vmscan.c 93.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83
	/* Scan (total_size >> priority) pages at once */
	int priority;

84 85 86 87 88
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
89

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96
};

97 98 99 100 101
struct mem_cgroup_zone {
	struct mem_cgroup *mem_cgroup;
	struct zone *zone;
};

L
Linus Torvalds 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
136
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
137 138 139 140

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

141
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
142 143
static bool global_reclaim(struct scan_control *sc)
{
144
	return !sc->target_mem_cgroup;
145
}
146
#else
147 148 149 150
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
151 152
#endif

153
static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
154
{
155
	return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
156 157
}

158 159
static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
				       enum lru_list lru)
160
{
161
	if (!mem_cgroup_disabled())
162 163 164 165
		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
						    zone_to_nid(mz->zone),
						    zone_idx(mz->zone),
						    BIT(lru));
166

167
	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
168 169 170
}


L
Linus Torvalds 已提交
171 172 173
/*
 * Add a shrinker callback to be called from the vm
 */
174
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
175
{
176
	atomic_long_set(&shrinker->nr_in_batch, 0);
177 178 179
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
180
}
181
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
182 183 184 185

/*
 * Remove one
 */
186
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
187 188 189 190 191
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
192
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
193

194 195 196 197 198 199 200 201
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
202 203 204 205 206 207 208 209 210
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
211
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
212 213 214 215 216 217 218
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
219 220
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
221
 */
222
unsigned long shrink_slab(struct shrink_control *shrink,
223
			  unsigned long nr_pages_scanned,
224
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
225 226
{
	struct shrinker *shrinker;
227
	unsigned long ret = 0;
L
Linus Torvalds 已提交
228

229 230
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
231

232 233 234 235 236
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
237 238 239

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
240 241
		long total_scan;
		long max_pass;
242
		int shrink_ret = 0;
243 244
		long nr;
		long new_nr;
245 246
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
247

248 249 250 251
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

252 253 254 255 256
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
257
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
258 259

		total_scan = nr;
260
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
261
		delta *= max_pass;
L
Linus Torvalds 已提交
262
		do_div(delta, lru_pages + 1);
263 264
		total_scan += delta;
		if (total_scan < 0) {
265 266
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
267 268
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
269 270
		}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

286 287 288 289 290
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
291 292
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
293

294
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
295 296 297
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

298
		while (total_scan >= batch_size) {
299
			int nr_before;
L
Linus Torvalds 已提交
300

301 302
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
303
							batch_size);
L
Linus Torvalds 已提交
304 305
			if (shrink_ret == -1)
				break;
306 307
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
308 309
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
310 311 312 313

			cond_resched();
		}

314 315 316 317 318
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
319 320 321 322 323
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
324 325

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
326 327
	}
	up_read(&shrinker_rwsem);
328 329
out:
	cond_resched();
330
	return ret;
L
Linus Torvalds 已提交
331 332 333 334
}

static inline int is_page_cache_freeable(struct page *page)
{
335 336 337 338 339
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
340
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
341 342
}

343 344
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
345
{
346
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
370
	lock_page(page);
371 372
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
373 374 375
	unlock_page(page);
}

376 377 378 379 380 381 382 383 384 385 386 387
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
388
/*
A
Andrew Morton 已提交
389 390
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
391
 */
392
static pageout_t pageout(struct page *page, struct address_space *mapping,
393
			 struct scan_control *sc)
L
Linus Torvalds 已提交
394 395 396 397 398 399 400 401
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
402
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
418
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
419 420
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
421
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
422 423 424 425 426 427 428
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
429
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
430 431 432 433 434 435 436
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
437 438
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
439 440 441 442 443 444 445
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
446
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
447 448 449
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
450

L
Linus Torvalds 已提交
451 452 453 454
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
455
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
456
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
457 458 459 460 461 462
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

463
/*
N
Nick Piggin 已提交
464 465
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
466
 */
N
Nick Piggin 已提交
467
static int __remove_mapping(struct address_space *mapping, struct page *page)
468
{
469 470
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
471

N
Nick Piggin 已提交
472
	spin_lock_irq(&mapping->tree_lock);
473
	/*
N
Nick Piggin 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
497
	 */
N
Nick Piggin 已提交
498
	if (!page_freeze_refs(page, 2))
499
		goto cannot_free;
N
Nick Piggin 已提交
500 501 502
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
503
		goto cannot_free;
N
Nick Piggin 已提交
504
	}
505 506 507 508

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
509
		spin_unlock_irq(&mapping->tree_lock);
510
		swapcache_free(swap, page);
N
Nick Piggin 已提交
511
	} else {
512 513 514 515
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

516
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
517
		spin_unlock_irq(&mapping->tree_lock);
518
		mem_cgroup_uncharge_cache_page(page);
519 520 521

		if (freepage != NULL)
			freepage(page);
522 523 524 525 526
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
527
	spin_unlock_irq(&mapping->tree_lock);
528 529 530
	return 0;
}

N
Nick Piggin 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
564
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
578
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
579 580 581 582 583 584 585 586
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
587
		/*
588 589 590
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
591
		 * isolation/check_move_unevictable_pages,
592
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
593 594
		 * the page back to the evictable list.
		 *
595
		 * The other side is TestClearPageMlocked() or shmem_lock().
596 597
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

616 617 618 619 620
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
621 622 623
	put_page(page);		/* drop ref from isolate */
}

624 625 626
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
627
	PAGEREF_KEEP,
628 629 630 631 632 633
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
634
	int referenced_ptes, referenced_page;
635 636
	unsigned long vm_flags;

637 638
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
639
	referenced_page = TestClearPageReferenced(page);
640 641 642 643 644 645 646 647

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

648
	if (referenced_ptes) {
649
		if (PageSwapBacked(page))
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

667
		if (referenced_page || referenced_ptes > 1)
668 669
			return PAGEREF_ACTIVATE;

