vmscan.c 100.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
34
#include <linux/compaction.h>
L
Linus Torvalds 已提交
35 36
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
43
#include <linux/oom.h>
44
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

51 52
#include "internal.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
56 57 58 59
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

60 61 62
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

63 64 65
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

66 67
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
68
	/* This context's GFP mask */
A
Al Viro 已提交
69
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
70 71 72

	int may_writepage;

73 74
	/* Can mapped pages be reclaimed? */
	int may_unmap;
75

76 77 78
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

A
Andy Whitcroft 已提交
79
	int order;
80

81 82 83
	/* Scan (total_size >> priority) pages at once */
	int priority;

84 85 86 87 88
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
89

90 91 92 93 94
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
131
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
132 133 134 135

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

A
Andrew Morton 已提交
136
#ifdef CONFIG_MEMCG
137 138
static bool global_reclaim(struct scan_control *sc)
{
139
	return !sc->target_mem_cgroup;
140
}
141
#else
142 143 144 145
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
146 147
#endif

148
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
149
{
150
	if (!mem_cgroup_disabled())
151
		return mem_cgroup_get_lru_size(lruvec, lru);
152

153
	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
154 155
}

L
Linus Torvalds 已提交
156 157 158
/*
 * Add a shrinker callback to be called from the vm
 */
159
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
160
{
161
	atomic_long_set(&shrinker->nr_in_batch, 0);
162 163 164
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
165
}
166
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
167 168 169 170

/*
 * Remove one
 */
171
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
172 173 174 175 176
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
177
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
178

179 180 181 182 183 184 185 186
static inline int do_shrinker_shrink(struct shrinker *shrinker,
				     struct shrink_control *sc,
				     unsigned long nr_to_scan)
{
	sc->nr_to_scan = nr_to_scan;
	return (*shrinker->shrink)(shrinker, sc);
}

L
Linus Torvalds 已提交
187 188 189 190 191 192 193 194 195
#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
196
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
197 198 199 200 201 202 203
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
204 205
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
206
 */
207
unsigned long shrink_slab(struct shrink_control *shrink,
208
			  unsigned long nr_pages_scanned,
209
			  unsigned long lru_pages)
L
Linus Torvalds 已提交
210 211
{
	struct shrinker *shrinker;
212
	unsigned long ret = 0;
L
Linus Torvalds 已提交
213

214 215
	if (nr_pages_scanned == 0)
		nr_pages_scanned = SWAP_CLUSTER_MAX;
L
Linus Torvalds 已提交
216

217 218 219 220 221
	if (!down_read_trylock(&shrinker_rwsem)) {
		/* Assume we'll be able to shrink next time */
		ret = 1;
		goto out;
	}
L
Linus Torvalds 已提交
222 223 224

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
225 226
		long total_scan;
		long max_pass;
227
		int shrink_ret = 0;
228 229
		long nr;
		long new_nr;
230 231
		long batch_size = shrinker->batch ? shrinker->batch
						  : SHRINK_BATCH;
L
Linus Torvalds 已提交
232

233 234 235 236
		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
		if (max_pass <= 0)
			continue;

237 238 239 240 241
		/*
		 * copy the current shrinker scan count into a local variable
		 * and zero it so that other concurrent shrinker invocations
		 * don't also do this scanning work.
		 */
242
		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
243 244

		total_scan = nr;
245
		delta = (4 * nr_pages_scanned) / shrinker->seeks;
246
		delta *= max_pass;
L
Linus Torvalds 已提交
247
		do_div(delta, lru_pages + 1);
248 249
		total_scan += delta;
		if (total_scan < 0) {
250 251
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
252 253
			       shrinker->shrink, total_scan);
			total_scan = max_pass;
254 255
		}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
		/*
		 * We need to avoid excessive windup on filesystem shrinkers
		 * due to large numbers of GFP_NOFS allocations causing the
		 * shrinkers to return -1 all the time. This results in a large
		 * nr being built up so when a shrink that can do some work
		 * comes along it empties the entire cache due to nr >>>
		 * max_pass.  This is bad for sustaining a working set in
		 * memory.
		 *
		 * Hence only allow the shrinker to scan the entire cache when
		 * a large delta change is calculated directly.
		 */
		if (delta < max_pass / 4)
			total_scan = min(total_scan, max_pass / 2);

