vmscan.c 105.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmpressure.h>
23
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
24 25 26 27 28 29 30 31 32 33 34
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
35
#include <linux/compaction.h>
L
Linus Torvalds 已提交
36 37
#include <linux/notifier.h>
#include <linux/rwsem.h>
38
#include <linux/delay.h>
39
#include <linux/kthread.h>
40
#include <linux/freezer.h>
41
#include <linux/memcontrol.h>
42
#include <linux/delayacct.h>
43
#include <linux/sysctl.h>
44
#include <linux/oom.h>
45
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
46 47 48 49 50 51

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

52 53
#include "internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
57 58 59 60
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

61 62 63
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

64 65 66
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

67 68
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
69
	/* This context's GFP mask */
A
Al Viro 已提交
70
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
71 72 73

	int may_writepage;

74 75
	/* Can mapped pages be reclaimed? */
	int may_unmap;
76

77 78 79
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
80
	int order;
81

82 83 84
	/* Scan (total_size >> priority) pages at once */
	int priority;

85 86 87 88 89
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
90

91 92 93 94 95
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
132
unsigned long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
133 134 135 136

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
137
#ifdef CONFIG_MEMCG
138 139
static bool global_reclaim(struct scan_control *sc)
{
140
	return !sc->target_mem_cgroup;
141
}
142
#else
143 144 145 146
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
147 148
#endif

149
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150
{
151
	if (!mem_cgroup_disabled())
152
		return mem_cgroup_get_lru_size(lruvec, lru);
153

154
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
155 156
}

L
Linus Torvalds 已提交
157 158 159
/*
 * Add a shrinker callback to be called from the vm
 */
160
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
161
{
162
	atomic_long_set(&shrinker->nr_in_batch, 0);
163 164 165
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
166
}
167
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
168 169 170 171

/*
 * Remove one
 */
172
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
173 174 175 176 177
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
178
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
179

180 181 182 183 184 185 186 187
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
197
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
198 199 200 201 202 203 204
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
205 206
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
207
 */
208
unsigned long shrink_slab(struct shrink_control *shrink,
209
			  unsigned long nr_pages_scanned,
210
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
211 212
{
	struct shrinker *shrinker;
213
	unsigned long ret = 0;
L
Linus Torvalds 已提交
214

215 216
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
217

218 219 220 221 222
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
223 224 225

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
226 227
		long total_scan;
		long max_pass;
228
		int shrink_ret = 0;
229 230
		long nr;
		long new_nr;
231 232
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
233

234 235 236 237
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

238 239 240 241 242
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
243
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
244 245

		total_scan = nr;
246
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
247
		delta *= max_pass;
L
Linus Torvalds 已提交
248
		do_div(delta, lru_pages + 1);
249 250
		total_scan += delta;
		if (total_scan < 0) {
251 252
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
253 254
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
255 256
		}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

272 273 274 275 276
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
277 278
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
279

280
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
281 282 283
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

284
		while (total_scan >= batch_size) {
285
			int nr_before;
L
Linus Torvalds 已提交
286

287 288
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
289
							batch_size);
L
Linus Torvalds 已提交
290 291
			if (shrink_ret == -1)
				break;
292 293
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
294 295
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
296 297 298 299

			cond_resched();
		}

300 301 302 303 304
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
305 306 307 308 309
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 311

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
312 313
	}
	up_read(&shrinker_rwsem);
314 315
out:
	cond_resched();
316
	return ret;
L
Linus Torvalds 已提交
317 318 319 320
}

static inline int is_page_cache_freeable(struct page *page)
{
321 322 323 324 325
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
326
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
327 328
}

329 330
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
331
{
332
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
356
	lock_page(page);
357 358
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
359 360 361
	unlock_page(page);
}

362 363 364 365 366 367 368 369 370 371 372 373
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
374
/*
A
Andrew Morton 已提交
375 376
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
377
 */
378
static pageout_t pageout(struct page *page, struct address_space *mapping,
379
			 struct scan_control *sc)
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
388
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
404
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
405 406
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
407
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
415
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
416 417 418 419 420 421 422
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
423 424
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
425 426 427 428 429 430 431
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
432
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
433 434 435
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
436

L
Linus Torvalds 已提交
437 438 439 440
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
441
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
442
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
443 444 445 446 447 448
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

449
/*
N
Nick Piggin 已提交
450 451
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
452
 */
N
Nick Piggin 已提交
453
static int __remove_mapping(struct address_space *mapping, struct page *page)
454
{
455 456
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
457

N
Nick Piggin 已提交
458
	spin_lock_irq(&mapping->tree_lock);
459
	/*
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
483
	 */
N
Nick Piggin 已提交
484
	if (!page_freeze_refs(page, 2))
485
		goto cannot_free;
N
Nick Piggin 已提交
486 487 488
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
489
		goto cannot_free;
N
Nick Piggin 已提交
490
	}
491 492 493 494

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
495
		spin_unlock_irq(&mapping->tree_lock);
496
		swapcache_free(swap, page);
N
Nick Piggin 已提交
497
	} else {
498 499 500 501
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

502
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
503
		spin_unlock_irq(&mapping->tree_lock);
504
		mem_cgroup_uncharge_cache_page(page);
505 506 507

		if (freepage != NULL)
			freepage(page);
508 509 510 511 512
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
513
	spin_unlock_irq(&mapping->tree_lock);
514 515 516
	return 0;
}

N
Nick Piggin 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
550
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
551 552 553 554 555 556

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

557
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
558 559 560 561 562 563
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
564
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
565 566 567 568 569 570 571 572
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
573
		/*
574 575 576
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
577
		 * isolation/check_move_unevictable_pages,
578
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
579 580
		 * the page back to the evictable list.
		 *
581
		 * The other side is TestClearPageMlocked() or shmem_lock().
582 583
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
584 585 586 587 588 589 590
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
591
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
592 593 594 595 596 597 598 599 600 601
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

602 603 604 605 606
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
607 608 609
	put_page(page);		/* drop ref from isolate */
}

610 611 612
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
613
	PAGEREF_KEEP,
614 615 616 617 618 619
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
620
	int referenced_ptes, referenced_page;
621 622
	unsigned long vm_flags;

623 624
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
625
	referenced_page = TestClearPageReferenced(page);
626 627 628 629 630 631 632 633

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

634
	if (referenced_ptes) {
635
		if (PageSwapBacked(page))
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

653
		if (referenced_page || referenced_ptes > 1)
654 655
			return PAGEREF_ACTIVATE;

656 657 658 659 660 661
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

662 663
		return PAGEREF_KEEP;
	}
664 665

	/* Reclaim if clean, defer dirty pages to writeback */
666
	if (referenced_page && !PageSwapBacked(page))
667 668 669
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
670 671
}

