vmscan.c 106.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
51
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
52

53 54
#include "internal.h"

55 56 57
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
58 59 60 61
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

62 63 64
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

68 69
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
70
	/* This context's GFP mask */
A
Al Viro 已提交
71
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
72 73 74

	int may_writepage;

75 76
	/* Can mapped pages be reclaimed? */
	int may_unmap;
77

78 79 80
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
81
	int order;
82

83 84 85
	/* Scan (total_size >> priority) pages at once */
	int priority;

86 87 88 89 90
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
91

92 93 94 95 96
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
133
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
134 135 136 137

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
138
#ifdef CONFIG_MEMCG
139 140
static bool global_reclaim(struct scan_control *sc)
{
141
	return !sc->target_mem_cgroup;
142
}
143
#else
144 145 146 147
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
148 149
#endif

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (get_nr_swap_pages() > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
}

bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

169
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170
{
171
	if (!mem_cgroup_disabled())
172
		return mem_cgroup_get_lru_size(lruvec, lru);
173

174
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 176
}

L
Linus Torvalds 已提交
177
/*
G
Glauber Costa 已提交
178
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
179
 */
G
Glauber Costa 已提交
180
int register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
181
{
G
Glauber Costa 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	size_t size = sizeof(*shrinker->nr_deferred);

	/*
	 * If we only have one possible node in the system anyway, save
	 * ourselves the trouble and disable NUMA aware behavior. This way we
	 * will save memory and some small loop time later.
	 */
	if (nr_node_ids == 1)
		shrinker->flags &= ~SHRINKER_NUMA_AWARE;

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;

199 200 201
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
G
Glauber Costa 已提交
202
	return 0;
L
Linus Torvalds 已提交
203
}
204
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
205 206 207 208

/*
 * Remove one
 */
209
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
210 211 212 213
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
214
	kfree(shrinker->nr_deferred);
L
Linus Torvalds 已提交
215
}
216
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
217 218

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

static unsigned long
shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
		 unsigned long nr_pages_scanned, unsigned long lru_pages)
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
	long max_pass;
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;

D
Dave Chinner 已提交
234
	max_pass = shrinker->count_objects(shrinker, shrinkctl);
G
Glauber Costa 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
	if (max_pass == 0)
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
	delta = (4 * nr_pages_scanned) / shrinker->seeks;
	delta *= max_pass;
	do_div(delta, lru_pages + 1);
	total_scan += delta;
	if (total_scan < 0) {
		printk(KERN_ERR
		"shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
253
		       shrinker->scan_objects, total_scan);
G
Glauber Costa 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
		total_scan = max_pass;
	}

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
	 * max_pass.  This is bad for sustaining a working set in
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
	if (delta < max_pass / 4)
		total_scan = min(total_scan, max_pass / 2);

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
	if (total_scan > max_pass * 2)
		total_scan = max_pass * 2;

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
				nr_pages_scanned, lru_pages,
				max_pass, delta, total_scan);

	while (total_scan >= batch_size) {
D
Dave Chinner 已提交
285
		unsigned long ret;
G
Glauber Costa 已提交
286

D
Dave Chinner 已提交
287 288 289 290 291
		shrinkctl->nr_to_scan = batch_size;
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

		count_vm_events(SLABS_SCANNED, batch_size);
		total_scan -= batch_size;

		cond_resched();
	}

	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
	if (total_scan > 0)
		new_nr = atomic_long_add_return(total_scan,
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

	trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
	return freed;
312 313
}

L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
322
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
323 324 325 326 327 328 329
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
330 331
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
332
 */
D
Dave Chinner 已提交
333
unsigned long shrink_slab(struct shrink_control *shrinkctl,
334
			  unsigned long nr_pages_scanned,
335
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
336 337
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
338
	unsigned long freed = 0;
L
Linus Torvalds 已提交
339

340 341
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
342

343
	if (!down_read_trylock(&shrinker_rwsem)) {
D
Dave Chinner 已提交
344 345 346 347 348 349 350
		/*
		 * If we would return 0, our callers would understand that we
		 * have nothing else to shrink and give up trying. By returning
		 * 1 we keep it going and assume we'll be able to shrink next
		 * time.
		 */
		freed = 1;
351 352
		goto out;
	}
L
Linus Torvalds 已提交
353 354

	list_for_each_entry(shrinker, &shrinker_list, list) {
G
Glauber Costa 已提交
355 356 357
		for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
			if (!node_online(shrinkctl->nid))
				continue;
L
Linus Torvalds 已提交
358

G
Glauber Costa 已提交
359 360
			if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
			    (shrinkctl->nid != 0))
L
Linus Torvalds 已提交
361 362
				break;

G
Glauber Costa 已提交
363 364
			freed += shrink_slab_node(shrinkctl, shrinker,
				 nr_pages_scanned, lru_pages);
L
Linus Torvalds 已提交
365 366 367 368

		}
	}
	up_read(&shrinker_rwsem);
369 370
out:
	cond_resched();
D
Dave Chinner 已提交
371
	return freed;
L
Linus Torvalds 已提交
372 373 374 375
}

static inline int is_page_cache_freeable(struct page *page)
{
376 377 378 379 380
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
381
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
382 383
}

384 385
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
386
{
387
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
411
	lock_page(page);
412 413
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
414 415 416
	unlock_page(page);
}

417 418 419 420 421 422 423 424 425 426 427 428
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
429
/*
A
Andrew Morton 已提交
430 431
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
432
 */
433
static pageout_t pageout(struct page *page, struct address_space *mapping,
434
			 struct scan_control *sc)
L
Linus Torvalds 已提交
435 436 437 438 439 440 441 442
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
443
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
459
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
460 461
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
462
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
463 464 465 466 467 468 469
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
470
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
471 472 473 474 475 476 477
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
478 479
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
480 481 482 483 484 485 486
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
487
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
488 489 490
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
491

L
Linus Torvalds 已提交
492 493 494 495
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
496
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
497
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
498 499 500 501 502 503
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

504
/*
N
Nick Piggin 已提交
505 506
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
507
 */
N
Nick Piggin 已提交
508
static int __remove_mapping(struct address_space *mapping, struct page *page)
509
{
510 511
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
512

N
Nick Piggin 已提交
513
	spin_lock_irq(&mapping->tree_lock);
514
	/*
N
Nick Piggin 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
538
	 */
N
Nick Piggin 已提交
539
	if (!page_freeze_refs(page, 2))
540
		goto cannot_free;
N
Nick Piggin 已提交
541 542 543
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
544
		goto cannot_free;
N
Nick Piggin 已提交
545
	}
546 547 548 549