670 671 672 673 674 675
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

676 677
		return PAGEREF_KEEP;
	}
678 679

	/* Reclaim if clean, defer dirty pages to writeback */
680
	if (referenced_page && !PageSwapBacked(page))
681 682 683
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
684 685
}

L
Linus Torvalds 已提交
686
/*
A
Andrew Morton 已提交
687
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
688
 */
A
Andrew Morton 已提交
689
static unsigned long shrink_page_list(struct list_head *page_list,
690
				      struct zone *zone,
691
				      struct scan_control *sc,
692 693
				      unsigned long *ret_nr_dirty,
				      unsigned long *ret_nr_writeback)
L
Linus Torvalds 已提交
694 695
{
	LIST_HEAD(ret_pages);
696
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
697
	int pgactivate = 0;
698 699
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
700
	unsigned long nr_reclaimed = 0;
701
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
702 703 704 705

	cond_resched();

	while (!list_empty(page_list)) {
706
		enum page_references references;
L
Linus Torvalds 已提交
707 708 709 710 711 712 713 714 715
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
716
		if (!trylock_page(page))
L
Linus Torvalds 已提交
717 718
			goto keep;

N
Nick Piggin 已提交
719
		VM_BUG_ON(PageActive(page));
720
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
721 722

		sc->nr_scanned++;
723

N
Nick Piggin 已提交
724 725
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
726

727
		if (!sc->may_unmap && page_mapped(page))
728 729
			goto keep_locked;

L
Linus Torvalds 已提交
730 731 732 733
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

734 735 736 737
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
738
			nr_writeback++;
739 740
			unlock_page(page);
			goto keep;
741
		}
L
Linus Torvalds 已提交
742

743
		references = page_check_references(page, sc);
744 745
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
746
			goto activate_locked;
747 748
		case PAGEREF_KEEP:
			goto keep_locked;
749 750 751 752
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
753 754 755 756 757

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
758
		if (PageAnon(page) && !PageSwapCache(page)) {
759 760
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
761
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
762
				goto activate_locked;
763
			may_enter_fs = 1;
N
Nick Piggin 已提交
764
		}
L
Linus Torvalds 已提交
765 766 767 768 769 770 771 772

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
773
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
774 775 776 777
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
778 779
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
780 781 782 783 784 785
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
786 787
			nr_dirty++;

788 789
			/*
			 * Only kswapd can writeback filesystem pages to
790 791
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
792
			 */
793
			if (page_is_file_cache(page) &&
794 795
					(!current_is_kswapd() ||
					 sc->priority >= DEF_PRIORITY - 2)) {
796 797 798 799 800 801 802 803 804
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

805 806 807
				goto keep_locked;
			}

808
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
809
				goto keep_locked;
810
			if (!may_enter_fs)
L
Linus Torvalds 已提交
811
				goto keep_locked;
812
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
813 814 815
				goto keep_locked;

			/* Page is dirty, try to write it out here */
816
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
817
			case PAGE_KEEP:
818
				nr_congested++;
L
Linus Torvalds 已提交
819 820 821 822
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
823
				if (PageWriteback(page))
824
					goto keep;
825
				if (PageDirty(page))
L
Linus Torvalds 已提交
826
					goto keep;
827

L
Linus Torvalds 已提交
828 829 830 831
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
832
				if (!trylock_page(page))
L
Linus Torvalds 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
852
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
853 854 855 856 857 858 859 860 861 862
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
863
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
864 865
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
882 883
		}

N
Nick Piggin 已提交
884
		if (!mapping || !__remove_mapping(mapping, page))
885
			goto keep_locked;
L
Linus Torvalds 已提交
886

N
Nick Piggin 已提交
887 888 889 890 891 892 893 894
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
895
free_it:
896
		nr_reclaimed++;
897 898 899 900 901 902

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
903 904
		continue;

N
Nick Piggin 已提交
905
cull_mlocked:
906 907
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
908 909 910 911
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
912
activate_locked:
913 914
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
915
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
916
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
917 918 919 920 921 922
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
923
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
924
	}
925

926 927 928 929 930 931
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
932
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
933
		zone_set_flag(zone, ZONE_CONGESTED);
934

935
	free_hot_cold_page_list(&free_pages, 1);
936

L
Linus Torvalds 已提交
937
	list_splice(&ret_pages, page_list);
938
	count_vm_events(PGACTIVATE, pgactivate);
939 940
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
941
	return nr_reclaimed;
L
Linus Torvalds 已提交
942 943
}

A
Andy Whitcroft 已提交
944 945 946 947 948 949 950 951 952 953
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
954
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
955 956 957 958 959 960 961
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Mel Gorman 已提交
962
	/* Do not give back unevictable pages for compaction */
L
Lee Schermerhorn 已提交
963 964 965
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
966
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
967

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1001

1002 1003 1004
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1029
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1030
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1031
 * @nr_scanned:	The number of pages that were scanned.
1032
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1033
 * @mode:	One of the LRU isolation modes
1034
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1035 1036 1037
 *
 * returns how many pages were moved onto *@dst.
 */
1038
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1039
		struct lruvec *lruvec, struct list_head *dst,
1040
		unsigned long *nr_scanned, struct scan_control *sc,
1041
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1042
{
H
Hugh Dickins 已提交
1043
	struct list_head *src;
1044
	unsigned long nr_taken = 0;
1045
	unsigned long scan;
1046
	int file = is_file_lru(lru);
H
Hugh Dickins 已提交
1047 1048

	src = &lruvec->lists[lru];
L
Linus Torvalds 已提交
1049

1050
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1051 1052
		struct page *page;

L
Linus Torvalds 已提交
1053 1054 1055
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1056
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1057