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
	if (!page_is_file_cache(page)) {
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
}

L
Linus Torvalds 已提交
691
/*
A
Andrew Morton 已提交
692
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
693
 */
A
Andrew Morton 已提交
694
static unsigned long shrink_page_list(struct list_head *page_list,
695
				      struct zone *zone,
696
				      struct scan_control *sc,
697
				      enum ttu_flags ttu_flags,
698
				      unsigned long *ret_nr_unqueued_dirty,
699 700
				      unsigned long *ret_nr_writeback,
				      bool force_reclaim)
L
Linus Torvalds 已提交
701 702
{
	LIST_HEAD(ret_pages);
703
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
704
	int pgactivate = 0;
705
	unsigned long nr_unqueued_dirty = 0;
706 707
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
708
	unsigned long nr_reclaimed = 0;
709
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
710 711 712

	cond_resched();

713
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
714 715 716 717
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
718
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
719
		bool dirty, writeback;
L
Linus Torvalds 已提交
720 721 722 723 724 725

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
726
		if (!trylock_page(page))
L
Linus Torvalds 已提交
727 728
			goto keep;

N
Nick Piggin 已提交
729
		VM_BUG_ON(PageActive(page));
730
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
731 732

		sc->nr_scanned++;
733

734
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
735
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
736

737
		if (!sc->may_unmap && page_mapped(page))
738 739
			goto keep_locked;

L
Linus Torvalds 已提交
740 741 742 743
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

744 745 746
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
		/*
		 * The number of dirty pages determines if a zone is marked
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

		/* Treat this page as congested if underlying BDI is */
		mapping = page_mapping(page);
		if (mapping && bdi_write_congested(mapping->backing_dev_info))
			nr_congested++;

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
		 *    block for HZ/10 or until some IO completes then clear the
		 *    ZONE_WRITEBACK flag to recheck if the condition exists.
		 *
		 * 2) Global reclaim encounters a page, memcg encounters a
		 *    page that is not marked for immediate reclaim or
		 *    the caller does not have __GFP_IO. In this case mark
		 *    the page for immediate reclaim and continue scanning.
		 *
		 *    __GFP_IO is checked  because a loop driver thread might
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
		 *    Don't require __GFP_FS, since we're not going into the
		 *    FS, just waiting on its writeback completion. Worryingly,
		 *    ext4 gfs2 and xfs allocate pages with
		 *    grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
		 *    may_enter_fs here is liable to OOM on them.
		 *
		 * 3) memcg encounters a page that is not already marked
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
		 */
802
		if (PageWriteback(page)) {
803 804 805 806 807 808 809 810 811 812 813
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
			    zone_is_reclaim_writeback(zone)) {
				unlock_page(page);
				congestion_wait(BLK_RW_ASYNC, HZ/10);
				zone_clear_flag(zone, ZONE_WRITEBACK);
				goto keep;

			/* Case 2 above */
			} else if (global_reclaim(sc) ||
814 815 816 817 818 819 820 821 822 823 824 825 826
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
827
				nr_writeback++;
828

829
				goto keep_locked;
830 831 832 833

			/* Case 3 above */
			} else {
				wait_on_page_writeback(page);
834
			}
835
		}
L
Linus Torvalds 已提交
836

837 838 839
		if (!force_reclaim)
			references = page_check_references(page, sc);

840 841
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
842
			goto activate_locked;
843 844
		case PAGEREF_KEEP:
			goto keep_locked;
845 846 847 848
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
849 850 851 852 853

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
854
		if (PageAnon(page) && !PageSwapCache(page)) {
855 856
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
857
			if (!add_to_swap(page, page_list))
L
Linus Torvalds 已提交
858
				goto activate_locked;
859
			may_enter_fs = 1;
L
Linus Torvalds 已提交
860

861 862 863
			/* Adding to swap updated mapping */
			mapping = page_mapping(page);
		}
L
Linus Torvalds 已提交
864 865 866 867 868 869

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
870
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
871 872 873 874
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
875 876
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
877 878 879 880 881 882
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
883 884
			/*
			 * Only kswapd can writeback filesystem pages to
885 886
			 * avoid risk of stack overflow but only writeback
			 * if many dirty pages have been encountered.
887
			 */
888
			if (page_is_file_cache(page) &&
889
					(!current_is_kswapd() ||
890
					 !zone_is_reclaim_dirty(zone))) {
891 892 893 894 895 896 897 898 899
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

900 901 902
				goto keep_locked;
			}

903
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
904
				goto keep_locked;
905
			if (!may_enter_fs)
L
Linus Torvalds 已提交
906
				goto keep_locked;
907
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
908 909 910
				goto keep_locked;

			/* Page is dirty, try to write it out here */
911
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
912 913 914 915 916
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
917
				if (PageWriteback(page))
918
					goto keep;
919
				if (PageDirty(page))
L
Linus Torvalds 已提交
920
					goto keep;
921

L
Linus Torvalds 已提交
922 923 924 925
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
926
				if (!trylock_page(page))
L
Linus Torvalds 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
946
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
947 948 949 950 951 952 953 954 955 956
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
957
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
958 959
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
976 977
		}

N
Nick Piggin 已提交
978
		if (!mapping || !__remove_mapping(mapping, page))
979
			goto keep_locked;
L
Linus Torvalds 已提交
980

N
Nick Piggin 已提交
981 982 983 984 985 986 987 988
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
989
free_it:
990
		nr_reclaimed++;
991 992 993 994 995 996

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
997 998
		continue;

N
Nick Piggin 已提交
999
cull_mlocked:
1000 1001
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
1002 1003 1004 1005
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
1006
activate_locked:
1007 1008
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
1009
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
1010
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
1011 1012 1013 1014 1015 1016
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
1017
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
1018
	}
1019

1020 1021 1022 1023 1024 1025
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
1026
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1027
		zone_set_flag(zone, ZONE_CONGESTED);
1028

1029
	free_hot_cold_page_list(&free_pages, 1);
1030

L
Linus Torvalds 已提交
1031
	list_splice(&ret_pages, page_list);
1032
	count_vm_events(PGACTIVATE, pgactivate);
1033
	mem_cgroup_uncharge_end();
1034
	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1035
	*ret_nr_writeback += nr_writeback;
1036
	return nr_reclaimed;
L
Linus Torvalds 已提交
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
	unsigned long ret, dummy1, dummy2;
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
				TTU_UNMAP|TTU_IGNORE_ACCESS,
				&dummy1, &dummy2, true);
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1076
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1077 1078 1079 1080 1081 1082 1083
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1084 1085
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1086 1087
		return ret;