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
550
		spin_unlock_irq(&mapping->tree_lock);
551
		swapcache_free(swap, page);
N
Nick Piggin 已提交
552
	} else {
553 554 555 556
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

557
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
558
		spin_unlock_irq(&mapping->tree_lock);
559
		mem_cgroup_uncharge_cache_page(page);
560 561 562

		if (freepage != NULL)
			freepage(page);
563 564 565 566 567
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
568
	spin_unlock_irq(&mapping->tree_lock);
569 570 571
	return 0;
}

N
Nick Piggin 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601 602
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
603
	bool is_unevictable;
604
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
605 606 607 608 609 610

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

611
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
612 613 614 615 616 617
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
618
		is_unevictable = false;
619
		lru_cache_add(page);
L
Lee Schermerhorn 已提交
620 621 622 623 624
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
625
		is_unevictable = true;
L
Lee Schermerhorn 已提交
626
		add_page_to_unevictable_list(page);
627
		/*
628 629 630
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
631
		 * isolation/check_move_unevictable_pages,
632
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
633 634
		 * the page back to the evictable list.
		 *
635
		 * The other side is TestClearPageMlocked() or shmem_lock().
636 637
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
638 639 640 641 642 643 644
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
645
	if (is_unevictable && page_evictable(page)) {
L
Lee Schermerhorn 已提交
646 647 648 649 650 651 652 653 654 655
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

656
	if (was_unevictable && !is_unevictable)
657
		count_vm_event(UNEVICTABLE_PGRESCUED);
658
	else if (!was_unevictable && is_unevictable)
659 660
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
661 662 663
	put_page(page);		/* drop ref from isolate */
}

664 665 666
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
667
	PAGEREF_KEEP,
668 669 670 671 672 673
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
674
	int referenced_ptes, referenced_page;
675 676
	unsigned long vm_flags;

677 678
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
679
	referenced_page = TestClearPageReferenced(page);
680 681 682 683 684 685 686 687

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

688
	if (referenced_ptes) {
689
		if (PageSwapBacked(page))
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

707
		if (referenced_page || referenced_ptes > 1)
708 709
			return PAGEREF_ACTIVATE;

710 711 712 713 714 715
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

716 717
		return PAGEREF_KEEP;
	}
718 719

	/* Reclaim if clean, defer dirty pages to writeback */
720
	if (referenced_page && !PageSwapBacked(page))
721 722 723
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
724 725
}

726 727 728 729
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
730 731
	struct address_space *mapping;

732 733 734 735 736 737 738 739 740 741 742 743 744
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
745 746 747 748 749 750 751 752

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
753 754
}

L
Linus Torvalds 已提交
755
/*
A
Andrew Morton 已提交
756
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
757
 */
A
Andrew Morton 已提交
758
static unsigned long shrink_page_list(struct list_head *page_list,
759
				      struct zone *zone,
760
				      struct scan_control *sc,
761
				      enum ttu_flags ttu_flags,
762
				      unsigned long *ret_nr_dirty,
763
				      unsigned long *ret_nr_unqueued_dirty,
764
				      unsigned long *ret_nr_congested,
765
				      unsigned long *ret_nr_writeback,
766
				      unsigned long *ret_nr_immediate,
767
				      bool force_reclaim)
L
Linus Torvalds 已提交
768 769
{
	LIST_HEAD(ret_pages);
770
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
771
	int pgactivate = 0;
772
	unsigned long nr_unqueued_dirty = 0;
773 774
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
775
	unsigned long nr_reclaimed = 0;
776
	unsigned long nr_writeback = 0;
777
	unsigned long nr_immediate = 0;
L
Linus Torvalds 已提交
778 779 780

	cond_resched();

781
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
782 783 784 785
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
786
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
787
		bool dirty, writeback;
L
Linus Torvalds 已提交
788 789 790 791 792 793

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
794
		if (!trylock_page(page))
L
Linus Torvalds 已提交
795 796
			goto keep;

N
Nick Piggin 已提交
797
		VM_BUG_ON(PageActive(page));
798
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
799 800

		sc->nr_scanned++;
801

802
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
803
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
804

805
		if (!sc->may_unmap && page_mapped(page))
806 807
			goto keep_locked;

L
Linus Torvalds 已提交
808 809 810 811
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

812 813 814
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

815 816 817 818 819 820 821 822 823 824 825 826 827
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

828 829 830 831 832 833
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
834
		mapping = page_mapping(page);
835 836
		if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
		    (writeback && PageReclaim(page)))
837 838
			nr_congested++;

839 840 841 842 843 844 845 846 847 848 849
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
850 851
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
876
		if (PageWriteback(page)) {
877 878 879 880
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
881 882
				nr_immediate++;
				goto keep_locked;
883 884 885

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
886 887 888 889 890 891 892 893 894 895 896 897 898
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
899
				nr_writeback++;
900

901
				goto keep_locked;
902 903 904 905

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
906
			}
907
		}
L
Linus Torvalds 已提交
908

909 910 911
		if (!force_reclaim)
			references = page_check_references(page, sc);

912 913
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
914
			goto activate_locked;
915 916
		case PAGEREF_KEEP:
			goto keep_locked;
917 918 919 920
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
921 922 923 924 925

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
926
		if (PageAnon(page) && !PageSwapCache(page)) {
927 928
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
929
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
930
				goto activate_locked;
931
			may_enter_fs = 1;
L
Linus Torvalds 已提交
932

933 934 935
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
936 937 938 939 940 941

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
942
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
943 944 945 946
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
947 948
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
949 950 951 952 953 954
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
955 956
			/*
			 * Only kswapd can writeback filesystem pages to
957 958
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
959
			 */
960
			if (page_is_file_cache(page) &&
961
					(!current_is_kswapd() ||
962
					 !zone_is_reclaim_dirty(zone))) {
963 964 965 966 967 968 969 970 971
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

972 973 974
				goto keep_locked;
			}

975
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
976
				goto keep_locked;
977
			if (!may_enter_fs)
L
Linus Torvalds 已提交
978
				goto keep_locked;
979
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
980 981 982
				goto keep_locked;

			/* Page is dirty, try to write it out here */
983
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
984 985 986 987 988
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
989
				if (PageWriteback(page))
990
					goto keep;
991
				if (PageDirty(page))
L
Linus Torvalds 已提交
992
					goto keep;
993