1058
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1059
		case 0:
1060
			mem_cgroup_lru_del_list(page, lru);
A
Andy Whitcroft 已提交
1061
			list_move(&page->lru, dst);
1062
			nr_taken += hpage_nr_pages(page);
A
Andy Whitcroft 已提交
1063 1064 1065 1066 1067 1068
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1069

A
Andy Whitcroft 已提交
1070 1071 1072
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1073 1074
	}

H
Hugh Dickins 已提交
1075
	*nr_scanned = scan;
1076

1077
	trace_mm_vmscan_lru_isolate(sc->order,
1078 1079
			nr_to_scan, scan,
			nr_taken,
1080
			mode, file);
L
Linus Torvalds 已提交
1081 1082 1083
	return nr_taken;
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1095 1096 1097
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1113 1114
	VM_BUG_ON(!page_count(page));

1115 1116 1117 1118
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
1119
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1120
			int lru = page_lru(page);
1121
			ret = 0;
1122
			get_page(page);
1123
			ClearPageLRU(page);
1124 1125

			del_page_from_lru_list(zone, page, lru);
1126 1127 1128 1129 1130 1131
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1143
	if (!global_reclaim(sc))
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

1157
static noinline_for_stack void
1158
putback_inactive_pages(struct lruvec *lruvec,
1159
		       struct list_head *page_list)
1160
{
1161 1162
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1163
	LIST_HEAD(pages_to_free);
1164 1165 1166 1167 1168

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1169
		struct page *page = lru_to_page(page_list);
1170
		int lru;
1171

1172 1173 1174 1175 1176 1177 1178 1179
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
		if (unlikely(!page_evictable(page, NULL))) {
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1180
		SetPageLRU(page);
1181
		lru = page_lru(page);
1182
		add_page_to_lru_list(zone, page, lru);
1183 1184
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1185 1186
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1187
		}
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1199 1200 1201
		}
	}

1202 1203 1204 1205
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1206 1207
}

L
Linus Torvalds 已提交
1208
/*
A
Andrew Morton 已提交
1209 1210
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1211
 */
1212
static noinline_for_stack unsigned long
1213
shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1214
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1215 1216
{
	LIST_HEAD(page_list);
1217
	unsigned long nr_scanned;
1218
	unsigned long nr_reclaimed = 0;
1219
	unsigned long nr_taken;
1220 1221
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1222
	isolate_mode_t isolate_mode = 0;
1223
	int file = is_file_lru(lru);
1224
	struct zone *zone = mz->zone;
1225
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1226
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
1227

1228
	while (unlikely(too_many_isolated(zone, file, sc))) {
1229
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1230 1231 1232 1233 1234 1235

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1236
	lru_add_drain();
1237 1238

	if (!sc->may_unmap)
1239
		isolate_mode |= ISOLATE_UNMAPPED;
1240
	if (!sc->may_writepage)
1241
		isolate_mode |= ISOLATE_CLEAN;
1242

L
Linus Torvalds 已提交
1243
	spin_lock_irq(&zone->lru_lock);
1244

1245 1246
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1247 1248 1249 1250

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1251
	if (global_reclaim(sc)) {
1252 1253 1254 1255 1256 1257 1258 1259
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
					       nr_scanned);
		else
			__count_zone_vm_events(PGSCAN_DIRECT, zone,
					       nr_scanned);
	}
1260
	spin_unlock_irq(&zone->lru_lock);
1261

1262
	if (nr_taken == 0)
1263
		return 0;
A
Andy Whitcroft 已提交
1264

1265
	nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1266
						&nr_dirty, &nr_writeback);
1267

1268 1269
	spin_lock_irq(&zone->lru_lock);

1270
	reclaim_stat->recent_scanned[file] += nr_taken;
1271

Y
Ying Han 已提交
1272 1273 1274 1275 1276 1277 1278 1279
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1280

1281
	putback_inactive_pages(lruvec, &page_list);
1282

1283
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1284 1285 1286 1287

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1312 1313
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1314 1315
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1316 1317 1318
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1319
		sc->priority,
M
Mel Gorman 已提交
1320
		trace_shrink_flags(file));
1321
	return nr_reclaimed;
L
Linus Torvalds 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1341

1342 1343
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
1344
				     struct list_head *pages_to_free,
1345 1346 1347 1348 1349 1350
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct page *page;

	while (!list_empty(list)) {
1351 1352
		struct lruvec *lruvec;

1353 1354 1355 1356 1357
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1358 1359
		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
		list_move(&page->lru, &lruvec->lists[lru]);
1360
		pgmoved += hpage_nr_pages(page);
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
			del_page_from_lru_list(zone, page, lru);

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1373 1374 1375 1376 1377 1378
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1379

H
Hugh Dickins 已提交
1380
static void shrink_active_list(unsigned long nr_to_scan,
1381 1382
			       struct mem_cgroup_zone *mz,
			       struct scan_control *sc,
1383
			       enum lru_list lru)
L
Linus Torvalds 已提交
1384
{
1385
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1386
	unsigned long nr_scanned;
1387
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1388
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1389
	LIST_HEAD(l_active);
1390
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1391
	struct page *page;
1392
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1393
	unsigned long nr_rotated = 0;
1394
	isolate_mode_t isolate_mode = 0;
1395
	int file = is_file_lru(lru);
1396
	struct zone *zone = mz->zone;
1397
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, mz->mem_cgroup);
L
Linus Torvalds 已提交
1398 1399

	lru_add_drain();
1400 1401

	if (!sc->may_unmap)
1402
		isolate_mode |= ISOLATE_UNMAPPED;
1403
	if (!sc->may_writepage)
1404
		isolate_mode |= ISOLATE_CLEAN;
1405

L
Linus Torvalds 已提交
1406
	spin_lock_irq(&zone->lru_lock);
1407

1408 1409
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1410
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1411
		zone->pages_scanned += nr_scanned;
1412

