = 0;
1372
	int file = is_file_lru(lru);
1373 1374
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1375

1376
	while (unlikely(too_many_isolated(zone, file, sc))) {
1377
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1378 1379 1380 1381 1382 1383

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1384
	lru_add_drain();
1385 1386

	if (!sc->may_unmap)
1387
		isolate_mode |= ISOLATE_UNMAPPED;
1388
	if (!sc->may_writepage)
1389
		isolate_mode |= ISOLATE_CLEAN;
1390

L
Linus Torvalds 已提交
1391
	spin_lock_irq(&zone->lru_lock);
1392

1393 1394
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1395 1396 1397 1398

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1399
	if (global_reclaim(sc)) {
1400 1401
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1402
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1403
		else
H
Hugh Dickins 已提交
1404
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1405
	}
1406
	spin_unlock_irq(&zone->lru_lock);
1407

1408
	if (nr_taken == 0)
1409
		return 0;
A
Andy Whitcroft 已提交
1410

1411
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1412 1413 1414
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1415

1416 1417
	spin_lock_irq(&zone->lru_lock);

1418
	reclaim_stat->recent_scanned[file] += nr_taken;
1419

Y
Ying Han 已提交
1420 1421 1422 1423 1424 1425 1426 1427
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1428

1429
	putback_inactive_pages(lruvec, &page_list);
1430

1431
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1432 1433 1434 1435

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
1448
	 * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
1459 1460 1461 1462
	 *
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1463
	 */
1464
	if (nr_writeback && nr_writeback >=
1465
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1466
		zone_set_flag(zone, ZONE_WRITEBACK);
1467

1468
	/*
1469 1470
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1471
	 */
1472
	if (global_reclaim(sc)) {
1473 1474 1475 1476 1477 1478 1479
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1498
	}
1499

1500 1501 1502 1503 1504 1505 1506 1507
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1508 1509 1510
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1511
		sc->priority,
M
Mel Gorman 已提交
1512
		trace_shrink_flags(file));
1513
	return nr_reclaimed;
L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1533

1534
static void move_active_pages_to_lru(struct lruvec *lruvec,
1535
				     struct list_head *list,
1536
				     struct list_head *pages_to_free,
1537 1538
				     enum lru_list lru)
{
1539
	struct zone *zone = lruvec_zone(lruvec);
1540 1541
	unsigned long pgmoved = 0;
	struct page *page;
1542
	int nr_pages;
1543 1544 1545

	while (!list_empty(list)) {
		page = lru_to_page(list);
1546
		lruvec = mem_cgroup_page_lruvec(page, zone);
1547 1548 1549 1550

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1551 1552
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1553
		list_move(&page->lru, &lruvec->lists[lru]);
1554
		pgmoved += nr_pages;
1555

1556 1557 1558
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1559
			del_page_from_lru_list(page, lruvec, lru);
1560 1561 1562 1563 1564 1565 1566

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1567 1568 1569 1570 1571 1572
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1573

H
Hugh Dickins 已提交
1574
static void shrink_active_list(unsigned long nr_to_scan,
1575
			       struct lruvec *lruvec,
1576
			       struct scan_control *sc,
1577
			       enum lru_list lru)
L
Linus Torvalds 已提交
1578
{
1579
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1580
	unsigned long nr_scanned;
1581
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1582
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1583
	LIST_HEAD(l_active);
1584
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1585
	struct page *page;
1586
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1587
	unsigned long nr_rotated = 0;
1588
	isolate_mode_t isolate_mode = 0;
1589
	int file = is_file_lru(lru);
1590
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1591 1592

	lru_add_drain();
1593 1594

	if (!sc->may_unmap)
1595
		isolate_mode |= ISOLATE_UNMAPPED;
1596
	if (!sc->may_writepage)
1597
		isolate_mode |= ISOLATE_CLEAN;
1598

L
Linus Torvalds 已提交
1599
	spin_lock_irq(&zone->lru_lock);
1600

1601 1602
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1603
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1604
		zone->pages_scanned += nr_scanned;
1605

1606
	reclaim_stat->recent_scanned[file] += nr_taken;
1607

H
Hugh Dickins 已提交
1608
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1609
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1610
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1617

1618
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1619 1620 1621 1622
			putback_lru_page(page);
			continue;
		}