L
Linus Torvalds 已提交
994 995 996 997
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
998
				if (!trylock_page(page))
L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1018
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1029
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1030 1031
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1048 1049
		}

N
Nick Piggin 已提交
1050
		if (!mapping || !__remove_mapping(mapping, page))
1051
			goto keep_locked;
L
Linus Torvalds 已提交
1052

N
Nick Piggin 已提交
1053 1054 1055 1056 1057 1058 1059 1060
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
1061
free_it:
1062
		nr_reclaimed++;
1063 1064 1065 1066 1067 1068

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1069 1070
		continue;

N
Nick Piggin 已提交
1071
cull_mlocked:
1072 1073
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1074 1075 1076 1077
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1078
activate_locked:
1079 1080
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1081
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1082
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1083 1084 1085 1086 1087 1088
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1089
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1090
	}
1091

1092
	free_hot_cold_page_list(&free_pages, 1);
1093

L
Linus Torvalds 已提交
1094
	list_splice(&ret_pages, page_list);
1095
	count_vm_events(PGACTIVATE, pgactivate);
1096
	mem_cgroup_uncharge_end();
1097 1098
	*ret_nr_dirty += nr_dirty;
	*ret_nr_congested += nr_congested;
1099
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1100
	*ret_nr_writeback += nr_writeback;
1101
	*ret_nr_immediate += nr_immediate;
1102
	return nr_reclaimed;
L
Linus Torvalds 已提交
1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1113
	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1114 1115 1116 1117
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1118 1119
		if (page_is_file_cache(page) && !PageDirty(page) &&
		    !isolated_balloon_page(page)) {
1120 1121 1122 1123 1124 1125
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
1126 1127
			TTU_UNMAP|TTU_IGNORE_ACCESS,
			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1128 1129 1130 1131 1132
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1143
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1144 1145 1146 1147 1148 1149 1150
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1151 1152
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1153 1154
		return ret;

A
Andy Whitcroft 已提交
1155
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1190

1191 1192 1193
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1218
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1219
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1220
 * @nr_scanned:	The number of pages that were scanned.
1221
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1222
 * @mode:	One of the LRU isolation modes
1223
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1224 1225 1226
 *
 * returns how many pages were moved onto *@dst.
 */
1227
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1228
		struct lruvec *lruvec, struct list_head *dst,
1229
		unsigned long *nr_scanned, struct scan_control *sc,
1230
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1231
{
H
Hugh Dickins 已提交
1232
	struct list_head *src = &lruvec->lists[lru];
1233
	unsigned long nr_taken = 0;
1234
	unsigned long scan;
L
Linus Torvalds 已提交
1235

1236
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1237
		struct page *page;
1238
		int nr_pages;
A
Andy Whitcroft 已提交
1239

L
Linus Torvalds 已提交
1240 1241 1242
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1243
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1244

1245
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1246
		case 0:
1247 1248
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1249
			list_move(&page->lru, dst);
1250
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1251 1252 1253 1254 1255 1256
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1257

A
Andy Whitcroft 已提交
1258 1259 1260
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1261 1262
	}

H
Hugh Dickins 已提交
1263
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1264 1265
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1266 1267 1268
	return nr_taken;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1280 1281 1282
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1298 1299
	VM_BUG_ON(!page_count(page));

1300 1301
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1302
		struct lruvec *lruvec;
1303 1304

		spin_lock_irq(&zone->lru_lock);
1305
		lruvec = mem_cgroup_page_lruvec(page, zone);
1306
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1307
			int lru = page_lru(page);
1308
			get_page(page);
1309
			ClearPageLRU(page);
1310 1311
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1312 1313 1314 1315 1316 1317
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1318
/*
F
Fengguang Wu 已提交
1319 1320 1321 1322 1323
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1324 1325 1326 1327 1328 1329 1330 1331 1332
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1333
	if (!global_reclaim(sc))
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1352 1353 1354
	return isolated > inactive;
}

1355
static noinline_for_stack void
H
Hugh Dickins 已提交
1356
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1357
{
1358 1359
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1360
	LIST_HEAD(pages_to_free);
1361 1362 1363 1364 1365

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1366
		struct page *page = lru_to_page(page_list);
1367
		int lru;
1368

1369 1370
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1371
		if (unlikely(!page_evictable(page))) {
1372 1373 1374 1375 1376
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1377 1378 1379

		lruvec = mem_cgroup_page_lruvec(page, zone);

1380
		SetPageLRU(page);
1381
		lru = page_lru(page);
1382 1383
		add_page_to_lru_list(page, lruvec, lru);

1384 1385
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1386 1387
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1388
		}
1389 1390 1391
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1392
			del_page_from_lru_list(page, lruvec, lru);
1393 1394 1395 1396 1397 1398 1399

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1400 1401 1402
		}
	}

1403 1404 1405 1406
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1407 1408
}

L
Linus Torvalds 已提交
1409
/*
A
Andrew Morton 已提交
1410 1411
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1412
 */
1413
static noinline_for_stack unsigned long
1414
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1415
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1416 1417
{
	LIST_HEAD(page_list);
1418
	unsigned long nr_scanned;
1419
	unsigned long nr_reclaimed = 0;
1420
	unsigned long nr_taken;
1421 1422
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
1423
	unsigned long nr_unqueued_dirty = 0;
1424
	unsigned long nr_writeback = 0;
1425
	unsigned long nr_immediate = 0;
1426
	isolate_mode_t isolate_mode = 0;
1427
	int file = is_file_lru(lru);
1428 1429
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1430

1431
	while (unlikely(too_many_isolated(zone, file, sc))) {
1432
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1433 1434 1435 1436 1437 1438

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1439
	lru_add_drain();
1440 1441

	if (!sc->may_unmap)
1442
		isolate_mode |= ISOLATE_UNMAPPED;
1443
	if (!sc->may_writepage)
1444
		isolate_mode |= ISOLATE_CLEAN;
1445

L
Linus Torvalds 已提交
1446
	spin_lock_irq(&zone->lru_lock);
1447

1448 1449
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1450 1451 1452 1453

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1454
	if (global_reclaim(sc)) {
1455 1456
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1457
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1458
		else
H
Hugh Dickins 已提交
1459
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1460
	}
1461
	spin_unlock_irq(&zone->lru_lock);
1462