1413
	reclaim_stat->recent_scanned[file] += nr_taken;
1414

H
Hugh Dickins 已提交
1415
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1416
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1417
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1424

L
Lee Schermerhorn 已提交
1425 1426 1427 1428 1429
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1430 1431 1432 1433 1434 1435 1436 1437
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1438 1439
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1440
			nr_rotated += hpage_nr_pages(page);
1441 1442 1443 1444 1445 1446 1447 1448 1449
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1450
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1451 1452 1453 1454
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1455

1456
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1457 1458 1459
		list_add(&page->lru, &l_inactive);
	}

1460
	/*
1461
	 * Move pages back to the lru list.
1462
	 */
1463
	spin_lock_irq(&zone->lru_lock);
1464
	/*
1465 1466 1467 1468
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1469
	 */
1470
	reclaim_stat->recent_rotated[file] += nr_rotated;
1471

1472 1473
	move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
	move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1474
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1475
	spin_unlock_irq(&zone->lru_lock);
1476 1477

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1478 1479
}

1480
#ifdef CONFIG_SWAP
1481
static int inactive_anon_is_low_global(struct zone *zone)
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1494 1495 1496 1497 1498 1499 1500 1501
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1502
static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1503
{
1504 1505 1506 1507 1508 1509 1510
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1511
	if (!mem_cgroup_disabled())
1512 1513 1514 1515
		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
						       mz->zone);

	return inactive_anon_is_low_global(mz->zone);
1516
}
1517
#else
1518
static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1519 1520 1521 1522
{
	return 0;
}
#endif
1523

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1536
 * @mz: memory cgroup and zone to check
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1548
static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1549
{
1550
	if (!mem_cgroup_disabled())
1551 1552
		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
						       mz->zone);
1553

1554
	return inactive_file_is_low_global(mz->zone);
1555 1556
}

1557
static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1558 1559
{
	if (file)
1560
		return inactive_file_is_low(mz);
1561
	else
1562
		return inactive_anon_is_low(mz);
1563 1564
}

1565
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1566
				 struct mem_cgroup_zone *mz,
1567
				 struct scan_control *sc)
1568
{
1569 1570
	int file = is_file_lru(lru);

1571
	if (is_active_lru(lru)) {
1572
		if (inactive_list_is_low(mz, file))
1573
			shrink_active_list(nr_to_scan, mz, sc, lru);
1574 1575 1576
		return 0;
	}

1577
	return shrink_inactive_list(nr_to_scan, mz, sc, lru);
1578 1579
}

1580
static int vmscan_swappiness(struct scan_control *sc)
1581
{
1582
	if (global_reclaim(sc))
1583
		return vm_swappiness;
1584
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1585 1586
}

1587 1588 1589 1590 1591 1592
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1593
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1594
 */
1595
static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1596
			   unsigned long *nr)
1597 1598 1599 1600
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1601
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1602
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1603
	enum lru_list lru;
1604
	int noswap = 0;
1605
	bool force_scan = false;
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1617
	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1618
		force_scan = true;
1619
	if (!global_reclaim(sc))
1620
		force_scan = true;
1621 1622 1623 1624 1625 1626 1627 1628 1629

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1630

1631 1632 1633 1634
	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1635

1636
	if (global_reclaim(sc)) {
1637
		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1638 1639
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1640
		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1641 1642 1643 1644
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1645
		}
1646 1647
	}

1648 1649 1650 1651
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1652 1653
	anon_prio = vmscan_swappiness(sc);
	file_prio = 200 - vmscan_swappiness(sc);
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1666
	spin_lock_irq(&mz->zone->lru_lock);
1667 1668 1669
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1670 1671
	}

1672 1673 1674
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1675 1676 1677
	}

	/*
1678 1679 1680
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1681
	 */
1682
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1683
	ap /= reclaim_stat->recent_rotated[0] + 1;
1684

1685
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1686
	fp /= reclaim_stat->recent_rotated[1] + 1;
1687
	spin_unlock_irq(&mz->zone->lru_lock);
1688

1689 1690 1691 1692
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1693 1694
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1695
		unsigned long scan;
1696

H
Hugh Dickins 已提交
1697
		scan = zone_nr_lru_pages(mz, lru);
1698 1699
		if (sc->priority || noswap || !vmscan_swappiness(sc)) {
			scan >>= sc->priority;
1700 1701
			if (!scan && force_scan)
				scan = SWAP_CLUSTER_MAX;
1702 1703
			scan = div64_u64(scan * fraction[file], denominator);
		}
H
Hugh Dickins 已提交
1704
		nr[lru] = scan;
1705
	}
1706
}
1707

M
Mel Gorman 已提交
1708
/* Use reclaim/compaction for costly allocs or under memory pressure */
1709
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1710 1711 1712
{
	if (COMPACTION_BUILD && sc->order &&
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1713
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1714 1715 1716 1717 1718
		return true;

	return false;
}

1719
/*
M
Mel Gorman 已提交
1720 1721 1722 1723 1724
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1725
 */
1726
static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1727 1728 1729 1730 1731 1732 1733 1734
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1735
	if (!in_reclaim_compaction(sc))
1736 1737
		return false;

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1760 1761 1762 1763 1764 1765

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1766
	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1767
	if (nr_swap_pages > 0)
1768
		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1769 1770 1771 1772 1773
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1774
	switch (compaction_suitable(mz->zone, sc->order)) {
1775 1776 1777 1778 1779 1780 1781 1782
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1783 1784 1785
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1786
static void shrink_mem_cgroup_zone(struct mem_cgroup_zone *mz,
1787
				   struct scan_control *sc)
L
Linus Torvalds 已提交
1788
{
1789
	unsigned long nr[NR_LRU_LISTS];
1790
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1791
	enum lru_list lru;
1792
	unsigned long nr_reclaimed, nr_scanned;
1793
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1794
	struct blk_plug plug;
1795