271 272 273 274 275
		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
276 277
		if (total_scan > max_pass * 2)
			total_scan = max_pass * 2;
L
Linus Torvalds 已提交
278

279
		trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 281 282
					nr_pages_scanned, lru_pages,
					max_pass, delta, total_scan);

283
		while (total_scan >= batch_size) {
284
			int nr_before;
L
Linus Torvalds 已提交
285

286 287
			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
			shrink_ret = do_shrinker_shrink(shrinker, shrink,
288
							batch_size);
L
Linus Torvalds 已提交
289 290
			if (shrink_ret == -1)
				break;
291 292
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
293 294
			count_vm_events(SLABS_SCANNED, batch_size);
			total_scan -= batch_size;
L
Linus Torvalds 已提交
295 296 297 298

			cond_resched();
		}

299 300 301 302 303
		/*
		 * move the unused scan count back into the shrinker in a
		 * manner that handles concurrent updates. If we exhausted the
		 * scan, there is no need to do an update.
		 */
304 305 306 307 308
		if (total_scan > 0)
			new_nr = atomic_long_add_return(total_scan,
					&shrinker->nr_in_batch);
		else
			new_nr = atomic_long_read(&shrinker->nr_in_batch);
309 310

		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
L
Linus Torvalds 已提交
311 312
	}
	up_read(&shrinker_rwsem);
313 314
out:
	cond_resched();
315
	return ret;
L
Linus Torvalds 已提交
316 317 318 319
}

static inline int is_page_cache_freeable(struct page *page)
{
320 321 322 323 324
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
325
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
326 327
}

328 329
static int may_write_to_queue(struct backing_dev_info *bdi,
			      struct scan_control *sc)
L
Linus Torvalds 已提交
330
{
331
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
355
	lock_page(page);
356 357
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
358 359 360
	unlock_page(page);
}

361 362 363 364 365 366 367 368 369 370 371 372
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
373
/*
A
Andrew Morton 已提交
374 375
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
376
 */
377
static pageout_t pageout(struct page *page, struct address_space *mapping,
378
			 struct scan_control *sc)
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
387
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
403
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
404 405
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
406
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
407 408 409 410 411 412 413
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
414
	if (!may_write_to_queue(mapping->backing_dev_info, sc))
L
Linus Torvalds 已提交
415 416 417 418 419 420 421
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
422 423
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
424 425 426 427 428 429 430
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
431
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
432 433 434
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
435

L
Linus Torvalds 已提交
436 437 438 439
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
M
Mel Gorman 已提交
440
		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
442 443 444 445 446 447
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

448
/*
N
Nick Piggin 已提交
449 450
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
451
 */
N
Nick Piggin 已提交
452
static int __remove_mapping(struct address_space *mapping, struct page *page)
453
{
454 455
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
456

N
Nick Piggin 已提交
457
	spin_lock_irq(&mapping->tree_lock);
458
	/*
N
Nick Piggin 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
482
	 */
N
Nick Piggin 已提交
483
	if (!page_freeze_refs(page, 2))
484
		goto cannot_free;
N
Nick Piggin 已提交
485 486 487
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
488
		goto cannot_free;
N
Nick Piggin 已提交
489
	}
490 491 492 493

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
494
		spin_unlock_irq(&mapping->tree_lock);
495
		swapcache_free(swap, page);
N
Nick Piggin 已提交
496
	} else {
497 498 499 500
		void (*freepage)(struct page *);

		freepage = mapping->a_ops->freepage;

501
		__delete_from_page_cache(page);
N
Nick Piggin 已提交
502
		spin_unlock_irq(&mapping->tree_lock);
503
		mem_cgroup_uncharge_cache_page(page);
504 505 506

		if (freepage != NULL)
			freepage(page);
507 508 509 510 511
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
512
	spin_unlock_irq(&mapping->tree_lock);
513 514 515
	return 0;
}

N
Nick Piggin 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
549
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
550 551 552 553 554 555