1463
	if (nr_taken == 0)
1464
		return 0;
A
Andy Whitcroft 已提交
1465

1466
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1467 1468 1469
				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
				&nr_writeback, &nr_immediate,
				false);
1470

1471 1472
	spin_lock_irq(&zone->lru_lock);

1473
	reclaim_stat->recent_scanned[file] += nr_taken;
1474

Y
Ying Han 已提交
1475 1476 1477 1478 1479 1480 1481 1482
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1483

1484
	putback_inactive_pages(lruvec, &page_list);
1485

1486
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1487 1488 1489 1490

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
1502 1503 1504
	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
	 * of pages under pages flagged for immediate reclaim and stall if any
	 * are encountered in the nr_immediate check below.
1505
	 */
1506
	if (nr_writeback && nr_writeback == nr_taken)
1507
		zone_set_flag(zone, ZONE_WRITEBACK);
1508

1509
	/*
1510 1511
	 * memcg will stall in page writeback so only consider forcibly
	 * stalling for global reclaim
1512
	 */
1513
	if (global_reclaim(sc)) {
1514 1515 1516 1517 1518 1519 1520
		/*
		 * Tag a zone as congested if all the dirty pages scanned were
		 * backed by a congested BDI and wait_iff_congested will stall.
		 */
		if (nr_dirty && nr_dirty == nr_congested)
			zone_set_flag(zone, ZONE_CONGESTED);

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		/*
		 * If dirty pages are scanned that are not queued for IO, it
		 * implies that flushers are not keeping up. In this case, flag
		 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
		 * pages from reclaim context. It will forcibly stall in the
		 * next check.
		 */
		if (nr_unqueued_dirty == nr_taken)
			zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);

		/*
		 * In addition, if kswapd scans pages marked marked for
		 * immediate reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU faster than
		 * they are written so also forcibly stall.
		 */
		if (nr_unqueued_dirty == nr_taken || nr_immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1539
	}
1540

1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * Stall direct reclaim for IO completions if underlying BDIs or zone
	 * is congested. Allow kswapd to continue until it starts encountering
	 * unqueued dirty pages or cycling through the LRU too quickly.
	 */
	if (!sc->hibernation_mode && !current_is_kswapd())
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1549 1550 1551
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1552
		sc->priority,
M
Mel Gorman 已提交
1553
		trace_shrink_flags(file));
1554
	return nr_reclaimed;
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1574

1575
static void move_active_pages_to_lru(struct lruvec *lruvec,
1576
				     struct list_head *list,
1577
				     struct list_head *pages_to_free,
1578 1579
				     enum lru_list lru)
{
1580
	struct zone *zone = lruvec_zone(lruvec);
1581 1582
	unsigned long pgmoved = 0;
	struct page *page;
1583
	int nr_pages;
1584 1585 1586

	while (!list_empty(list)) {
		page = lru_to_page(list);
1587
		lruvec = mem_cgroup_page_lruvec(page, zone);
1588 1589 1590 1591

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1592 1593
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1594
		list_move(&page->lru, &lruvec->lists[lru]);
1595
		pgmoved += nr_pages;
1596

1597 1598 1599
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1600
			del_page_from_lru_list(page, lruvec, lru);
1601 1602 1603 1604 1605 1606 1607

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1608 1609 1610 1611 1612 1613
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1614

H
Hugh Dickins 已提交
1615
static void shrink_active_list(unsigned long nr_to_scan,
1616
			       struct lruvec *lruvec,
1617
			       struct scan_control *sc,
1618
			       enum lru_list lru)
L
Linus Torvalds 已提交
1619
{
1620
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1621
	unsigned long nr_scanned;
1622
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1623
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1624
	LIST_HEAD(l_active);
1625
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1626
	struct page *page;
1627
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1628
	unsigned long nr_rotated = 0;
1629
	isolate_mode_t isolate_mode = 0;
1630
	int file = is_file_lru(lru);
1631
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1632 1633

	lru_add_drain();
1634 1635

	if (!sc->may_unmap)
1636
		isolate_mode |= ISOLATE_UNMAPPED;
1637
	if (!sc->may_writepage)
1638
		isolate_mode |= ISOLATE_CLEAN;
1639

L
Linus Torvalds 已提交
1640
	spin_lock_irq(&zone->lru_lock);
1641

1642 1643
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1644
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1645
		zone->pages_scanned += nr_scanned;
1646

1647
	reclaim_stat->recent_scanned[file] += nr_taken;
1648

H
Hugh Dickins 已提交
1649
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1650
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1651
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1652 1653 1654 1655 1656 1657
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1658

1659
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1660 1661 1662 1663
			putback_lru_page(page);
			continue;
		}

1664 1665 1666 1667 1668 1669 1670 1671
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1672 1673
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1674
			nr_rotated += hpage_nr_pages(page);
1675 1676 1677 1678 1679 1680 1681 1682 1683
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1684
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1685 1686 1687 1688
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1689

1690
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1691 1692 1693
		list_add(&page->lru, &l_inactive);
	}

1694
	/*
1695
	 * Move pages back to the lru list.
1696
	 */
1697
	spin_lock_irq(&zone->lru_lock);
1698
	/*
1699 1700 1701 1702
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1703
	 */
1704
	reclaim_stat->recent_rotated[file] += nr_rotated;
1705

1706 1707
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1708
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1709
	spin_unlock_irq(&zone->lru_lock);
1710 1711

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1712 1713
}

1714
#ifdef CONFIG_SWAP
1715
static int inactive_anon_is_low_global(struct zone *zone)
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1728 1729
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1730
 * @lruvec: LRU vector to check
1731 1732 1733 1734
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1735
static int inactive_anon_is_low(struct lruvec *lruvec)
1736
{
1737 1738 1739 1740 1741 1742 1743
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1744
	if (!mem_cgroup_disabled())
1745
		return mem_cgroup_inactive_anon_is_low(lruvec);
1746

1747
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1748
}
1749
#else
1750
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1751 1752 1753 1754
{
	return 0;
}
#endif
1755

1756 1757
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1758
 * @lruvec: LRU vector to check
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1770
static int inactive_file_is_low(struct lruvec *lruvec)
1771
{
1772 1773 1774 1775 1776
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1777

1778
	return active > inactive;
1779 1780
}

H
Hugh Dickins 已提交
1781
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1782
{
H
Hugh Dickins 已提交
1783
	if (is_file_lru(lru))
1784
		return inactive_file_is_low(lruvec);
1785
	else
1786
		return inactive_anon_is_low(lruvec);
1787 1788
}