1796 1797
restart:
	nr_reclaimed = 0;
1798
	nr_scanned = sc->nr_scanned;
1799
	get_scan_count(mz, sc, nr);
L
Linus Torvalds 已提交
1800

1801
	blk_start_plug(&plug);
1802 1803
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1804 1805
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1806
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1807 1808
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1809

H
Hugh Dickins 已提交
1810
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1811
							    mz, sc);
1812
			}
L
Linus Torvalds 已提交
1813
		}
1814 1815 1816 1817 1818 1819 1820 1821
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1822 1823
		if (nr_reclaimed >= nr_to_reclaim &&
		    sc->priority < DEF_PRIORITY)
1824
			break;
L
Linus Torvalds 已提交
1825
	}
1826
	blk_finish_plug(&plug);
1827
	sc->nr_reclaimed += nr_reclaimed;
1828

1829 1830 1831 1832
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1833
	if (inactive_anon_is_low(mz))
1834
		shrink_active_list(SWAP_CLUSTER_MAX, mz,
1835
				   sc, LRU_ACTIVE_ANON);
1836

1837
	/* reclaim/compaction might need reclaim to continue */
1838
	if (should_continue_reclaim(mz, nr_reclaimed,
1839
				    sc->nr_scanned - nr_scanned, sc))
1840 1841
		goto restart;

1842
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1843 1844
}

1845
static void shrink_zone(struct zone *zone, struct scan_control *sc)
1846
{
1847 1848
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1849
		.zone = zone,
1850
		.priority = sc->priority,
1851
	};
1852 1853 1854 1855 1856 1857 1858 1859
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};
1860

1861
		shrink_mem_cgroup_zone(&mz, sc);
1862 1863 1864 1865 1866
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1867 1868 1869 1870
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1871 1872 1873 1874 1875 1876 1877
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1878 1879
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1906
	if (compaction_deferred(zone, sc->order))
1907 1908 1909 1910 1911 1912 1913 1914 1915
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
1916 1917 1918 1919 1920
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1921 1922
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1923 1924
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1925 1926 1927
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1928 1929 1930
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
1931 1932
 *
 * This function returns true if a zone is being reclaimed for a costly
1933
 * high-order allocation and compaction is ready to begin. This indicates to
1934 1935
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
1936
 */
1937
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
1938
{
1939
	struct zoneref *z;
1940
	struct zone *zone;
1941 1942
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
1943
	bool aborted_reclaim = false;
1944

1945 1946 1947 1948 1949 1950 1951 1952
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

1953 1954
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
1955
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1956
			continue;
1957 1958 1959 1960
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1961
		if (global_reclaim(sc)) {
1962 1963
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
1964 1965
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
1966
				continue;	/* Let kswapd poll it */
1967 1968
			if (COMPACTION_BUILD) {
				/*
1969 1970 1971 1972 1973
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
1974 1975
				 * noticeable problem, like transparent huge
				 * page allocations.
1976
				 */
1977
				if (compaction_ready(zone, sc)) {
1978
					aborted_reclaim = true;
1979
					continue;
1980
				}
1981
			}
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
1995
		}
1996

1997
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
1998
	}
1999

2000
	return aborted_reclaim;
2001 2002 2003 2004 2005 2006 2007
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2008
/* All zones in zonelist are unreclaimable? */
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2021 2022
		if (!zone->all_unreclaimable)
			return false;
2023 2024
	}

2025
	return true;
L
Linus Torvalds 已提交
2026
}
2027

L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033 2034 2035
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2036 2037 2038 2039
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2040 2041 2042
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2043
 */
2044
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2045 2046
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2047
{
2048
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2049
	struct reclaim_state *reclaim_state = current->reclaim_state;
2050
	struct zoneref *z;
2051
	struct zone *zone;
2052
	unsigned long writeback_threshold;
2053
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2054

2055 2056
	delayacct_freepages_start();

2057
	if (global_reclaim(sc))
2058
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2059

2060
	do {
2061
		sc->nr_scanned = 0;
2062
		aborted_reclaim = shrink_zones(zonelist, sc);
2063

2064 2065 2066 2067
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2068
		if (global_reclaim(sc)) {
2069
			unsigned long lru_pages = 0;
2070 2071
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2072 2073 2074 2075 2076 2077
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2078
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2079
			if (reclaim_state) {
2080
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2081 2082
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2083
		}
2084
		total_scanned += sc->nr_scanned;
2085
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2095 2096
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2097 2098
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2099
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2100 2101 2102
		}

		/* Take a nap, wait for some writeback to complete */
2103
		if (!sc->hibernation_mode && sc->nr_scanned &&
2104
		    sc->priority < DEF_PRIORITY - 2) {
2105 2106 2107
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2108 2109
						&cpuset_current_mems_allowed,
						&preferred_zone);
2110 2111
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2112
	} while (--sc->priority >= 0);
2113

L
Linus Torvalds 已提交
2114
out:
2115 2116
	delayacct_freepages_end();

2117 2118 2119
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2120 2121 2122 2123 2124 2125 2126 2127
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2128 2129
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2130 2131
		return 1;

2132
	/* top priority shrink_zones still had more to do? don't OOM, then */
2133
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2134 2135 2136
		return 1;

	return 0;
L
Linus Torvalds 已提交
2137 2138
}

2139
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2140
				gfp_t gfp_mask, nodemask_t *nodemask)
2141
{
2142
	unsigned long nr_reclaimed;
2143 2144 2145
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2146
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2147
		.may_unmap = 1,
2148
		.may_swap = 1,
2149
		.order = order,
2150
		.priority = DEF_PRIORITY,
2151
		.target_mem_cgroup = NULL,
2152
		.nodemask = nodemask,
2153
	};
2154 2155 2156
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2157

2158 2159 2160 2161
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2162
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2163 2164 2165 2166