1623 1624 1625 1626 1627 1628 1629 1630
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1631 1632
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1633
			nr_rotated += hpage_nr_pages(page);
1634 1635 1636 1637 1638 1639 1640 1641 1642
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1643
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1644 1645 1646 1647
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1648

1649
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1650 1651 1652
		list_add(&page->lru, &l_inactive);
	}

1653
	/*
1654
	 * Move pages back to the lru list.
1655
	 */
1656
	spin_lock_irq(&zone->lru_lock);
1657
	/*
1658 1659 1660 1661
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1662
	 */
1663
	reclaim_stat->recent_rotated[file] += nr_rotated;
1664

1665 1666
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1667
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1668
	spin_unlock_irq(&zone->lru_lock);
1669 1670

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1671 1672
}

1673
#ifdef CONFIG_SWAP
1674
static int inactive_anon_is_low_global(struct zone *zone)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1687 1688
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1689
 * @lruvec: LRU vector to check
1690 1691 1692 1693
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1694
static int inactive_anon_is_low(struct lruvec *lruvec)
1695
{
1696 1697 1698 1699 1700 1701 1702
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1703
	if (!mem_cgroup_disabled())
1704
		return mem_cgroup_inactive_anon_is_low(lruvec);
1705

1706
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1707
}
1708
#else
1709
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1710 1711 1712 1713
{
	return 0;
}
#endif
1714

1715 1716
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1717
 * @lruvec: LRU vector to check
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1729
static int inactive_file_is_low(struct lruvec *lruvec)
1730
{
1731 1732 1733 1734 1735
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1736

1737
	return active > inactive;
1738 1739
}

H
Hugh Dickins 已提交
1740
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1741
{
H
Hugh Dickins 已提交
1742
	if (is_file_lru(lru))
1743
		return inactive_file_is_low(lruvec);
1744
	else
1745
		return inactive_anon_is_low(lruvec);
1746 1747
}

1748
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1749
				 struct lruvec *lruvec, struct scan_control *sc)
1750
{
1751
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1752
		if (inactive_list_is_low(lruvec, lru))
1753
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1754 1755 1756
		return 0;
	}

1757
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1758 1759
}

1760
static int vmscan_swappiness(struct scan_control *sc)
1761
{
1762
	if (global_reclaim(sc))
1763
		return vm_swappiness;
1764
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1765 1766
}

1767 1768 1769 1770 1771 1772 1773
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1774 1775 1776 1777 1778 1779
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1780 1781
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1782
 */
1783
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1784
			   unsigned long *nr)
1785
{
1786 1787 1788 1789
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1790
	unsigned long anon_prio, file_prio;
1791 1792 1793
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1794
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1795
	enum lru_list lru;
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1807
	if (current_is_kswapd() && zone->all_unreclaimable)
1808
		force_scan = true;
1809
	if (!global_reclaim(sc))
1810
		force_scan = true;
1811 1812

	/* If we have no swap space, do not bother scanning anon pages. */
1813
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1814
		scan_balance = SCAN_FILE;
1815 1816
		goto out;
	}
1817

1818 1819 1820 1821 1822 1823 1824 1825
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1826
		scan_balance = SCAN_FILE;
1827 1828 1829 1830 1831 1832 1833 1834 1835
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1836
		scan_balance = SCAN_EQUAL;
1837 1838 1839
		goto out;
	}

1840 1841 1842 1843
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1844

1845 1846 1847 1848 1849 1850
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1851
	if (global_reclaim(sc)) {
1852
		free = zone_page_state(zone, NR_FREE_PAGES);
1853
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1854
			scan_balance = SCAN_ANON;
1855
			goto out;
1856
		}
1857 1858
	}

1859 1860 1861 1862 1863
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1864
		scan_balance = SCAN_FILE;
1865 1866 1867
		goto out;
	}

1868 1869
	scan_balance = SCAN_FRACT;

1870 1871 1872 1873
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1874
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1875
	file_prio = 200 - anon_prio;
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1888
	spin_lock_irq(&zone->lru_lock);
1889 1890 1891
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1892 1893
	}

1894 1895 1896
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1897 1898 1899
	}

	/*
1900 1901 1902
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1903
	 */
1904
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1905
	ap /= reclaim_stat->recent_rotated[0] + 1;
1906

1907
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1908
	fp /= reclaim_stat->recent_rotated[1] + 1;
1909
	spin_unlock_irq(&zone->lru_lock);
1910

1911 1912 1913 1914
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1915 1916
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1917
		unsigned long size;
1918
		unsigned long scan;
1919