1789
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1790
				 struct lruvec *lruvec, struct scan_control *sc)
1791
{
1792
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1793
		if (inactive_list_is_low(lruvec, lru))
1794
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1795 1796 1797
		return 0;
	}

1798
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1799 1800
}

1801
static int vmscan_swappiness(struct scan_control *sc)
1802
{
1803
	if (global_reclaim(sc))
1804
		return vm_swappiness;
1805
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1806 1807
}

1808 1809 1810 1811 1812 1813 1814
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1815 1816 1817 1818 1819 1820
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1821 1822
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1823
 */
1824
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1825
			   unsigned long *nr)
1826
{
1827 1828 1829 1830
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1831
	unsigned long anon_prio, file_prio;
1832 1833 1834
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1835
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1836
	enum lru_list lru;
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1848
	if (current_is_kswapd() && !zone_reclaimable(zone))
1849
		force_scan = true;
1850
	if (!global_reclaim(sc))
1851
		force_scan = true;
1852 1853

	/* If we have no swap space, do not bother scanning anon pages. */
1854
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1855
		scan_balance = SCAN_FILE;
1856 1857
		goto out;
	}
1858

1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1867
		scan_balance = SCAN_FILE;
1868 1869 1870 1871 1872 1873 1874 1875 1876
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1877
		scan_balance = SCAN_EQUAL;
1878 1879 1880
		goto out;
	}

1881 1882 1883 1884
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1885

1886 1887 1888 1889 1890 1891
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1892
	if (global_reclaim(sc)) {
1893
		free = zone_page_state(zone, NR_FREE_PAGES);
1894
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1895
			scan_balance = SCAN_ANON;
1896
			goto out;
1897
		}
1898 1899
	}

1900 1901 1902 1903 1904
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1905
		scan_balance = SCAN_FILE;
1906 1907 1908
		goto out;
	}

1909 1910
	scan_balance = SCAN_FRACT;

1911 1912 1913 1914
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1915
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1916
	file_prio = 200 - anon_prio;
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1929
	spin_lock_irq(&zone->lru_lock);
1930 1931 1932
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1933 1934
	}

1935 1936 1937
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1938 1939 1940
	}

	/*
1941 1942 1943
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1944
	 */
1945
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1946
	ap /= reclaim_stat->recent_rotated[0] + 1;
1947

1948
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1949
	fp /= reclaim_stat->recent_rotated[1] + 1;
1950
	spin_unlock_irq(&zone->lru_lock);
1951

1952 1953 1954 1955
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1956 1957
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1958
		unsigned long size;
1959
		unsigned long scan;
1960

1961
		size = get_lru_size(lruvec, lru);
1962
		scan = size >> sc->priority;
1963

1964 1965
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1988
		nr[lru] = scan;
1989
	}
1990
}
1991

1992 1993 1994 1995 1996 1997
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1998
	unsigned long targets[NR_LRU_LISTS];
1999 2000 2001 2002 2003
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2004
	bool scan_adjusted = false;
2005 2006 2007

	get_scan_count(lruvec, sc, nr);

2008 2009 2010
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2011 2012 2013
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2014 2015 2016
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2017 2018 2019 2020 2021 2022 2023 2024 2025
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
2026 2027 2028 2029

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

2030
		/*
2031 2032 2033 2034
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
2035
		 */
2036
		if (global_reclaim(sc) && !current_is_kswapd())
2037
			break;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2095
/* Use reclaim/compaction for costly allocs or under memory pressure */
2096
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2097
{
2098
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2099
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2100
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2101 2102 2103 2104 2105
		return true;

	return false;
}

2106
/*
M
Mel Gorman 已提交
2107 2108 2109 2110 2111
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2112
 */
2113
static inline bool should_continue_reclaim(struct zone *zone,
2114 2115 2116 2117 2118 2119 2120 2121
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2122
	if (!in_reclaim_compaction(sc))
2123 2124
		return false;

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2147 2148 2149 2150 2151 2152

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2153
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2154
	if (get_nr_swap_pages() > 0)
2155
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2156 2157 2158 2159 2160
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2161
	switch (compaction_suitable(zone, sc->order)) {
2162 2163 2164 2165 2166 2167 2168 2169
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2170
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2171
{
2172
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2173

2174 2175 2176 2177 2178 2179
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
2180
		struct mem_cgroup *memcg;
2181

2182 2183
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2184

2185 2186
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2187
			struct lruvec *lruvec;
2188

2189
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2190

2191
			shrink_lruvec(lruvec, sc);
2192

2193
			/*
2194 2195
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2196
			 * zone.
2197 2198 2199 2200 2201
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2202
			 */
2203 2204
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2205 2206 2207
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2208 2209
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2210 2211 2212 2213 2214

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2215 2216
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2217 2218
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2236
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2237 2238 2239 2240 2241 2242 2243 2244
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2245
	if (compaction_deferred(zone, sc->order))
2246 2247 2248 2249 2250 2251 2252 2253 2254
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2255 2256 2257 2258 2259
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2260 2261
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2262 2263
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2264 2265 2266
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2267 2268 2269
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2270 2271
 *
 * This function returns true if a zone is being reclaimed for a costly
2272
 * high-order allocation and compaction is ready to begin. This indicates to
2273 2274
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2275
 */
2276
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2277
{
2278
	struct zoneref *z;
2279
	struct zone *zone;
2280 2281
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2282
	bool aborted_reclaim = false;
2283

2284 2285 2286 2287 2288 2289 2290 2291
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2292 2293
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2294
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2295
			continue;
2296 2297 2298 2299
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2300
		if (global_reclaim(sc)) {
2301 2302
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2303 2304
			if (sc->priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2305
				continue;	/* Let kswapd poll it */
2306
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2307
				/*
2308 2309 2310 2311 2312
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2313 2314
				 * noticeable problem, like transparent huge
				 * page allocations.
2315
				 */
2316
				if (compaction_ready(zone, sc)) {
2317
					aborted_reclaim = true;
2318
					continue;
2319
				}
2320
			}
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2333
			/* need some check for avoid more shrink_zone() */
2334
		}
2335

2336
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2337
	}
2338

2339
	return aborted_reclaim;
2340 2341
}

2342
/* All zones in zonelist are unreclaimable? */
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2355
		if (zone_reclaimable(zone))
2356
			return false;
2357 2358
	}