A
Andy Whitcroft 已提交
1088
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1123

1124 1125 1126
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1151
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1152
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1153
 * @nr_scanned:	The number of pages that were scanned.
1154
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1155
 * @mode:	One of the LRU isolation modes
1156
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1157 1158 1159
 *
 * returns how many pages were moved onto *@dst.
 */
1160
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1161
		struct lruvec *lruvec, struct list_head *dst,
1162
		unsigned long *nr_scanned, struct scan_control *sc,
1163
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1164
{
H
Hugh Dickins 已提交
1165
	struct list_head *src = &lruvec->lists[lru];
1166
	unsigned long nr_taken = 0;
1167
	unsigned long scan;
L
Linus Torvalds 已提交
1168

1169
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1170
		struct page *page;
1171
		int nr_pages;
A
Andy Whitcroft 已提交
1172

L
Linus Torvalds 已提交
1173 1174 1175
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1176
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1177

1178
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1179
		case 0:
1180 1181
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1182
			list_move(&page->lru, dst);
1183
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1184 1185 1186 1187 1188 1189
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1190

A
Andy Whitcroft 已提交
1191 1192 1193
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1194 1195
	}

H
Hugh Dickins 已提交
1196
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1197 1198
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1199 1200 1201
	return nr_taken;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1213 1214 1215
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1231 1232
	VM_BUG_ON(!page_count(page));

1233 1234
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1235
		struct lruvec *lruvec;
1236 1237

		spin_lock_irq(&zone->lru_lock);
1238
		lruvec = mem_cgroup_page_lruvec(page, zone);
1239
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1240
			int lru = page_lru(page);
1241
			get_page(page);
1242
			ClearPageLRU(page);
1243 1244
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1245 1246 1247 1248 1249 1250
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1251
/*
F
Fengguang Wu 已提交
1252 1253 1254 1255 1256
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1257 1258 1259 1260 1261 1262 1263 1264 1265
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1266
	if (!global_reclaim(sc))
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1277 1278 1279 1280 1281 1282 1283 1284
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1285 1286 1287
	return isolated > inactive;
}

1288
static noinline_for_stack void
H
Hugh Dickins 已提交
1289
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1290
{
1291 1292
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1293
	LIST_HEAD(pages_to_free);
1294 1295 1296 1297 1298

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1299
		struct page *page = lru_to_page(page_list);
1300
		int lru;
1301

1302 1303
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1304
		if (unlikely(!page_evictable(page))) {
1305 1306 1307 1308 1309
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1310 1311 1312

		lruvec = mem_cgroup_page_lruvec(page, zone);

1313
		SetPageLRU(page);
1314
		lru = page_lru(page);
1315 1316
		add_page_to_lru_list(page, lruvec, lru);

1317 1318
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1319 1320
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1321
		}
1322 1323 1324
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1325
			del_page_from_lru_list(page, lruvec, lru);
1326 1327 1328 1329 1330 1331 1332

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1333 1334 1335
		}
	}

1336 1337 1338 1339
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1340 1341
}

L
Linus Torvalds 已提交
1342
/*
A
Andrew Morton 已提交
1343 1344
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1345
 */
1346
static noinline_for_stack unsigned long
1347
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1348
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1349 1350
{
	LIST_HEAD(page_list);
1351
	unsigned long nr_scanned;
1352
	unsigned long nr_reclaimed = 0;
1353
	unsigned long nr_taken;
1354
	unsigned long nr_unqueued_dirty = 0;
1355
	unsigned long nr_writeback = 0;
1356
	isolate_mode_t isolate_mode = 0;
1357
	int file = is_file_lru(lru);
1358 1359
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1360

1361
	while (unlikely(too_many_isolated(zone, file, sc))) {
1362
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1363 1364 1365 1366 1367 1368

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1369
	lru_add_drain();
1370 1371

	if (!sc->may_unmap)
1372
		isolate_mode |= ISOLATE_UNMAPPED;
1373
	if (!sc->may_writepage)
1374
		isolate_mode |= ISOLATE_CLEAN;
1375

L
Linus Torvalds 已提交
1376
	spin_lock_irq(&zone->lru_lock);
1377

1378 1379
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1380 1381 1382 1383

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1384
	if (global_reclaim(sc)) {
1385 1386
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1387
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1388
		else
H
Hugh Dickins 已提交
1389
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1390
	}
1391
	spin_unlock_irq(&zone->lru_lock);
1392

1393
	if (nr_taken == 0)
1394
		return 0;
A
Andy Whitcroft 已提交
1395

1396
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1397
				&nr_unqueued_dirty, &nr_writeback, false);
1398

1399 1400
	spin_lock_irq(&zone->lru_lock);

1401
	reclaim_stat->recent_scanned[file] += nr_taken;
1402

Y
Ying Han 已提交
1403 1404 1405 1406 1407 1408 1409 1410
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1411

1412
	putback_inactive_pages(lruvec, &page_list);
1413

1414
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1415 1416 1417 1418

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1443
	if (nr_writeback && nr_writeback >=
1444
			(nr_taken >> (DEF_PRIORITY - sc->priority))) {
1445
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1446 1447
		zone_set_flag(zone, ZONE_WRITEBACK);
	}
1448

1449 1450 1451
	/*
	 * Similarly, if many dirty pages are encountered that are not
	 * currently being written then flag that kswapd should start
1452 1453
	 * writing back pages and stall to give a chance for flushers
	 * to catch up.
1454
	 */
1455 1456
	if (global_reclaim(sc) && nr_unqueued_dirty == nr_taken) {
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1457
		zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1458
	}
1459

1460 1461 1462
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1463
		sc->priority,
M
Mel Gorman 已提交
1464
		trace_shrink_flags(file));
1465
	return nr_reclaimed;
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1485

1486
static void move_active_pages_to_lru(struct lruvec *lruvec,
1487
				     struct list_head *list,
1488
				     struct list_head *pages_to_free,
1489 1490
				     enum lru_list lru)
{
1491
	struct zone *zone = lruvec_zone(lruvec);
1492 1493
	unsigned long pgmoved = 0;
	struct page *page;
1494
	int nr_pages;
1495 1496 1497

	while (!list_empty(list)) {
		page = lru_to_page(list);
1498
		lruvec = mem_cgroup_page_lruvec(page, zone);
1499 1500 1501 1502

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1503 1504
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1505
		list_move(&page->lru, &lruvec->lists[lru]);
1506
		pgmoved += nr_pages;
1507

1508 1509 1510
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1511
			del_page_from_lru_list(page, lruvec, lru);
1512 1513 1514 1515 1516 1517 1518

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1519 1520 1521 1522 1523 1524
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1525