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2167 2168
}

2169
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2170

2171
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2172
						gfp_t gfp_mask, bool noswap,
2173 2174
						struct zone *zone,
						unsigned long *nr_scanned)
2175 2176
{
	struct scan_control sc = {
2177
		.nr_scanned = 0,
2178
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2179 2180 2181 2182
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2183
		.priority = 0,
2184
		.target_mem_cgroup = memcg,
2185
	};
2186
	struct mem_cgroup_zone mz = {
2187
		.mem_cgroup = memcg,
2188 2189
		.zone = zone,
	};
2190

2191 2192
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2193

2194
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2195 2196 2197
						      sc.may_writepage,
						      sc.gfp_mask);

2198 2199 2200 2201 2202 2203 2204
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2205
	shrink_mem_cgroup_zone(&mz, &sc);
2206 2207 2208

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2209
	*nr_scanned = sc.nr_scanned;
2210 2211 2212
	return sc.nr_reclaimed;
}

2213
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2214
					   gfp_t gfp_mask,
2215
					   bool noswap)
2216
{
2217
	struct zonelist *zonelist;
2218
	unsigned long nr_reclaimed;
2219
	int nid;
2220 2221
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2222
		.may_unmap = 1,
2223
		.may_swap = !noswap,
2224
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2225
		.order = 0,
2226
		.priority = DEF_PRIORITY,
2227
		.target_mem_cgroup = memcg,
2228
		.nodemask = NULL, /* we don't care the placement */
2229 2230 2231 2232 2233
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2234 2235
	};

2236 2237 2238 2239 2240
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2241
	nid = mem_cgroup_select_victim_node(memcg);
2242 2243

	zonelist = NODE_DATA(nid)->node_zonelists;
2244 2245 2246 2247 2248

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2249
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2250 2251 2252 2253

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2254 2255 2256
}
#endif

2257
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2258
{
2259
	struct mem_cgroup *memcg;
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
		struct mem_cgroup_zone mz = {
			.mem_cgroup = memcg,
			.zone = zone,
		};

		if (inactive_anon_is_low(&mz))
			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2273
					   sc, LRU_ACTIVE_ANON);
2274 2275 2276

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2277 2278
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
/*
 * pgdat_balanced is used when checking if a node is balanced for high-order
 * allocations. Only zones that meet watermarks and are in a zone allowed
 * by the callers classzone_idx are added to balanced_pages. The total of
 * balanced pages must be at least 25% of the zones allowed by classzone_idx
 * for the node to be considered balanced. Forcing all zones to be balanced
 * for high orders can cause excessive reclaim when there are imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2290
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
						int classzone_idx)
{
	unsigned long present_pages = 0;
	int i;

	for (i = 0; i <= classzone_idx; i++)
		present_pages += pgdat->node_zones[i].present_pages;

S
Shaohua Li 已提交
2304 2305
	/* A special case here: if zone has no page, we think it's balanced */
	return balanced_pages >= (present_pages >> 2);
2306 2307
}

2308
/* is kswapd sleeping prematurely? */
2309 2310
static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
2311
{
2312
	int i;
2313 2314
	unsigned long balanced = 0;
	bool all_zones_ok = true;
2315 2316 2317

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2318
		return true;
2319

2320
	/* Check the watermark levels */
2321
	for (i = 0; i <= classzone_idx; i++) {
2322 2323 2324 2325 2326
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

2327 2328 2329 2330 2331 2332 2333 2334
		/*
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well if kswapd
		 * is to sleep
		 */
		if (zone->all_unreclaimable) {
			balanced += zone->present_pages;
2335
			continue;
2336
		}
2337

2338
		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2339
							i, 0))
2340 2341 2342
			all_zones_ok = false;
		else
			balanced += zone->present_pages;
2343
	}
2344

2345 2346 2347 2348 2349 2350
	/*
	 * For high-order requests, the balanced zones must contain at least
	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
	 * must be balanced
	 */
	if (order)
2351
		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2352 2353
	else
		return !all_zones_ok;
2354 2355
}

L
Linus Torvalds 已提交
2356 2357
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2358
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2359
 *
2360
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2371 2372 2373 2374 2375
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2376
 */
2377
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2378
							int *classzone_idx)
L
Linus Torvalds 已提交
2379 2380
{
	int all_zones_ok;
2381
	unsigned long balanced;
L
Linus Torvalds 已提交
2382
	int i;
2383
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2384
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2385
	struct reclaim_state *reclaim_state = current->reclaim_state;
2386 2387
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2388 2389
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2390
		.may_unmap = 1,
2391
		.may_swap = 1,
2392 2393 2394 2395 2396
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2397
		.order = order,
2398
		.target_mem_cgroup = NULL,
2399
	};
2400 2401 2402
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2403 2404
loop_again:
	total_scanned = 0;
2405
	sc.priority = DEF_PRIORITY;
2406
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2407
	sc.may_writepage = !laptop_mode;
2408
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2409

2410
	do {
L
Linus Torvalds 已提交
2411
		unsigned long lru_pages = 0;
2412
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2413 2414

		all_zones_ok = 1;
2415
		balanced = 0;
L
Linus Torvalds 已提交
2416

2417 2418 2419 2420 2421 2422
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2423

2424 2425
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2426

2427 2428
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2429
				continue;
L
Linus Torvalds 已提交
2430

2431 2432 2433 2434
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2435
			age_active_anon(zone, &sc);
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2448
			if (!zone_watermark_ok_safe(zone, order,
2449
					high_wmark_pages(zone), 0, 0)) {
2450
				end_zone = i;
A
Andrew Morton 已提交
2451
				break;
2452 2453 2454
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2455 2456
			}
		}
A
Andrew Morton 已提交
2457 2458 2459
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2460 2461 2462
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2463
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2477
			int nr_slab, testorder;
2478
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2479