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

556
	if (page_evictable(page)) {
L
Lee Schermerhorn 已提交
557 558 559 560 561 562
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
563
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
564 565 566 567 568 569 570 571
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
572
		/*
573 574 575
		 * When racing with an mlock or AS_UNEVICTABLE clearing
		 * (page is unlocked) make sure that if the other thread
		 * does not observe our setting of PG_lru and fails
576
		 * isolation/check_move_unevictable_pages,
577
		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 579
		 * the page back to the evictable list.
		 *
580
		 * The other side is TestClearPageMlocked() or shmem_lock().
581 582
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
583 584 585 586 587 588 589
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
590
	if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
L
Lee Schermerhorn 已提交
591 592 593 594 595 596 597 598 599 600
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

601 602 603 604 605
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
606 607 608
	put_page(page);		/* drop ref from isolate */
}

609 610 611
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
612
	PAGEREF_KEEP,
613 614 615 616 617 618
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
619
	int referenced_ptes, referenced_page;
620 621
	unsigned long vm_flags;

622 623
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
624
	referenced_page = TestClearPageReferenced(page);
625 626 627 628 629 630 631 632

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

633
	if (referenced_ptes) {
634
		if (PageSwapBacked(page))
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

652
		if (referenced_page || referenced_ptes > 1)
653 654
			return PAGEREF_ACTIVATE;

655 656 657 658 659 660
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

661 662
		return PAGEREF_KEEP;
	}
663 664

	/* Reclaim if clean, defer dirty pages to writeback */
665
	if (referenced_page && !PageSwapBacked(page))
666 667 668
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
669 670
}

L
Linus Torvalds 已提交
671
/*
A
Andrew Morton 已提交
672
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
673
 */
A
Andrew Morton 已提交
674
static unsigned long shrink_page_list(struct list_head *page_list,
675
				      struct zone *zone,
676
				      struct scan_control *sc,
677
				      enum ttu_flags ttu_flags,
678
				      unsigned long *ret_nr_dirty,
679 680
				      unsigned long *ret_nr_writeback,
				      bool force_reclaim)
L
Linus Torvalds 已提交
681 682
{
	LIST_HEAD(ret_pages);
683
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
684
	int pgactivate = 0;
685 686
	unsigned long nr_dirty = 0;
	unsigned long nr_congested = 0;
687
	unsigned long nr_reclaimed = 0;
688
	unsigned long nr_writeback = 0;
L
Linus Torvalds 已提交
689 690 691

	cond_resched();

692
	mem_cgroup_uncharge_start();
L
Linus Torvalds 已提交
693 694 695 696
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
697
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
L
Linus Torvalds 已提交
698 699 700 701 702 703

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
704
		if (!trylock_page(page))
L
Linus Torvalds 已提交
705 706
			goto keep;

N
Nick Piggin 已提交
707
		VM_BUG_ON(PageActive(page));
708
		VM_BUG_ON(page_zone(page) != zone);
L
Linus Torvalds 已提交
709 710

		sc->nr_scanned++;
711

712
		if (unlikely(!page_evictable(page)))
N
Nick Piggin 已提交
713
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
714

715
		if (!sc->may_unmap && page_mapped(page))
716 717
			goto keep_locked;

L
Linus Torvalds 已提交
718 719 720 721
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

722 723 724 725
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
726 727 728
			/*
			 * memcg doesn't have any dirty pages throttling so we
			 * could easily OOM just because too many pages are in
729
			 * writeback and there is nothing else to reclaim.
730
			 *
731
			 * Check __GFP_IO, certainly because a loop driver
732 733 734 735
			 * thread might enter reclaim, and deadlock if it waits
			 * on a page for which it is needed to do the write
			 * (loop masks off __GFP_IO|__GFP_FS for this reason);
			 * but more thought would probably show more reasons.
736 737 738 739 740 741
			 *
			 * Don't require __GFP_FS, since we're not going into
			 * the FS, just waiting on its writeback completion.
			 * Worryingly, ext4 gfs2 and xfs allocate pages with
			 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
			 * testing may_enter_fs here is liable to OOM on them.
742
			 */
743 744 745 746 747 748 749 750 751 752 753 754 755 756
			if (global_reclaim(sc) ||
			    !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
757
				nr_writeback++;
758
				goto keep_locked;
759
			}
760
			wait_on_page_writeback(page);
761
		}
L
Linus Torvalds 已提交
762

763 764 765
		if (!force_reclaim)
			references = page_check_references(page, sc);

766 767
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
768
			goto activate_locked;
769 770
		case PAGEREF_KEEP:
			goto keep_locked;
771 772 773 774
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
775 776 777 778 779