H
Hugh Dickins 已提交
1526
static void shrink_active_list(unsigned long nr_to_scan,
1527
			       struct lruvec *lruvec,
1528
			       struct scan_control *sc,
1529
			       enum lru_list lru)
L
Linus Torvalds 已提交
1530
{
1531
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1532
	unsigned long nr_scanned;
1533
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1534
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1535
	LIST_HEAD(l_active);
1536
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1537
	struct page *page;
1538
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1539
	unsigned long nr_rotated = 0;
1540
	isolate_mode_t isolate_mode = 0;
1541
	int file = is_file_lru(lru);
1542
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1543 1544

	lru_add_drain();
1545 1546

	if (!sc->may_unmap)
1547
		isolate_mode |= ISOLATE_UNMAPPED;
1548
	if (!sc->may_writepage)
1549
		isolate_mode |= ISOLATE_CLEAN;
1550

L
Linus Torvalds 已提交
1551
	spin_lock_irq(&zone->lru_lock);
1552

1553 1554
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1555
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1556
		zone->pages_scanned += nr_scanned;
1557

1558
	reclaim_stat->recent_scanned[file] += nr_taken;
1559

H
Hugh Dickins 已提交
1560
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1561
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1562
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1569

1570
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1571 1572 1573 1574
			putback_lru_page(page);
			continue;
		}

1575 1576 1577 1578 1579 1580 1581 1582
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1583 1584
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1585
			nr_rotated += hpage_nr_pages(page);
1586 1587 1588 1589 1590 1591 1592 1593 1594
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1595
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1596 1597 1598 1599
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1600

1601
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1602 1603 1604
		list_add(&page->lru, &l_inactive);
	}

1605
	/*
1606
	 * Move pages back to the lru list.
1607
	 */
1608
	spin_lock_irq(&zone->lru_lock);
1609
	/*
1610 1611 1612 1613
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1614
	 */
1615
	reclaim_stat->recent_rotated[file] += nr_rotated;
1616

1617 1618
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1619
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1620
	spin_unlock_irq(&zone->lru_lock);
1621 1622

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1623 1624
}

1625
#ifdef CONFIG_SWAP
1626
static int inactive_anon_is_low_global(struct zone *zone)
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1639 1640
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1641
 * @lruvec: LRU vector to check
1642 1643 1644 1645
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1646
static int inactive_anon_is_low(struct lruvec *lruvec)
1647
{
1648 1649 1650 1651 1652 1653 1654
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1655
	if (!mem_cgroup_disabled())
1656
		return mem_cgroup_inactive_anon_is_low(lruvec);
1657

1658
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1659
}
1660
#else
1661
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1662 1663 1664 1665
{
	return 0;
}
#endif
1666

1667 1668
/**
 * inactive_file_is_low - check if file pages need to be deactivated
1669
 * @lruvec: LRU vector to check
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1681
static int inactive_file_is_low(struct lruvec *lruvec)
1682
{
1683 1684 1685 1686 1687
	unsigned long inactive;
	unsigned long active;

	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1688

1689
	return active > inactive;
1690 1691
}

H
Hugh Dickins 已提交
1692
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1693
{
H
Hugh Dickins 已提交
1694
	if (is_file_lru(lru))
1695
		return inactive_file_is_low(lruvec);
1696
	else
1697
		return inactive_anon_is_low(lruvec);
1698 1699
}

1700
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1701
				 struct lruvec *lruvec, struct scan_control *sc)
1702
{
1703
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1704
		if (inactive_list_is_low(lruvec, lru))
1705
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1706 1707 1708
		return 0;
	}

1709
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1710 1711
}

1712
static int vmscan_swappiness(struct scan_control *sc)
1713
{
1714
	if (global_reclaim(sc))
1715
		return vm_swappiness;
1716
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1717 1718
}

1719 1720 1721 1722 1723 1724 1725
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

1726 1727 1728 1729 1730 1731
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1732 1733
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1734
 */
1735
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1736
			   unsigned long *nr)
1737
{
1738 1739 1740 1741
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
	struct zone *zone = lruvec_zone(lruvec);
1742
	unsigned long anon_prio, file_prio;
1743 1744 1745
	enum scan_balance scan_balance;
	unsigned long anon, file, free;
	bool force_scan = false;
1746
	unsigned long ap, fp;
H
Hugh Dickins 已提交
1747
	enum lru_list lru;
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1759
	if (current_is_kswapd() && zone->all_unreclaimable)
1760
		force_scan = true;
1761
	if (!global_reclaim(sc))
1762
		force_scan = true;
1763 1764

	/* If we have no swap space, do not bother scanning anon pages. */
1765
	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1766
		scan_balance = SCAN_FILE;
1767 1768
		goto out;
	}
1769

1770 1771 1772 1773 1774 1775 1776 1777
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1778
		scan_balance = SCAN_FILE;
1779 1780 1781 1782 1783 1784 1785 1786 1787
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
1788
		scan_balance = SCAN_EQUAL;
1789 1790 1791
		goto out;
	}

1792 1793 1794 1795
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1796

1797 1798 1799 1800 1801 1802
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1803
	if (global_reclaim(sc)) {
1804
		free = zone_page_state(zone, NR_FREE_PAGES);
1805
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1806
			scan_balance = SCAN_ANON;
1807
			goto out;
1808
		}
1809 1810
	}

1811 1812 1813 1814 1815
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
1816
		scan_balance = SCAN_FILE;
1817 1818 1819
		goto out;
	}

1820 1821
	scan_balance = SCAN_FRACT;

1822 1823 1824 1825
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1826
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1827
	file_prio = 200 - anon_prio;
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1840
	spin_lock_irq(&zone->lru_lock);
1841 1842 1843
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1844 1845
	}

1846 1847 1848
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1849 1850 1851
	}

	/*
1852 1853 1854
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1855
	 */
1856
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1857
	ap /= reclaim_stat->recent_rotated[0] + 1;
1858

1859
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1860
	fp /= reclaim_stat->recent_rotated[1] + 1;
1861
	spin_unlock_irq(&zone->lru_lock);
1862

1863 1864 1865 1866
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1867 1868
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1869
		unsigned long size;
1870
		unsigned long scan;
1871

1872
		size = get_lru_size(lruvec, lru);
1873
		scan = size >> sc->priority;
1874

1875 1876
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
			/*
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
			 */
			scan = div64_u64(scan * fraction[file], denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file)
				scan = 0;
			break;
		default:
			/* Look ma, no brain */
			BUG();
		}
H
Hugh Dickins 已提交
1899
		nr[lru] = scan;
1900
	}
1901
}
1902