2359
	return true;
L
Linus Torvalds 已提交
2360
}
2361

L
Linus Torvalds 已提交
2362 2363 2364 2365 2366 2367 2368 2369
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2370 2371 2372 2373
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2374 2375 2376
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2377
 */
2378
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2379 2380
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2381
{
2382
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2383
	struct reclaim_state *reclaim_state = current->reclaim_state;
2384
	struct zoneref *z;
2385
	struct zone *zone;
2386
	unsigned long writeback_threshold;
2387
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2388

2389 2390
	delayacct_freepages_start();

2391
	if (global_reclaim(sc))
2392
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2393

2394
	do {
2395 2396
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2397
		sc->nr_scanned = 0;
2398
		aborted_reclaim = shrink_zones(zonelist, sc);
2399

2400
		/*
2401 2402 2403 2404
		 * Don't shrink slabs when reclaiming memory from over limit
		 * cgroups but do shrink slab at least once when aborting
		 * reclaim for compaction to avoid unevenly scanning file/anon
		 * LRU pages over slab pages.
2405
		 */
2406
		if (global_reclaim(sc)) {
2407
			unsigned long lru_pages = 0;
D
Dave Chinner 已提交
2408 2409

			nodes_clear(shrink->nodes_to_scan);
2410 2411
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2412 2413 2414 2415
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
D
Dave Chinner 已提交
2416 2417
				node_set(zone_to_nid(zone),
					 shrink->nodes_to_scan);
2418 2419
			}

2420
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2421
			if (reclaim_state) {
2422
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2423 2424
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2425
		}
2426
		total_scanned += sc->nr_scanned;
2427
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2428 2429
			goto out;

2430 2431 2432 2433 2434 2435 2436
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442 2443
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2444 2445
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2446 2447
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2448
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2449
		}
2450
	} while (--sc->priority >= 0 && !aborted_reclaim);
2451

L
Linus Torvalds 已提交
2452
out:
2453 2454
	delayacct_freepages_end();

2455 2456 2457
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2458 2459 2460 2461 2462 2463 2464 2465
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2466 2467
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2468 2469
		return 1;

2470
	/* top priority shrink_zones still had more to do? don't OOM, then */
2471
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2472 2473 2474
		return 1;

	return 0;
L
Linus Torvalds 已提交
2475 2476
}

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2507 2508 2509 2510
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2511
 */
2512
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2527 2528 2529 2530 2531 2532 2533 2534
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2535 2536 2537 2538 2539

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2540
		goto out;
2541

2542 2543 2544
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2556 2557

		goto check_pending;
2558 2559 2560 2561 2562
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2563 2564 2565 2566 2567 2568 2569

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2570 2571
}

2572
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2573
				gfp_t gfp_mask, nodemask_t *nodemask)
2574
{
2575
	unsigned long nr_reclaimed;
2576
	struct scan_control sc = {
2577
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2578
		.may_writepage = !laptop_mode,
2579
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2580
		.may_unmap = 1,
2581
		.may_swap = 1,
2582
		.order = order,
2583
		.priority = DEF_PRIORITY,
2584
		.target_mem_cgroup = NULL,
2585
		.nodemask = nodemask,
2586
	};
2587 2588 2589
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2590

2591
	/*
2592 2593 2594
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2595
	 */
2596
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2597 2598
		return 1;

2599 2600 2601 2602
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2603
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2604 2605 2606 2607

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2608 2609
}

A
Andrew Morton 已提交
2610
#ifdef CONFIG_MEMCG
2611

2612
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2613
						gfp_t gfp_mask, bool noswap,
2614 2615
						struct zone *zone,
						unsigned long *nr_scanned)
2616 2617
{
	struct scan_control sc = {
2618
		.nr_scanned = 0,
2619
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2620 2621 2622 2623
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2624
		.priority = 0,
2625
		.target_mem_cgroup = memcg,
2626
	};
2627
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2628

2629 2630
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2631

2632
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2633 2634 2635
						      sc.may_writepage,
						      sc.gfp_mask);

2636 2637 2638 2639 2640 2641 2642
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2643
	shrink_lruvec(lruvec, &sc);
2644 2645 2646

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2647
	*nr_scanned = sc.nr_scanned;
2648 2649 2650
	return sc.nr_reclaimed;
}

2651
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2652
					   gfp_t gfp_mask,
2653
					   bool noswap)
2654
{
2655
	struct zonelist *zonelist;
2656
	unsigned long nr_reclaimed;
2657
	int nid;
2658 2659
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2660
		.may_unmap = 1,
2661
		.may_swap = !noswap,
2662
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2663
		.order = 0,
2664
		.priority = DEF_PRIORITY,
2665
		.target_mem_cgroup = memcg,
2666
		.nodemask = NULL, /* we don't care the placement */
2667 2668 2669 2670 2671
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2672 2673
	};

2674 2675 2676 2677 2678
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2679
	nid = mem_cgroup_select_victim_node(memcg);
2680 2681

	zonelist = NODE_DATA(nid)->node_zonelists;
2682 2683 2684 2685 2686

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2687
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2688 2689 2690 2691

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2692 2693 2694
}
#endif

2695
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2696
{
2697
	struct mem_cgroup *memcg;
2698

2699 2700 2701 2702 2703
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2704
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2705

2706
		if (inactive_anon_is_low(lruvec))
2707
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2708
					   sc, LRU_ACTIVE_ANON);
2709 2710 2711

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2712 2713
}

2714 2715 2716 2717 2718 2719 2720
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2721 2722
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2723 2724 2725 2726 2727
		return false;

	return true;
}

2728
/*
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2739 2740 2741 2742
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2743
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2744 2745 2746 2747
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2748
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2749
{
2750
	unsigned long managed_pages = 0;
2751
	unsigned long balanced_pages = 0;
2752 2753
	int i;

2754 2755 2756
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2757

2758 2759 2760
		if (!populated_zone(zone))
			continue;

2761
		managed_pages += zone->managed_pages;
2762 2763 2764 2765 2766 2767 2768 2769

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
2770
		if (!zone_reclaimable(zone)) {
2771
			balanced_pages += zone->managed_pages;
2772 2773 2774 2775
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2776
			balanced_pages += zone->managed_pages;
2777 2778 2779 2780 2781
		else if (!order)
			return false;
	}

	if (order)
2782
		return balanced_pages >= (managed_pages >> 2);
2783 2784
	else
		return true;
2785 2786
}