1920
		size = get_lru_size(lruvec, lru);
1921
		scan = size >> sc->priority;
1922

1923 1924
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1947
		nr[lru] = scan;
1948
	}
1949
}
1950

1951 1952 1953 1954 1955 1956
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1957
	unsigned long targets[NR_LRU_LISTS];
1958 1959 1960 1961 1962
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1963
	bool scan_adjusted = false;
1964 1965 1966

	get_scan_count(lruvec, sc, nr);

1967 1968 1969
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1970 1971 1972
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1973 1974 1975
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1976 1977 1978 1979 1980 1981 1982 1983 1984
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1985 1986 1987 1988

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1989
		/*
1990 1991 1992 1993
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1994
		 */
1995
		if (global_reclaim(sc) && !current_is_kswapd())
1996
			break;
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2054
/* Use reclaim/compaction for costly allocs or under memory pressure */
2055
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2056
{
2057
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2058
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2059
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2060 2061 2062 2063 2064
		return true;

	return false;
}

2065
/*
M
Mel Gorman 已提交
2066 2067 2068 2069 2070
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2071
 */
2072
static inline bool should_continue_reclaim(struct zone *zone,
2073 2074 2075 2076 2077 2078 2079 2080
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2081
	if (!in_reclaim_compaction(sc))
2082 2083
		return false;

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2106 2107 2108 2109 2110 2111

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2112
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2113
	if (get_nr_swap_pages() > 0)
2114
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2115 2116 2117 2118 2119
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2120
	switch (compaction_suitable(zone, sc->order)) {
2121 2122 2123 2124 2125 2126 2127 2128
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2129
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2130
{
2131
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2132

2133 2134 2135 2136 2137 2138 2139
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2140

2141 2142
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2143

2144 2145 2146
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2147

2148
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2149

2150
			shrink_lruvec(lruvec, sc);
2151

2152
			/*
2153 2154
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2155
			 * zone.
2156 2157 2158 2159 2160
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2161
			 */
2162 2163
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2164 2165 2166 2167 2168
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2169 2170 2171 2172 2173

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2174 2175
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2176 2177
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2195
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2196 2197 2198 2199 2200 2201 2202 2203
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2204
	if (compaction_deferred(zone, sc->order))
2205 2206 2207 2208 2209 2210 2211 2212 2213
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2214 2215 2216 2217 2218
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2219 2220
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2221 2222
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2223 2224 2225
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2226 2227 2228
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2229 2230
 *
 * This function returns true if a zone is being reclaimed for a costly
2231
 * high-order allocation and compaction is ready to begin. This indicates to
2232 2233
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2234
 */
2235
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2236
{
2237
	struct zoneref *z;
2238
	struct zone *zone;
2239 2240
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2241
	bool aborted_reclaim = false;
2242

2243 2244 2245 2246 2247 2248 2249 2250
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2251 2252
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2253
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2254
			continue;
2255 2256 2257 2258
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2259
		if (global_reclaim(sc)) {
2260 2261
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2262 2263
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2264
				continue;	/* Let kswapd poll it */
2265
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2266
				/*
2267 2268 2269 2270 2271
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2272 2273
				 * noticeable problem, like transparent huge
				 * page allocations.
2274
				 */
2275
				if (compaction_ready(zone, sc)) {
2276
					aborted_reclaim = true;
2277
					continue;
2278
				}
2279
			}
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2293
		}
2294

2295
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2296
	}
2297

2298
	return aborted_reclaim;
2299 2300 2301 2302 2303 2304 2305
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2306
/* All zones in zonelist are unreclaimable? */
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2319 2320
		if (!zone->all_unreclaimable)
			return false;
2321 2322
	}

2323
	return true;
L
Linus Torvalds 已提交
2324
}
2325

L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332 2333
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2334 2335 2336 2337
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2338 2339 2340
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2341
 */
2342
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2343 2344
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2345
{
2346
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2347
	struct reclaim_state *reclaim_state = current->reclaim_state;
2348
	struct zoneref *z;
2349
	struct zone *zone;
2350
	unsigned long writeback_threshold;
2351
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2352

2353 2354
	delayacct_freepages_start();

2355
	if (global_reclaim(sc))
2356
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2357

2358
	do {
2359 2360
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2361
		sc->nr_scanned = 0;
2362
		aborted_reclaim = shrink_zones(zonelist, sc);
2363