1903 1904 1905 1906 1907 1908
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	unsigned long nr[NR_LRU_LISTS];
1909
	unsigned long targets[NR_LRU_LISTS];
1910 1911 1912 1913 1914
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
1915
	bool scan_adjusted = false;
1916 1917 1918

	get_scan_count(lruvec, sc, nr);

1919 1920 1921
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

1922 1923 1924
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
1925 1926 1927
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

1928 1929 1930 1931 1932 1933 1934 1935 1936
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
							    lruvec, sc);
			}
		}
1937 1938 1939 1940

		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

1941
		/*
1942 1943 1944 1945
		 * For global direct reclaim, reclaim only the number of pages
		 * requested. Less care is taken to scan proportionally as it
		 * is more important to minimise direct reclaim stall latency
		 * than it is to properly age the LRU lists.
1946
		 */
1947
		if (global_reclaim(sc) && !current_is_kswapd())
1948
			break;
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
		 * requested. Ensure that the anon and file LRUs shrink
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
	if (inactive_anon_is_low(lruvec))
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);

	throttle_vm_writeout(sc->gfp_mask);
}

M
Mel Gorman 已提交
2006
/* Use reclaim/compaction for costly allocs or under memory pressure */
2007
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2008
{
2009
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2010
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2011
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2012 2013 2014 2015 2016
		return true;

	return false;
}

2017
/*
M
Mel Gorman 已提交
2018 2019 2020 2021 2022
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2023
 */
2024
static inline bool should_continue_reclaim(struct zone *zone,
2025 2026 2027 2028 2029 2030 2031 2032
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
2033
	if (!in_reclaim_compaction(sc))
2034 2035
		return false;

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2058 2059 2060 2061 2062 2063

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
2064
	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2065
	if (get_nr_swap_pages() > 0)
2066
		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2067 2068 2069 2070 2071
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2072
	switch (compaction_suitable(zone, sc->order)) {
2073 2074 2075 2076 2077 2078 2079 2080
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

2081
static void shrink_zone(struct zone *zone, struct scan_control *sc)
L
Linus Torvalds 已提交
2082
{
2083
	unsigned long nr_reclaimed, nr_scanned;
L
Linus Torvalds 已提交
2084

2085 2086 2087 2088 2089 2090 2091
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
			.zone = zone,
			.priority = sc->priority,
		};
		struct mem_cgroup *memcg;
2092

2093 2094
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2095

2096 2097 2098
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
			struct lruvec *lruvec;
2099

2100
			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2101

2102
			shrink_lruvec(lruvec, sc);
2103

2104
			/*
2105 2106
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2107
			 * zone.
2108 2109 2110 2111 2112
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2113
			 */
2114 2115
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2116 2117 2118 2119 2120
				mem_cgroup_iter_break(root, memcg);
				break;
			}
			memcg = mem_cgroup_iter(root, memcg, &reclaim);
		} while (memcg);
2121 2122 2123 2124 2125

		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2126 2127
	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
					 sc->nr_scanned - nr_scanned, sc));
2128 2129
}

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
2147
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2148 2149 2150 2151 2152 2153 2154 2155
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
2156
	if (compaction_deferred(zone, sc->order))
2157 2158 2159 2160 2161 2162 2163 2164 2165
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2166 2167 2168 2169 2170
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2171 2172
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2173 2174
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2175 2176 2177
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2178 2179 2180
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2181 2182
 *
 * This function returns true if a zone is being reclaimed for a costly
2183
 * high-order allocation and compaction is ready to begin. This indicates to
2184 2185
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2186
 */
2187
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2188
{
2189
	struct zoneref *z;
2190
	struct zone *zone;
2191 2192
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2193
	bool aborted_reclaim = false;
2194

2195 2196 2197 2198 2199 2200 2201 2202
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2203 2204
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2205
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2206
			continue;
2207 2208 2209 2210
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2211
		if (global_reclaim(sc)) {
2212 2213
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2214 2215
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2216
				continue;	/* Let kswapd poll it */
2217
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2218
				/*
2219 2220 2221 2222 2223
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2224 2225
				 * noticeable problem, like transparent huge
				 * page allocations.
2226
				 */
2227
				if (compaction_ready(zone, sc)) {
2228
					aborted_reclaim = true;
2229
					continue;
2230
				}
2231
			}
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2245
		}
2246

2247
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2248
	}
2249

2250
	return aborted_reclaim;
2251 2252 2253 2254 2255 2256 2257
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2258
/* All zones in zonelist are unreclaimable? */
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2271 2272
		if (!zone->all_unreclaimable)
			return false;
2273 2274
	}

2275
	return true;
L
Linus Torvalds 已提交
2276
}
2277

L
Linus Torvalds 已提交
2278 2279 2280 2281 2282 2283 2284 2285
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2286 2287 2288 2289
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2290 2291 2292
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2293
 */
2294
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2295 2296
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2297
{
2298
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2299
	struct reclaim_state *reclaim_state = current->reclaim_state;
2300
	struct zoneref *z;
2301
	struct zone *zone;
2302
	unsigned long writeback_threshold;
2303
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2304

2305 2306
	delayacct_freepages_start();

2307
	if (global_reclaim(sc))
2308
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2309

2310
	do {
2311 2312
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2313
		sc->nr_scanned = 0;
2314
		aborted_reclaim = shrink_zones(zonelist, sc);
2315

2316 2317 2318 2319
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2320
		if (global_reclaim(sc)) {
2321
			unsigned long lru_pages = 0;
2322 2323
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2324 2325 2326 2327 2328 2329
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2330
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2331
			if (reclaim_state) {
2332
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2333 2334
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2335
		}
2336
		total_scanned += sc->nr_scanned;
2337
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2338 2339
			goto out;

2340 2341 2342 2343 2344 2345 2346
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;

L
Linus Torvalds 已提交
2347 2348 2349 2350 2351 2352 2353
		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2354 2355
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2356 2357
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2358
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2359 2360 2361
		}

		/* Take a nap, wait for some writeback to complete */
2362
		if (!sc->hibernation_mode && sc->nr_scanned &&
2363
		    sc->priority < DEF_PRIORITY - 2) {
2364 2365 2366
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2367 2368
						&cpuset_current_mems_allowed,
						&preferred_zone);
2369 2370
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2371
	} while (--sc->priority >= 0);
2372

L
Linus Torvalds 已提交
2373
out:
2374 2375
	delayacct_freepages_end();

2376 2377 2378
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2379 2380 2381 2382 2383 2384 2385 2386
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2387 2388
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2389 2390
		return 1;

2391
	/* top priority shrink_zones still had more to do? don't OOM, then */
2392
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2393 2394 2395
		return 1;

	return 0;
L
Linus Torvalds 已提交
2396 2397
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2428 2429 2430 2431
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2432
 */
2433
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2448 2449 2450 2451 2452 2453 2454 2455
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2456 2457 2458 2459 2460