2787 2788 2789 2790 2791 2792 2793
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2794
					int classzone_idx)
2795 2796 2797
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2813

2814
	return pgdat_balanced(pgdat, order, classzone_idx);
2815 2816
}

2817 2818 2819
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2820 2821
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2822 2823
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2824
 */
2825
static bool kswapd_shrink_zone(struct zone *zone,
2826
			       int classzone_idx,
2827
			       struct scan_control *sc,
2828 2829
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2830
{
2831 2832
	int testorder = sc->order;
	unsigned long balance_gap;
2833 2834 2835 2836
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2837
	bool lowmem_pressure;
2838 2839 2840

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2872
	shrink_zone(zone, sc);
D
Dave Chinner 已提交
2873 2874
	nodes_clear(shrink.nodes_to_scan);
	node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2875 2876

	reclaim_state->reclaimed_slab = 0;
2877
	shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2878 2879
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2880 2881 2882
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2883 2884
	zone_clear_flag(zone, ZONE_WRITEBACK);

2885 2886 2887 2888 2889 2890
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
2891
	if (zone_reclaimable(zone) &&
2892 2893 2894 2895 2896
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2897
	return sc->nr_scanned >= sc->nr_to_reclaim;
2898 2899
}

L
Linus Torvalds 已提交
2900 2901
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2902
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2903
 *
2904
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2915 2916 2917 2918 2919
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2920
 */
2921
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2922
							int *classzone_idx)
L
Linus Torvalds 已提交
2923 2924
{
	int i;
2925
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2926 2927
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2928 2929
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2930
		.priority = DEF_PRIORITY,
2931
		.may_unmap = 1,
2932
		.may_swap = 1,
2933
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2934
		.order = order,
2935
		.target_mem_cgroup = NULL,
2936
	};
2937
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2938

2939
	do {
L
Linus Torvalds 已提交
2940
		unsigned long lru_pages = 0;
2941
		unsigned long nr_attempted = 0;
2942
		bool raise_priority = true;
2943
		bool pgdat_needs_compaction = (order > 0);
2944 2945

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2946

2947 2948 2949 2950 2951 2952
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2953

2954 2955
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2956

2957 2958
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
2959
				continue;
L
Linus Torvalds 已提交
2960

2961 2962 2963 2964
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2965
			age_active_anon(zone, &sc);
2966

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2978
			if (!zone_balanced(zone, order, 0, 0)) {
2979
				end_zone = i;
A
Andrew Morton 已提交
2980
				break;
2981
			} else {
2982 2983 2984 2985
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2986
				zone_clear_flag(zone, ZONE_CONGESTED);
2987
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2988 2989
			}
		}
2990

2991
		if (i < 0)
A
Andrew Morton 已提交
2992 2993
			goto out;

L
Linus Torvalds 已提交
2994 2995 2996
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2997 2998 2999
			if (!populated_zone(zone))
				continue;

3000
			lru_pages += zone_reclaimable_pages(zone);
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
3012 3013
		}

3014 3015 3016 3017 3018 3019 3020
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

3033
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
3034 3035
				continue;

3036 3037
			if (sc.priority != DEF_PRIORITY &&
			    !zone_reclaimable(zone))
L
Linus Torvalds 已提交
3038 3039 3040
				continue;

			sc.nr_scanned = 0;
3041

3042 3043 3044 3045 3046 3047 3048 3049 3050
			nr_soft_scanned = 0;
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;

3051
			/*
3052 3053 3054 3055
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
3056
			 */
3057 3058 3059
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
3060
		}
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
3071
		/*
3072 3073 3074 3075 3076 3077
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3078
		 */
3079 3080
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3081

3082 3083 3084
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3085

3086 3087 3088 3089 3090 3091 3092
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3093
		/*
3094 3095
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3096
		 */
3097 3098
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3099
	} while (sc.priority >= 1 &&
3100
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3101

3102
out:
3103
	/*
3104
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3105 3106 3107 3108
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3109
	*classzone_idx = end_zone;
3110
	return order;
L
Linus Torvalds 已提交
3111 3112
}

3113
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3124
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3125 3126 3127 3128 3129 3130 3131 3132 3133
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3134
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3146

3147 3148 3149 3150 3151 3152 3153 3154
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3155 3156 3157
		if (!kthread_should_stop())
			schedule();

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3168 3169
/*
 * The background pageout daemon, started as a kernel thread
3170
 * from the init process.
L
Linus Torvalds 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3183
	unsigned long order, new_order;
3184
	unsigned balanced_order;
3185
	int classzone_idx, new_classzone_idx;
3186
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3187 3188
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3189

L
Linus Torvalds 已提交
3190 3191 3192
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3193
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3194

3195 3196
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3197
	if (!cpumask_empty(cpumask))
3198
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3213
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3214
	set_freezable();
L
Linus Torvalds 已提交
3215

3216
	order = new_order = 0;
3217
	balanced_order = 0;
3218
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3219
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3220
	for ( ; ; ) {
3221
		bool ret;
3222

3223 3224 3225 3226 3227
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3228 3229
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3230 3231 3232 3233 3234 3235
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3236
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3237 3238
			/*
			 * Don't sleep if someone wants a larger 'order'
3239
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3240 3241
			 */
			order = new_order;
3242
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3243
		} else {
3244 3245
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3246
			order = pgdat->kswapd_max_order;
3247
			classzone_idx = pgdat->classzone_idx;
3248 3249
			new_order = order;
			new_classzone_idx = classzone_idx;
3250
			pgdat->kswapd_max_order = 0;
3251
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3252 3253
		}

3254 3255 3256 3257 3258 3259 3260 3261
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3262 3263
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3264 3265 3266
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3267
		}
L
Linus Torvalds 已提交
3268
	}
3269 3270

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3271 3272 3273 3274 3275 3276
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3277
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3278 3279 3280
{
	pg_data_t *pgdat;

3281
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3282 3283
		return;

3284
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3285
		return;
3286
	pgdat = zone->zone_pgdat;
3287
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3288
		pgdat->kswapd_max_order = order;
3289 3290
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3291
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3292
		return;
3293
	if (zone_balanced(zone, order, 0, 0))
3294 3295 3296
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3297
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3298 3299
}

3300 3301 3302 3303 3304 3305 3306 3307
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3308
{
3309 3310 3311 3312 3313
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3314
	if (get_nr_swap_pages() > 0)
3315 3316 3317 3318 3319 3320
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