2364 2365 2366 2367
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2368
		if (global_reclaim(sc)) {
2369
			unsigned long lru_pages = 0;
2370 2371
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2372 2373 2374 2375 2376 2377
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2378
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2379
			if (reclaim_state) {
2380
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2381 2382
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2383
		}
2384
		total_scanned += sc->nr_scanned;
2385
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2386 2387
			goto out;

2388 2389 2390 2391 2392 2393 2394
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2395 2396 2397 2398 2399 2400 2401
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2402 2403
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2404 2405
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2406
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2407
		}
2408
	} while (--sc->priority >= 0);
2409

L
Linus Torvalds 已提交
2410
out:
2411 2412
	delayacct_freepages_end();

2413 2414 2415
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2416 2417 2418 2419 2420 2421 2422 2423
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2424 2425
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2426 2427
		return 1;

2428
	/* top priority shrink_zones still had more to do? don't OOM, then */
2429
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2430 2431 2432
		return 1;

	return 0;
L
Linus Torvalds 已提交
2433 2434
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2465 2466 2467 2468
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2469
 */
2470
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2485 2486 2487 2488 2489 2490 2491 2492
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2493 2494 2495 2496 2497

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2498
		goto out;
2499

2500 2501 2502
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2514 2515

		goto check_pending;
2516 2517 2518 2519 2520
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2521 2522 2523 2524 2525 2526 2527

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2528 2529
}

2530
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2531
				gfp_t gfp_mask, nodemask_t *nodemask)
2532
{
2533
	unsigned long nr_reclaimed;
2534
	struct scan_control sc = {
2535
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2536
		.may_writepage = !laptop_mode,
2537
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2538
		.may_unmap = 1,
2539
		.may_swap = 1,
2540
		.order = order,
2541
		.priority = DEF_PRIORITY,
2542
		.target_mem_cgroup = NULL,
2543
		.nodemask = nodemask,
2544
	};
2545 2546 2547
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2548

2549
	/*
2550 2551 2552
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2553
	 */
2554
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2555 2556
		return 1;

2557 2558 2559 2560
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2561
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2562 2563 2564 2565

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2566 2567
}

A
Andrew Morton 已提交
2568
#ifdef CONFIG_MEMCG
2569

2570
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2571
						gfp_t gfp_mask, bool noswap,
2572 2573
						struct zone *zone,
						unsigned long *nr_scanned)
2574 2575
{
	struct scan_control sc = {
2576
		.nr_scanned = 0,
2577
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2578 2579 2580 2581
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2582
		.priority = 0,
2583
		.target_mem_cgroup = memcg,
2584
	};
2585
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2586

2587 2588
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2589

2590
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2591 2592 2593
						      sc.may_writepage,
						      sc.gfp_mask);

2594 2595 2596 2597 2598 2599 2600
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2601
	shrink_lruvec(lruvec, &sc);
2602 2603 2604

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2605
	*nr_scanned = sc.nr_scanned;
2606 2607 2608
	return sc.nr_reclaimed;
}

2609
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2610
					   gfp_t gfp_mask,
2611
					   bool noswap)
2612
{
2613
	struct zonelist *zonelist;
2614
	unsigned long nr_reclaimed;
2615
	int nid;
2616 2617
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2618
		.may_unmap = 1,
2619
		.may_swap = !noswap,
2620
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2621
		.order = 0,
2622
		.priority = DEF_PRIORITY,
2623
		.target_mem_cgroup = memcg,
2624
		.nodemask = NULL, /* we don't care the placement */
2625 2626 2627 2628 2629
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2630 2631
	};

2632 2633 2634 2635 2636
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2637
	nid = mem_cgroup_select_victim_node(memcg);
2638 2639

	zonelist = NODE_DATA(nid)->node_zonelists;
2640 2641 2642 2643 2644

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2645
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2646 2647 2648 2649

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2650 2651 2652
}
#endif

2653
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2654
{
2655
	struct mem_cgroup *memcg;
2656

2657 2658 2659 2660 2661
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2662
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2663

2664
		if (inactive_anon_is_low(lruvec))
2665
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2666
					   sc, LRU_ACTIVE_ANON);
2667 2668 2669

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2670 2671
}

2672 2673 2674 2675 2676 2677 2678
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2679 2680
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2681 2682 2683 2684 2685
		return false;

	return true;
}

2686
/*
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2697 2698 2699 2700
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2701
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2702 2703 2704 2705
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2706
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2707
{
2708
	unsigned long managed_pages = 0;
2709
	unsigned long balanced_pages = 0;
2710 2711
	int i;