2480
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2481 2482
				continue;

2483 2484
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2485 2486 2487
				continue;

			sc.nr_scanned = 0;
2488

2489
			nr_soft_scanned = 0;
2490 2491 2492
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2493 2494 2495 2496 2497
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2498

2499
			/*
2500 2501 2502 2503 2504 2505
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2506
			 */
2507 2508 2509 2510
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
			if (COMPACTION_BUILD && order &&
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2524
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2525
				    !zone_watermark_ok_safe(zone, testorder,
2526
					high_wmark_pages(zone) + balance_gap,
2527
					end_zone, 0)) {
2528
				shrink_zone(zone, &sc);
2529

2530 2531 2532 2533 2534 2535 2536 2537 2538
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2545
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2546
				sc.may_writepage = 1;
2547

2548 2549 2550
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2551
				continue;
2552
			}
2553

2554
			if (!zone_watermark_ok_safe(zone, testorder,
2555 2556 2557 2558 2559 2560 2561
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2562
				if (!zone_watermark_ok_safe(zone, order,
2563 2564
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2565 2566 2567 2568 2569 2570 2571 2572 2573
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
				 * spectulatively avoid congestion waits
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2574
				if (i <= *classzone_idx)
2575
					balanced += zone->present_pages;
2576
			}
2577

L
Linus Torvalds 已提交
2578
		}
2579
		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2585
		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2586 2587 2588 2589 2590
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2591 2592 2593 2594 2595 2596 2597

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2598
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2599
			break;
2600
	} while (--sc.priority >= 0);
L
Linus Torvalds 已提交
2601
out:
2602 2603 2604

	/*
	 * order-0: All zones must meet high watermark for a balanced node
2605 2606
	 * high-order: Balanced zones must make up at least 25% of the node
	 *             for the node to be balanced
2607
	 */
2608
	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
L
Linus Torvalds 已提交
2609
		cond_resched();
2610 2611 2612

		try_to_freeze();

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2630 2631 2632
		goto loop_again;
	}

2633 2634 2635 2636 2637 2638 2639 2640 2641
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2642 2643
		int zones_need_compaction = 1;

2644 2645 2646 2647 2648 2649
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

2650 2651
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2652 2653
				continue;

2654
			/* Would compaction fail due to lack of free memory? */
2655 2656
			if (COMPACTION_BUILD &&
			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2657 2658
				goto loop_again;

2659 2660 2661 2662 2663 2664 2665
			/* Confirm the zone is balanced for order-0 */
			if (!zone_watermark_ok(zone, 0,
					high_wmark_pages(zone), 0, 0)) {
				order = sc.order = 0;
				goto loop_again;
			}

2666 2667 2668 2669 2670
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;

2671 2672 2673
			/* If balanced, clear the congested flag */
			zone_clear_flag(zone, ZONE_CONGESTED);
		}
2674 2675 2676

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2677 2678
	}

2679 2680 2681 2682 2683 2684
	/*
	 * Return the order we were reclaiming at so sleeping_prematurely()
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2685
	*classzone_idx = end_zone;
2686
	return order;
L
Linus Torvalds 已提交
2687 2688
}

2689
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2700
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2701 2702 2703 2704 2705 2706 2707 2708 2709
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2710
	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
		schedule();
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2733 2734
/*
 * The background pageout daemon, started as a kernel thread
2735
 * from the init process.
L
Linus Torvalds 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2748
	unsigned long order, new_order;
2749
	unsigned balanced_order;
2750
	int classzone_idx, new_classzone_idx;
2751
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2752 2753
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2754

L
Linus Torvalds 已提交
2755 2756 2757
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2758
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2759

2760 2761
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2762
	if (!cpumask_empty(cpumask))
2763
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2778
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2779
	set_freezable();
L
Linus Torvalds 已提交
2780

2781
	order = new_order = 0;
2782
	balanced_order = 0;
2783
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2784
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2785
	for ( ; ; ) {
2786
		int ret;
2787

2788 2789 2790 2791 2792
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2793 2794
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2795 2796 2797 2798 2799 2800
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

2801
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
2802 2803
			/*
			 * Don't sleep if someone wants a larger 'order'
2804
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
2805 2806
			 */
			order = new_order;
2807
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
2808
		} else {
2809 2810
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
2811
			order = pgdat->kswapd_max_order;
2812
			classzone_idx = pgdat->classzone_idx;
2813 2814
			new_order = order;
			new_classzone_idx = classzone_idx;
2815
			pgdat->kswapd_max_order = 0;
2816
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
2817 2818
		}

2819 2820 2821 2822 2823 2824 2825 2826
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
2827 2828
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2829 2830 2831
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
2832
		}
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838 2839
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
2840
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
2841 2842 2843
{
	pg_data_t *pgdat;

2844
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2845 2846
		return;

2847
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2848
		return;
2849
	pgdat = zone->zone_pgdat;
2850
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
2851
		pgdat->kswapd_max_order = order;
2852 2853
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
2854
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2855
		return;
2856 2857 2858 2859
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2860
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2861 2862
}

2863 2864 2865 2866 2867 2868 2869 2870
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2871
{
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2896 2897
}

2898
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2899
/*
2900
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2901 2902 2903 2904 2905
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2906
 */
2907
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2908
{
2909 2910
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2911 2912 2913
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2914
		.may_writepage = 1,
2915 2916 2917
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
2918
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
2919
	};
2920 2921 2922 2923
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2924 2925
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2926

2927 2928 2929 2930
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2931

2932
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2933

2934 2935 2936
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2937

2938
	return nr_reclaimed;
L
Linus Torvalds 已提交
2939
}
2940
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2941 2942 2943 2944 2945

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2946
static int __devinit cpu_callback(struct notifier_block *nfb,
2947
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2948
{
2949
	int nid;
L
Linus Torvalds 已提交
2950