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2461
		goto out;
2462

2463 2464 2465
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2477 2478

		goto check_pending;
2479 2480 2481 2482 2483
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2484 2485 2486 2487 2488 2489 2490

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2491 2492
}

2493
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2494
				gfp_t gfp_mask, nodemask_t *nodemask)
2495
{
2496
	unsigned long nr_reclaimed;
2497
	struct scan_control sc = {
2498
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2499
		.may_writepage = !laptop_mode,
2500
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2501
		.may_unmap = 1,
2502
		.may_swap = 1,
2503
		.order = order,
2504
		.priority = DEF_PRIORITY,
2505
		.target_mem_cgroup = NULL,
2506
		.nodemask = nodemask,
2507
	};
2508 2509 2510
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2511

2512
	/*
2513 2514 2515
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2516
	 */
2517
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2518 2519
		return 1;

2520 2521 2522 2523
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2524
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2525 2526 2527 2528

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2529 2530
}

A
Andrew Morton 已提交
2531
#ifdef CONFIG_MEMCG
2532

2533
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2534
						gfp_t gfp_mask, bool noswap,
2535 2536
						struct zone *zone,
						unsigned long *nr_scanned)
2537 2538
{
	struct scan_control sc = {
2539
		.nr_scanned = 0,
2540
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2541 2542 2543 2544
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2545
		.priority = 0,
2546
		.target_mem_cgroup = memcg,
2547
	};
2548
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2549

2550 2551
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2552

2553
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2554 2555 2556
						      sc.may_writepage,
						      sc.gfp_mask);

2557 2558 2559 2560 2561 2562 2563
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2564
	shrink_lruvec(lruvec, &sc);
2565 2566 2567

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2568
	*nr_scanned = sc.nr_scanned;
2569 2570 2571
	return sc.nr_reclaimed;
}

2572
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2573
					   gfp_t gfp_mask,
2574
					   bool noswap)
2575
{
2576
	struct zonelist *zonelist;
2577
	unsigned long nr_reclaimed;
2578
	int nid;
2579 2580
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2581
		.may_unmap = 1,
2582
		.may_swap = !noswap,
2583
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2584
		.order = 0,
2585
		.priority = DEF_PRIORITY,
2586
		.target_mem_cgroup = memcg,
2587
		.nodemask = NULL, /* we don't care the placement */
2588 2589 2590 2591 2592
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2593 2594
	};

2595 2596 2597 2598 2599
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2600
	nid = mem_cgroup_select_victim_node(memcg);
2601 2602

	zonelist = NODE_DATA(nid)->node_zonelists;
2603 2604 2605 2606 2607

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2608
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2609 2610 2611 2612

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2613 2614 2615
}
#endif

2616
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2617
{
2618
	struct mem_cgroup *memcg;
2619

2620 2621 2622 2623 2624
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2625
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2626

2627
		if (inactive_anon_is_low(lruvec))
2628
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2629
					   sc, LRU_ACTIVE_ANON);
2630 2631 2632

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2633 2634
}

2635 2636 2637 2638 2639 2640 2641
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2642 2643
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2644 2645 2646 2647 2648
		return false;

	return true;
}

2649
/*
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2660 2661 2662 2663
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2664
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2665 2666 2667 2668
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2669
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2670
{
2671
	unsigned long managed_pages = 0;
2672
	unsigned long balanced_pages = 0;
2673 2674
	int i;

2675 2676 2677
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2678

2679 2680 2681
		if (!populated_zone(zone))
			continue;

2682
		managed_pages += zone->managed_pages;
2683 2684 2685 2686 2687 2688 2689 2690 2691

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
2692
			balanced_pages += zone->managed_pages;
2693 2694 2695 2696
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
2697
			balanced_pages += zone->managed_pages;
2698 2699 2700 2701 2702
		else if (!order)
			return false;
	}

	if (order)
2703
		return balanced_pages >= (managed_pages >> 2);
2704 2705
	else
		return true;
2706 2707
}

2708 2709 2710 2711 2712 2713 2714
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2715
					int classzone_idx)
2716 2717 2718
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2734

2735
	return pgdat_balanced(pgdat, order, classzone_idx);
2736 2737
}

2738 2739 2740
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * the high watermark.
2741 2742
 *
 * Returns true if kswapd scanned at least the requested number of pages to
2743 2744
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
2745
 */
2746
static bool kswapd_shrink_zone(struct zone *zone,
2747
			       int classzone_idx,
2748
			       struct scan_control *sc,
2749 2750
			       unsigned long lru_pages,
			       unsigned long *nr_attempted)
2751 2752
{
	unsigned long nr_slab;
2753 2754
	int testorder = sc->order;
	unsigned long balance_gap;
2755 2756 2757 2758
	struct reclaim_state *reclaim_state = current->reclaim_state;
	struct shrink_control shrink = {
		.gfp_mask = sc->gfp_mask,
	};
2759
	bool lowmem_pressure;
2760 2761 2762

	/* Reclaim above the high watermark. */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

	/*
	 * Kswapd reclaims only single pages with compaction enabled. Trying
	 * too hard to reclaim until contiguous free pages have become
	 * available can hurt performance by evicting too much useful data
	 * from memory. Do not reclaim more than needed for compaction.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
			compaction_suitable(zone, sc->order) !=
				COMPACT_SKIPPED)
		testorder = 0;

	/*
	 * We put equal pressure on every zone, unless one zone has way too
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
		KSWAPD_ZONE_BALANCE_GAP_RATIO);

	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * reclaim is necessary
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	if (!lowmem_pressure && zone_balanced(zone, testorder,
						balance_gap, classzone_idx))
		return true;

2794 2795 2796 2797 2798 2799
	shrink_zone(zone, sc);

	reclaim_state->reclaimed_slab = 0;
	nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
	sc->nr_reclaimed += reclaim_state->reclaimed_slab;

2800 2801 2802
	/* Account for the number of pages attempted to reclaim */
	*nr_attempted += sc->nr_to_reclaim;

2803 2804
	if (nr_slab == 0 && !zone_reclaimable(zone))
		zone->all_unreclaimable = 1;
2805

2806 2807
	zone_clear_flag(zone, ZONE_WRITEBACK);

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * congested. It's possible there are dirty pages backed by congested
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * waits.
	 */
	if (!zone->all_unreclaimable &&
	    zone_balanced(zone, testorder, 0, classzone_idx)) {
		zone_clear_flag(zone, ZONE_CONGESTED);
		zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
	}