2712 2713 2714
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2715

2716 2717 2718
		if (!populated_zone(zone))
			continue;

2719
		managed_pages += zone->managed_pages;
2720 2721 2722 2723 2724 2725 2726 2727 2728

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2729
			balanced_pages += zone->managed_pages;
2730 2731 2732 2733
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2734
			balanced_pages += zone->managed_pages;
2735 2736 2737 2738 2739
		else if (!order)
			return false;
	}

	if (order)
2740
		return balanced_pages >= (managed_pages >> 2);
2741 2742
	else
		return true;
2743 2744
}

2745 2746 2747 2748 2749 2750 2751
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2752
					int classzone_idx)
2753 2754 2755
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2771

2772
	return pgdat_balanced(pgdat, order, classzone_idx);
2773 2774
}

2775 2776 2777
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2778 2779
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2780 2781
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2782
 */
2783
static bool kswapd_shrink_zone(struct zone *zone,
2784
			       int classzone_idx,
2785
			       struct scan_control *sc,
2786 2787
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2788 2789
{
	unsigned long nr_slab;
2790 2791
	int testorder = sc->order;
	unsigned long balance_gap;
2792 2793 2794 2795
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2796
	bool lowmem_pressure;
2797 2798 2799

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2831 2832 2833 2834 2835 2836
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2837 2838 2839
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2840 2841
	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
2842

2843 2844
	zone_clear_flag(zone, ZONE_WRITEBACK);

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
	if (!zone->all_unreclaimable &&
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2857
	return sc->nr_scanned >= sc->nr_to_reclaim;
2858 2859
}

L
Linus Torvalds 已提交
2860 2861
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2862
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2863
 *
2864
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2875 2876 2877 2878 2879
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2880
 */
2881
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2882
							int *classzone_idx)
L
Linus Torvalds 已提交
2883 2884
{
	int i;
2885
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2886 2887
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2888 2889
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2890
		.priority = DEF_PRIORITY,
2891
		.may_unmap = 1,
2892
		.may_swap = 1,
2893
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2894
		.order = order,
2895
		.target_mem_cgroup = NULL,
2896
	};
2897
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2898

2899
	do {
L
Linus Torvalds 已提交
2900
		unsigned long lru_pages = 0;
2901
		unsigned long nr_attempted = 0;
2902
		bool raise_priority = true;
2903
		bool pgdat_needs_compaction = (order > 0);
2904 2905

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2906

2907 2908 2909 2910 2911 2912
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2913

2914 2915
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2916

2917 2918
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2919
				continue;
L
Linus Torvalds 已提交
2920

2921 2922 2923 2924
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2925
			age_active_anon(zone, &sc);
2926

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2938
			if (!zone_balanced(zone, order, 0, 0)) {
2939
				end_zone = i;
A
Andrew Morton 已提交
2940
				break;
2941
			} else {
2942 2943 2944 2945
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2946
				zone_clear_flag(zone, ZONE_CONGESTED);
2947
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2948 2949
			}
		}
2950

2951
		if (i < 0)
A
Andrew Morton 已提交
2952 2953
			goto out;

L
Linus Torvalds 已提交
2954 2955 2956
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2957 2958 2959
			if (!populated_zone(zone))
				continue;

2960
			lru_pages += zone_reclaimable_pages(zone);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2972 2973
		}

2974 2975 2976 2977 2978 2979 2980
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2993
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2994 2995
				continue;

2996 2997
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2998 2999 3000
				continue;

			sc.nr_scanned = 0;
3001

3002
			nr_soft_scanned = 0;
3003 3004 3005
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
3006 3007 3008 3009
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
3010

3011
			/*
3012 3013 3014 3015
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3016
			 */
3017 3018 3019
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3020
		}
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3031
		/*
3032 3033 3034 3035 3036 3037
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3038
		 */
3039 3040
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3041

3042 3043 3044
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3045

3046 3047 3048 3049 3050 3051 3052
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3053
		/*
3054 3055
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3056
		 */
3057 3058
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3059
	} while (sc.priority >= 1 &&
3060
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3061

3062
out:
3063
	/*
3064
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3065 3066 3067 3068
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3069
	*classzone_idx = end_zone;
3070
	return order;
L
Linus Torvalds 已提交
3071 3072
}