2951
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2952
		for_each_node_state(nid, N_HIGH_MEMORY) {
2953
			pg_data_t *pgdat = NODE_DATA(nid);
2954 2955 2956
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2957

2958
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2959
				/* One of our CPUs online: restore mask */
2960
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2961 2962 2963 2964 2965
		}
	}
	return NOTIFY_OK;
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2999 3000
static int __init kswapd_init(void)
{
3001
	int nid;
3002

L
Linus Torvalds 已提交
3003
	swap_setup();
3004
	for_each_node_state(nid, N_HIGH_MEMORY)
3005
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3006 3007 3008 3009 3010
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3021
#define RECLAIM_OFF 0
3022
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3023 3024 3025
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3026 3027 3028 3029 3030 3031 3032
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3033 3034 3035 3036 3037 3038
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3039 3040 3041 3042 3043 3044
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3087 3088 3089
/*
 * Try to free up some pages from this zone through reclaim.
 */
3090
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3091
{
3092
	/* Minimum pages needed in order to stay on node */
3093
	const unsigned long nr_pages = 1 << order;
3094 3095
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3096 3097
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3098
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3099
		.may_swap = 1,
3100 3101
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3102
		.gfp_mask = gfp_mask,
3103
		.order = order,
3104
		.priority = ZONE_RECLAIM_PRIORITY,
3105
	};
3106 3107 3108
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3109
	unsigned long nr_slab_pages0, nr_slab_pages1;
3110 3111

	cond_resched();
3112 3113 3114 3115 3116 3117
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3118
	lockdep_set_current_reclaim_state(gfp_mask);
3119 3120
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3121

3122
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3123 3124 3125 3126 3127
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3128 3129
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3130
	}
3131

3132 3133
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3134
		/*
3135
		 * shrink_slab() does not currently allow us to determine how
3136 3137 3138 3139
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3140
		 *
3141 3142
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3143
		 */
3144 3145 3146 3147
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3148
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3149 3150 3151 3152 3153 3154 3155 3156
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3157 3158 3159 3160 3161

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3162 3163 3164
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3165 3166
	}

3167
	p->reclaim_state = NULL;
3168
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3169
	lockdep_clear_current_reclaim_state();
3170
	return sc.nr_reclaimed >= nr_pages;
3171
}
3172 3173 3174 3175

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3176
	int ret;
3177 3178

	/*
3179 3180
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3181
	 *
3182 3183 3184 3185 3186
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3187
	 */
3188 3189
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3190
		return ZONE_RECLAIM_FULL;
3191

3192
	if (zone->all_unreclaimable)
3193
		return ZONE_RECLAIM_FULL;
3194

3195
	/*
3196
	 * Do not scan if the allocation should not be delayed.
3197
	 */
3198
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3199
		return ZONE_RECLAIM_NOSCAN;
3200 3201 3202 3203 3204 3205 3206

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3207
	node_id = zone_to_nid(zone);
3208
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3209
		return ZONE_RECLAIM_NOSCAN;
3210 3211

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3212 3213
		return ZONE_RECLAIM_NOSCAN;

3214 3215 3216
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3217 3218 3219
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3220
	return ret;
3221
}
3222
#endif
L
Lee Schermerhorn 已提交
3223 3224 3225 3226 3227 3228 3229

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
3230 3231
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
3232 3233
 *
 * Reasons page might not be evictable:
3234
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3235
 * (2) page is part of an mlocked VMA
3236
 *
L
Lee Schermerhorn 已提交
3237 3238 3239 3240
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

3241 3242 3243
	if (mapping_unevictable(page_mapping(page)))
		return 0;

3244
	if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
N
Nick Piggin 已提交
3245
		return 0;
L
Lee Schermerhorn 已提交
3246 3247 3248

	return 1;
}
3249

3250
#ifdef CONFIG_SHMEM
3251
/**
3252 3253 3254
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3255
 *
3256
 * Checks pages for evictability and moves them to the appropriate lru list.
3257 3258
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3259
 */
3260
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3261
{
3262
	struct lruvec *lruvec;
3263 3264 3265 3266
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3267

3268 3269 3270
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3271

3272 3273 3274 3275 3276 3277 3278 3279
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3280

3281 3282
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3283

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
		if (page_evictable(page, NULL)) {
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
			__dec_zone_state(zone, NR_UNEVICTABLE);
			lruvec = mem_cgroup_lru_move_lists(zone, page,
						LRU_UNEVICTABLE, lru);
			list_move(&page->lru, &lruvec->lists[lru]);
			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
			pgrescued++;
3295
		}
3296
	}
3297

3298 3299 3300 3301
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3302 3303
	}
}
3304
#endif /* CONFIG_SHMEM */
3305

3306
static void warn_scan_unevictable_pages(void)
3307
{
3308
	printk_once(KERN_WARNING
3309
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3310
		    "disabled for lack of a legitimate use case.  If you have "
3311 3312
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3313 3314 3315 3316 3317 3318 3319 3320 3321
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3322
			   void __user *buffer,
3323 3324
			   size_t *length, loff_t *ppos)
{
3325
	warn_scan_unevictable_pages();
3326
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3327 3328 3329 3330
	scan_unevictable_pages = 0;
	return 0;
}

3331
#ifdef CONFIG_NUMA
3332 3333 3334 3335 3336
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3337 3338
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3339 3340
					  char *buf)
{
3341
	warn_scan_unevictable_pages();
3342 3343 3344
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3345 3346
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3347 3348
					const char *buf, size_t count)
{
3349
	warn_scan_unevictable_pages();
3350 3351 3352 3353
	return 1;
}


3354
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3355 3356 3357 3358 3359
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3360
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3361 3362 3363 3364
}

void scan_unevictable_unregister_node(struct node *node)
{
3365
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3366
}
3367
#endif