2820
	return sc->nr_scanned >= sc->nr_to_reclaim;
2821 2822
}

L
Linus Torvalds 已提交
2823 2824
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2825
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2826
 *
2827
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2838 2839 2840 2841 2842
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2843
 */
2844
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2845
							int *classzone_idx)
L
Linus Torvalds 已提交
2846 2847
{
	int i;
2848
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2849 2850
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2851 2852
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2853
		.priority = DEF_PRIORITY,
2854
		.may_unmap = 1,
2855
		.may_swap = 1,
2856
		.may_writepage = !laptop_mode,
A
Andy Whitcroft 已提交
2857
		.order = order,
2858
		.target_mem_cgroup = NULL,
2859
	};
2860
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2861

2862
	do {
L
Linus Torvalds 已提交
2863
		unsigned long lru_pages = 0;
2864
		unsigned long nr_attempted = 0;
2865
		bool raise_priority = true;
2866
		bool pgdat_needs_compaction = (order > 0);
2867 2868

		sc.nr_reclaimed = 0;
L
Linus Torvalds 已提交
2869

2870 2871 2872 2873 2874 2875
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2876

2877 2878
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2879

2880 2881
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2882
				continue;
L
Linus Torvalds 已提交
2883

2884 2885 2886 2887
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2888
			age_active_anon(zone, &sc);
2889

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2901
			if (!zone_balanced(zone, order, 0, 0)) {
2902
				end_zone = i;
A
Andrew Morton 已提交
2903
				break;
2904
			} else {
2905 2906 2907 2908
				/*
				 * If balanced, clear the dirty and congested
				 * flags
				 */
2909
				zone_clear_flag(zone, ZONE_CONGESTED);
2910
				zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
L
Linus Torvalds 已提交
2911 2912
			}
		}
2913

2914
		if (i < 0)
A
Andrew Morton 已提交
2915 2916
			goto out;

L
Linus Torvalds 已提交
2917 2918 2919
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2920 2921 2922
			if (!populated_zone(zone))
				continue;

2923
			lru_pages += zone_reclaimable_pages(zone);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934

			/*
			 * If any zone is currently balanced then kswapd will
			 * not call compaction as it is expected that the
			 * necessary pages are already available.
			 */
			if (pgdat_needs_compaction &&
					zone_watermark_ok(zone, order,
						low_wmark_pages(zone),
						*classzone_idx, 0))
				pgdat_needs_compaction = false;
L
Linus Torvalds 已提交
2935 2936
		}

2937 2938 2939 2940 2941 2942 2943
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
		if (sc.priority < DEF_PRIORITY - 2)
			sc.may_writepage = 1;

L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2956
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2957 2958
				continue;

2959 2960
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2961 2962 2963
				continue;

			sc.nr_scanned = 0;
2964

2965
			nr_soft_scanned = 0;
2966 2967 2968
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2969 2970 2971 2972
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
2973

2974
			/*
2975 2976 2977 2978
			 * There should be no need to raise the scanning
			 * priority if enough pages are already being scanned
			 * that that high watermark would be met at 100%
			 * efficiency.
2979
			 */
2980 2981 2982
			if (kswapd_shrink_zone(zone, end_zone, &sc,
					lru_pages, &nr_attempted))
				raise_priority = false;
L
Linus Torvalds 已提交
2983
		}
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

L
Linus Torvalds 已提交
2994
		/*
2995 2996 2997 2998 2999 3000
		 * Fragmentation may mean that the system cannot be rebalanced
		 * for high-order allocations in all zones. If twice the
		 * allocation size has been reclaimed and the zones are still
		 * not balanced then recheck the watermarks at order-0 to
		 * prevent kswapd reclaiming excessively. Assume that a
		 * process requested a high-order can direct reclaim/compact.
L
Linus Torvalds 已提交
3001
		 */
3002 3003
		if (order && sc.nr_reclaimed >= 2UL << order)
			order = sc.order = 0;
3004

3005 3006 3007
		/* Check if kswapd should be suspending */
		if (try_to_freeze() || kthread_should_stop())
			break;
3008

3009 3010 3011 3012 3013 3014 3015
		/*
		 * Compact if necessary and kswapd is reclaiming at least the
		 * high watermark number of pages as requsted
		 */
		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
			compact_pgdat(pgdat, order);

3016
		/*
3017 3018
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3019
		 */
3020 3021
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
3022
	} while (sc.priority >= 1 &&
3023
		 !pgdat_balanced(pgdat, order, *classzone_idx));
L
Linus Torvalds 已提交
3024

3025
out:
3026
	/*
3027
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3028 3029 3030 3031
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
3032
	*classzone_idx = end_zone;
3033
	return order;
L
Linus Torvalds 已提交
3034 3035
}

3036
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
3047
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3048 3049 3050 3051 3052 3053 3054 3055 3056
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3057
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3069

3070 3071 3072 3073 3074 3075 3076 3077
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

3078 3079 3080
		if (!kthread_should_stop())
			schedule();

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3091 3092
/*
 * The background pageout daemon, started as a kernel thread
3093
 * from the init process.
L
Linus Torvalds 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3106
	unsigned long order, new_order;
3107
	unsigned balanced_order;
3108
	int classzone_idx, new_classzone_idx;
3109
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
3110 3111
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3112

L
Linus Torvalds 已提交
3113 3114 3115
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3116
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3117

3118 3119
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
3120
	if (!cpumask_empty(cpumask))
3121
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3136
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3137
	set_freezable();
L
Linus Torvalds 已提交
3138

3139
	order = new_order = 0;
3140
	balanced_order = 0;
3141
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3142
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
3143
	for ( ; ; ) {
3144
		bool ret;
3145

3146 3147 3148 3149 3150
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
3151 3152
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
3153 3154 3155 3156 3157 3158
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3159
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3160 3161
			/*
			 * Don't sleep if someone wants a larger 'order'
3162
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3163 3164
			 */
			order = new_order;
3165
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3166
		} else {
3167 3168
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3169
			order = pgdat->kswapd_max_order;
3170
			classzone_idx = pgdat->classzone_idx;
3171 3172
			new_order = order;
			new_classzone_idx = classzone_idx;
3173
			pgdat->kswapd_max_order = 0;
3174
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3175 3176
		}

3177 3178 3179 3180 3181 3182 3183 3184
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3185 3186
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3187 3188 3189
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3190
		}
L
Linus Torvalds 已提交
3191
	}
3192 3193

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198 3199
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3200
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3201 3202 3203
{
	pg_data_t *pgdat;

3204
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3205 3206
		return;

3207
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3208
		return;
3209
	pgdat = zone->zone_pgdat;
3210
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3211
		pgdat->kswapd_max_order = order;
3212 3213
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3214
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3215
		return;
3216 3217 3218 3219
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3220
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3221 3222
}