3073
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3084
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3085 3086 3087 3088 3089 3090 3091 3092 3093
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3094
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3106

3107 3108 3109 3110 3111 3112 3113 3114
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3115 3116 3117
		if (!kthread_should_stop())
			schedule();

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3128 3129
/*
 * The background pageout daemon, started as a kernel thread
3130
 * from the init process.
L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3143
	unsigned long order, new_order;
3144
	unsigned balanced_order;
3145
	int classzone_idx, new_classzone_idx;
3146
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3147 3148
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3149

L
Linus Torvalds 已提交
3150 3151 3152
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3153
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3154

3155 3156
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3157
	if (!cpumask_empty(cpumask))
3158
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3173
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3174
	set_freezable();
L
Linus Torvalds 已提交
3175

3176
	order = new_order = 0;
3177
	balanced_order = 0;
3178
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3179
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3180
	for ( ; ; ) {
3181
		bool ret;
3182

3183 3184 3185 3186 3187
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3188 3189
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3190 3191 3192 3193 3194 3195
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3196
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3197 3198
			/*
			 * Don't sleep if someone wants a larger 'order'
3199
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3200 3201
			 */
			order = new_order;
3202
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3203
		} else {
3204 3205
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3206
			order = pgdat->kswapd_max_order;
3207
			classzone_idx = pgdat->classzone_idx;
3208 3209
			new_order = order;
			new_classzone_idx = classzone_idx;
3210
			pgdat->kswapd_max_order = 0;
3211
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3212 3213
		}

3214 3215 3216 3217 3218 3219 3220 3221
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3222 3223
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3224 3225 3226
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3227
		}
L
Linus Torvalds 已提交
3228
	}
3229 3230

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3231 3232 3233 3234 3235 3236
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3237
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3238 3239 3240
{
	pg_data_t *pgdat;

3241
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3242 3243
		return;

3244
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3245
		return;
3246
	pgdat = zone->zone_pgdat;
3247
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3248
		pgdat->kswapd_max_order = order;
3249 3250
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3251
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3252
		return;
3253 3254 3255 3256
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3257
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3258 3259
}

3260 3261 3262 3263 3264 3265 3266 3267
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3268
{
3269 3270 3271 3272 3273
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3274
	if (get_nr_swap_pages() > 0)
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3288
	if (get_nr_swap_pages() > 0)
3289 3290 3291 3292
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3293 3294
}

3295
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3296
/*
3297
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3298 3299 3300 3301 3302
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3303
 */
3304
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3305
{
3306 3307
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3308 3309 3310
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3311
		.may_writepage = 1,
3312 3313 3314
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3315
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3316
	};
3317 3318 3319 3320
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3321 3322
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3323

3324 3325 3326 3327
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3328

3329
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3330

3331 3332 3333
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3334

3335
	return nr_reclaimed;
L
Linus Torvalds 已提交
3336
}
3337
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3338 3339 3340 3341 3342

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3343 3344
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3345
{
3346
	int nid;
L
Linus Torvalds 已提交
3347

3348
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3349
		for_each_node_state(nid, N_MEMORY) {
3350
			pg_data_t *pgdat = NODE_DATA(nid);
3351 3352 3353
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3354

3355
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3356
				/* One of our CPUs online: restore mask */
3357
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3358 3359 3360 3361 3362
		}
	}
	return NOTIFY_OK;
}

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3379 3380
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3381
		pgdat->kswapd = NULL;
3382 3383 3384 3385
	}
	return ret;
}

3386
/*
3387 3388
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3389 3390 3391 3392 3393
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3394
	if (kswapd) {
3395
		kthread_stop(kswapd);
3396 3397
		NODE_DATA(nid)->kswapd = NULL;
	}
3398 3399
}

L
Linus Torvalds 已提交
3400 3401
static int __init kswapd_init(void)
{
3402
	int nid;
3403