3321
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3322
/*
3323
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3324 3325 3326 3327 3328
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3329
 */
3330
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3331
{
3332 3333
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3334 3335 3336
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3337
		.may_writepage = 1,
3338 3339 3340
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3341
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3342
	};
3343 3344 3345 3346
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3347 3348
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3349

3350 3351 3352 3353
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3354

3355
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3356

3357 3358 3359
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3360

3361
	return nr_reclaimed;
L
Linus Torvalds 已提交
3362
}
3363
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3364 3365 3366 3367 3368

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3369 3370
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3371
{
3372
	int nid;
L
Linus Torvalds 已提交
3373

3374
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3375
		for_each_node_state(nid, N_MEMORY) {
3376
			pg_data_t *pgdat = NODE_DATA(nid);
3377 3378 3379
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3380

3381
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3382
				/* One of our CPUs online: restore mask */
3383
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3384 3385 3386 3387 3388
		}
	}
	return NOTIFY_OK;
}

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3405 3406
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3407
		pgdat->kswapd = NULL;
3408 3409 3410 3411
	}
	return ret;
}

3412
/*
3413 3414
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3415 3416 3417 3418 3419
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3420
	if (kswapd) {
3421
		kthread_stop(kswapd);
3422 3423
		NODE_DATA(nid)->kswapd = NULL;
	}
3424 3425
}

L
Linus Torvalds 已提交
3426 3427
static int __init kswapd_init(void)
{
3428
	int nid;
3429

L
Linus Torvalds 已提交
3430
	swap_setup();
3431
	for_each_node_state(nid, N_MEMORY)
3432
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3433 3434 3435 3436 3437
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3448
#define RECLAIM_OFF 0
3449
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3450 3451 3452
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3453 3454 3455 3456 3457 3458 3459
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3460 3461 3462 3463 3464 3465
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3466 3467 3468 3469 3470 3471
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3514 3515 3516
/*
 * Try to free up some pages from this zone through reclaim.
 */
3517
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3518
{
3519
	/* Minimum pages needed in order to stay on node */
3520
	const unsigned long nr_pages = 1 << order;
3521 3522
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3523 3524
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3525
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3526
		.may_swap = 1,
3527
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3528
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3529
		.order = order,
3530
		.priority = ZONE_RECLAIM_PRIORITY,
3531
	};
3532 3533 3534
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3535
	unsigned long nr_slab_pages0, nr_slab_pages1;
3536 3537

	cond_resched();
3538 3539 3540 3541 3542 3543
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3544
	lockdep_set_current_reclaim_state(gfp_mask);
3545 3546
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3547

3548
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3549 3550 3551 3552 3553
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3554 3555
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3556
	}
3557

3558 3559
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3560
		/*
3561
		 * shrink_slab() does not currently allow us to determine how
3562 3563 3564 3565
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3566
		 */
D
Dave Chinner 已提交
3567 3568
		nodes_clear(shrink.nodes_to_scan);
		node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3569 3570 3571 3572
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3573
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3574 3575 3576 3577 3578 3579 3580 3581
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3582 3583 3584 3585 3586

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3587 3588 3589
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3590 3591
	}

3592
	p->reclaim_state = NULL;
3593
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3594
	lockdep_clear_current_reclaim_state();
3595
	return sc.nr_reclaimed >= nr_pages;
3596
}
3597 3598 3599 3600

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3601
	int ret;
3602 3603

	/*
3604 3605
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3606
	 *
3607 3608 3609 3610 3611
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3612
	 */
3613 3614
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3615
		return ZONE_RECLAIM_FULL;
3616

3617
	if (!zone_reclaimable(zone))
3618
		return ZONE_RECLAIM_FULL;
3619

3620
	/*
3621
	 * Do not scan if the allocation should not be delayed.
3622
	 */
3623
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3624
		return ZONE_RECLAIM_NOSCAN;
3625 3626 3627 3628 3629 3630 3631

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3632
	node_id = zone_to_nid(zone);
3633
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3634
		return ZONE_RECLAIM_NOSCAN;
3635 3636

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3637 3638
		return ZONE_RECLAIM_NOSCAN;

3639 3640 3641
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3642 3643 3644
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3645
	return ret;
3646
}
3647
#endif
L
Lee Schermerhorn 已提交
3648 3649 3650 3651 3652 3653

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3654
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3655 3656
 *
 * Reasons page might not be evictable:
3657
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3658
 * (2) page is part of an mlocked VMA
3659
 *
L
Lee Schermerhorn 已提交
3660
 */
3661
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3662
{
3663
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3664
}
3665

3666
#ifdef CONFIG_SHMEM
3667
/**
3668 3669 3670
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3671
 *
3672
 * Checks pages for evictability and moves them to the appropriate lru list.
3673 3674
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3675
 */
3676
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3677
{
3678
	struct lruvec *lruvec;
3679 3680 3681 3682
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3683

3684 3685 3686
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3687

3688 3689 3690 3691 3692 3693 3694 3695
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3696
		lruvec = mem_cgroup_page_lruvec(page, zone);
3697

3698 3699
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3700

3701
		if (page_evictable(page)) {
3702 3703 3704 3705
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3706 3707
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3708
			pgrescued++;
3709
		}
3710
	}
3711

3712 3713 3714 3715
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3716 3717
	}
}
3718
#endif /* CONFIG_SHMEM */
3719

3720
static void warn_scan_unevictable_pages(void)
3721
{
3722
	printk_once(KERN_WARNING
3723
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3724
		    "disabled for lack of a legitimate use case.  If you have "
3725 3726
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3727 3728 3729 3730 3731 3732 3733 3734 3735
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3736
			   void __user *buffer,
3737 3738
			   size_t *length, loff_t *ppos)
{
3739
	warn_scan_unevictable_pages();
3740
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3741 3742 3743 3744
	scan_unevictable_pages = 0;
	return 0;
}

3745
#ifdef CONFIG_NUMA
3746 3747 3748 3749 3750
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3751 3752
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3753 3754
					  char *buf)
{
3755
	warn_scan_unevictable_pages();
3756 3757 3758
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3759 3760
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3761 3762
					const char *buf, size_t count)
{
3763
	warn_scan_unevictable_pages();
3764 3765 3766 3767
	return 1;
}


3768
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3769 3770 3771 3772 3773
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3774
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3775 3776 3777 3778
}

void scan_unevictable_unregister_node(struct node *node)
{
3779
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3780
}
3781
#endif