3223 3224 3225 3226 3227 3228 3229 3230
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3231
{
3232 3233 3234 3235 3236
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

3237
	if (get_nr_swap_pages() > 0)
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

3251
	if (get_nr_swap_pages() > 0)
3252 3253 3254 3255
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3256 3257
}

3258
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3259
/*
3260
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3261 3262 3263 3264 3265
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3266
 */
3267
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3268
{
3269 3270
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3271 3272 3273
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3274
		.may_writepage = 1,
3275 3276 3277
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3278
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3279
	};
3280 3281 3282 3283
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3284 3285
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3286

3287 3288 3289 3290
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3291

3292
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3293

3294 3295 3296
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3297

3298
	return nr_reclaimed;
L
Linus Torvalds 已提交
3299
}
3300
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3301 3302 3303 3304 3305

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3306 3307
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3308
{
3309
	int nid;
L
Linus Torvalds 已提交
3310

3311
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3312
		for_each_node_state(nid, N_MEMORY) {
3313
			pg_data_t *pgdat = NODE_DATA(nid);
3314 3315 3316
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3317

3318
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3319
				/* One of our CPUs online: restore mask */
3320
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3321 3322 3323 3324 3325
		}
	}
	return NOTIFY_OK;
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3342 3343
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3344
		pgdat->kswapd = NULL;
3345 3346 3347 3348
	}
	return ret;
}

3349
/*
3350 3351
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3352 3353 3354 3355 3356
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3357
	if (kswapd) {
3358
		kthread_stop(kswapd);
3359 3360
		NODE_DATA(nid)->kswapd = NULL;
	}
3361 3362
}

L
Linus Torvalds 已提交
3363 3364
static int __init kswapd_init(void)
{
3365
	int nid;
3366

L
Linus Torvalds 已提交
3367
	swap_setup();
3368
	for_each_node_state(nid, N_MEMORY)
3369
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3370 3371 3372 3373 3374
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3385
#define RECLAIM_OFF 0
3386
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3387 3388 3389
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3390 3391 3392 3393 3394 3395 3396
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3397 3398 3399 3400 3401 3402
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3403 3404 3405 3406 3407 3408
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3451 3452 3453
/*
 * Try to free up some pages from this zone through reclaim.
 */
3454
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3455
{
3456
	/* Minimum pages needed in order to stay on node */
3457
	const unsigned long nr_pages = 1 << order;
3458 3459
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3460 3461
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3462
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3463
		.may_swap = 1,
3464
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3465
		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3466
		.order = order,
3467
		.priority = ZONE_RECLAIM_PRIORITY,
3468
	};
3469 3470 3471
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3472
	unsigned long nr_slab_pages0, nr_slab_pages1;
3473 3474

	cond_resched();
3475 3476 3477 3478 3479 3480
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3481
	lockdep_set_current_reclaim_state(gfp_mask);
3482 3483
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3484

3485
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3486 3487 3488 3489 3490
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3491 3492
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3493
	}
3494

3495 3496
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3497
		/*
3498
		 * shrink_slab() does not currently allow us to determine how
3499 3500 3501 3502
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3503
		 *
3504 3505
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3506
		 */
3507 3508 3509 3510
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3511
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3512 3513 3514 3515 3516 3517 3518 3519
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3520 3521 3522 3523 3524

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3525 3526 3527
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3528 3529
	}

3530
	p->reclaim_state = NULL;
3531
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3532
	lockdep_clear_current_reclaim_state();
3533
	return sc.nr_reclaimed >= nr_pages;
3534
}
3535 3536 3537 3538

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3539
	int ret;
3540 3541

	/*
3542 3543
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3544
	 *
3545 3546 3547 3548 3549
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3550
	 */
3551 3552
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3553
		return ZONE_RECLAIM_FULL;
3554

3555
	if (zone->all_unreclaimable)
3556
		return ZONE_RECLAIM_FULL;
3557

3558
	/*
3559
	 * Do not scan if the allocation should not be delayed.
3560
	 */
3561
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3562
		return ZONE_RECLAIM_NOSCAN;
3563 3564 3565 3566 3567 3568 3569

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3570
	node_id = zone_to_nid(zone);
3571
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3572
		return ZONE_RECLAIM_NOSCAN;
3573 3574

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3575 3576
		return ZONE_RECLAIM_NOSCAN;

3577 3578 3579
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3580 3581 3582
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3583
	return ret;
3584
}
3585
#endif
L
Lee Schermerhorn 已提交
3586 3587 3588 3589 3590 3591

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3592
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3593 3594
 *
 * Reasons page might not be evictable:
3595
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3596
 * (2) page is part of an mlocked VMA
3597
 *
L
Lee Schermerhorn 已提交
3598
 */
3599
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3600
{
3601
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3602
}
3603

3604
#ifdef CONFIG_SHMEM
3605
/**
3606 3607 3608
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3609
 *
3610
 * Checks pages for evictability and moves them to the appropriate lru list.
3611 3612
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3613
 */
3614
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3615
{
3616
	struct lruvec *lruvec;
3617 3618 3619 3620
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3621

3622 3623 3624
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3625

3626 3627 3628 3629 3630 3631 3632 3633
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3634
		lruvec = mem_cgroup_page_lruvec(page, zone);
3635

3636 3637
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3638

3639
		if (page_evictable(page)) {
3640 3641 3642 3643
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3644 3645
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3646
			pgrescued++;
3647
		}
3648
	}
3649

3650 3651 3652 3653
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3654 3655
	}
}
3656
#endif /* CONFIG_SHMEM */
3657

3658
static void warn_scan_unevictable_pages(void)
3659
{
3660
	printk_once(KERN_WARNING
3661
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3662
		    "disabled for lack of a legitimate use case.  If you have "
3663 3664
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3665 3666 3667 3668 3669 3670 3671 3672 3673
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3674
			   void __user *buffer,
3675 3676
			   size_t *length, loff_t *ppos)
{
3677
	warn_scan_unevictable_pages();
3678
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3679 3680 3681 3682
	scan_unevictable_pages = 0;
	return 0;
}

3683
#ifdef CONFIG_NUMA
3684 3685 3686 3687 3688
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3689 3690
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3691 3692
					  char *buf)
{
3693
	warn_scan_unevictable_pages();
3694 3695 3696
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3697 3698
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3699 3700
					const char *buf, size_t count)
{
3701
	warn_scan_unevictable_pages();
3702 3703 3704 3705
	return 1;
}


3706
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3707 3708 3709 3710 3711
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3712
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3713 3714 3715 3716
}

void scan_unevictable_unregister_node(struct node *node)
{
3717
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3718
}
3719
#endif