L
Linus Torvalds 已提交
3404
	swap_setup();
3405
	for_each_node_state(nid, N_MEMORY)
3406
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3407 3408 3409 3410 3411
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3422
#define RECLAIM_OFF 0
3423
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3424 3425 3426
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3427 3428 3429 3430 3431 3432 3433
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3434 3435 3436 3437 3438 3439
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3440 3441 3442 3443 3444 3445
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3488 3489 3490
/*
 * Try to free up some pages from this zone through reclaim.
 */
3491
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3492
{
3493
	/* Minimum pages needed in order to stay on node */
3494
	const unsigned long nr_pages = 1 << order;
3495 3496
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3497 3498
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3499
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3500
		.may_swap = 1,
3501
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3502
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3503
		.order = order,
3504
		.priority = ZONE_RECLAIM_PRIORITY,
3505
	};
3506 3507 3508
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3509
	unsigned long nr_slab_pages0, nr_slab_pages1;
3510 3511

	cond_resched();
3512 3513 3514 3515 3516 3517
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3518
	lockdep_set_current_reclaim_state(gfp_mask);
3519 3520
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3521

3522
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3523 3524 3525 3526 3527
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3528 3529
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3530
	}
3531

3532 3533
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3534
		/*
3535
		 * shrink_slab() does not currently allow us to determine how
3536 3537 3538 3539
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3540
		 *
3541 3542
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3543
		 */
3544 3545 3546 3547
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3548
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3549 3550 3551 3552 3553 3554 3555 3556
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3557 3558 3559 3560 3561

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3562 3563 3564
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3565 3566
	}

3567
	p->reclaim_state = NULL;
3568
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3569
	lockdep_clear_current_reclaim_state();
3570
	return sc.nr_reclaimed >= nr_pages;
3571
}
3572 3573 3574 3575

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3576
	int ret;
3577 3578

	/*
3579 3580
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3581
	 *
3582 3583 3584 3585 3586
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3587
	 */
3588 3589
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3590
		return ZONE_RECLAIM_FULL;
3591

3592
	if (zone->all_unreclaimable)
3593
		return ZONE_RECLAIM_FULL;
3594

3595
	/*
3596
	 * Do not scan if the allocation should not be delayed.
3597
	 */
3598
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3599
		return ZONE_RECLAIM_NOSCAN;
3600 3601 3602 3603 3604 3605 3606

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3607
	node_id = zone_to_nid(zone);
3608
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3609
		return ZONE_RECLAIM_NOSCAN;
3610 3611

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3612 3613
		return ZONE_RECLAIM_NOSCAN;

3614 3615 3616
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3617 3618 3619
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3620
	return ret;
3621
}
3622
#endif
L
Lee Schermerhorn 已提交
3623 3624 3625 3626 3627 3628

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3629
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3630 3631
 *
 * Reasons page might not be evictable:
3632
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3633
 * (2) page is part of an mlocked VMA
3634
 *
L
Lee Schermerhorn 已提交
3635
 */
3636
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3637
{
3638
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3639
}
3640

3641
#ifdef CONFIG_SHMEM
3642
/**
3643 3644 3645
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3646
 *
3647
 * Checks pages for evictability and moves them to the appropriate lru list.
3648 3649
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3650
 */
3651
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3652
{
3653
	struct lruvec *lruvec;
3654 3655 3656 3657
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3658

3659 3660 3661
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3662

3663 3664 3665 3666 3667 3668 3669 3670
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3671
		lruvec = mem_cgroup_page_lruvec(page, zone);
3672

3673 3674
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3675

3676
		if (page_evictable(page)) {
3677 3678 3679 3680
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3681 3682
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3683
			pgrescued++;
3684
		}
3685
	}
3686

3687 3688 3689 3690
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3691 3692
	}
}
3693
#endif /* CONFIG_SHMEM */
3694

3695
static void warn_scan_unevictable_pages(void)
3696
{
3697
	printk_once(KERN_WARNING
3698
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3699
		    "disabled for lack of a legitimate use case.  If you have "
3700 3701
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3702 3703 3704 3705 3706 3707 3708 3709 3710
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3711
			   void __user *buffer,
3712 3713
			   size_t *length, loff_t *ppos)
{
3714
	warn_scan_unevictable_pages();
3715
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3716 3717 3718 3719
	scan_unevictable_pages = 0;
	return 0;
}

3720
#ifdef CONFIG_NUMA
3721 3722 3723 3724 3725
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3726 3727
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3728 3729
					  char *buf)
{
3730
	warn_scan_unevictable_pages();
3731 3732 3733
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3734 3735
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3736 3737
					const char *buf, size_t count)
{
3738
	warn_scan_unevictable_pages();
3739 3740 3741 3742
	return 1;
}


3743
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3744 3745 3746 3747 3748
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3749
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3750 3751 3752 3753
}

void scan_unevictable_unregister_node(struct node *node)
{
3754
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3755
}
3756
#endif