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
780
		if (PageAnon(page) && !PageSwapCache(page)) {
781 782
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
783
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
784
				goto activate_locked;
785
			may_enter_fs = 1;
N
Nick Piggin 已提交
786
		}
L
Linus Torvalds 已提交
787 788 789 790 791 792 793 794

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
795
			switch (try_to_unmap(page, ttu_flags)) {
L
Linus Torvalds 已提交
796 797 798 799
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
800 801
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
802 803 804 805 806 807
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
808 809
			nr_dirty++;

810 811
			/*
			 * Only kswapd can writeback filesystem pages to
812 813
			 * avoid risk of stack overflow but do not writeback
			 * unless under significant pressure.
814
			 */
815
			if (page_is_file_cache(page) &&
816 817
					(!current_is_kswapd() ||
					 sc->priority >= DEF_PRIORITY - 2)) {
818 819 820 821 822 823 824 825 826
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
				SetPageReclaim(page);

827 828 829
				goto keep_locked;
			}

830
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
831
				goto keep_locked;
832
			if (!may_enter_fs)
L
Linus Torvalds 已提交
833
				goto keep_locked;
834
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
835 836 837
				goto keep_locked;

			/* Page is dirty, try to write it out here */
838
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
839
			case PAGE_KEEP:
840
				nr_congested++;
L
Linus Torvalds 已提交
841 842 843 844
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
845
				if (PageWriteback(page))
846
					goto keep;
847
				if (PageDirty(page))
L
Linus Torvalds 已提交
848
					goto keep;
849

L
Linus Torvalds 已提交
850 851 852 853
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
854
				if (!trylock_page(page))
L
Linus Torvalds 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
874
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
875 876 877 878 879 880 881 882 883 884
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
885
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
886 887
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
904 905
		}

N
Nick Piggin 已提交
906
		if (!mapping || !__remove_mapping(mapping, page))
907
			goto keep_locked;
L
Linus Torvalds 已提交
908

N
Nick Piggin 已提交
909 910 911 912 913 914 915 916
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
917
free_it:
918
		nr_reclaimed++;
919 920 921 922 923 924

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
		list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
925 926
		continue;

N
Nick Piggin 已提交
927
cull_mlocked:
928 929
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
930 931 932 933
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
934
activate_locked:
935 936
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
937
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
938
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
939 940 941 942 943 944
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
945
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
946
	}
947

948 949 950 951 952 953
	/*
	 * Tag a zone as congested if all the dirty pages encountered were
	 * backed by a congested BDI. In this case, reclaimers should just
	 * back off and wait for congestion to clear because further reclaim
	 * will encounter the same problem
	 */
954
	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
955
		zone_set_flag(zone, ZONE_CONGESTED);
956

957
	free_hot_cold_page_list(&free_pages, 1);
958

L
Linus Torvalds 已提交
959
	list_splice(&ret_pages, page_list);
960
	count_vm_events(PGACTIVATE, pgactivate);
961
	mem_cgroup_uncharge_end();
962 963
	*ret_nr_dirty += nr_dirty;
	*ret_nr_writeback += nr_writeback;
964
	return nr_reclaimed;
L
Linus Torvalds 已提交
965 966
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
	unsigned long ret, dummy1, dummy2;
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
		if (page_is_file_cache(page) && !PageDirty(page)) {
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

	ret = shrink_page_list(&clean_pages, zone, &sc,
				TTU_UNMAP|TTU_IGNORE_ACCESS,
				&dummy1, &dummy2, true);
	list_splice(&clean_pages, page_list);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
	return ret;
}

A
Andy Whitcroft 已提交
994 995 996 997 998 999 1000 1001 1002 1003
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1004
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1005 1006 1007 1008 1009 1010 1011
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1012 1013
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1014 1015
		return ret;

A
Andy Whitcroft 已提交
1016
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
	 * is used by reclaim when it is cannot write to backing storage
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;

			/* ISOLATE_CLEAN means only clean pages */
			if (mode & ISOLATE_CLEAN)
				return ret;

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
			 * without blocking
			 */
			mapping = page_mapping(page);
			if (mapping && !mapping->a_ops->migratepage)
				return ret;
		}
	}
1051

1052 1053 1054
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
1079
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1080
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1081
 * @nr_scanned:	The number of pages that were scanned.
1082
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1083
 * @mode:	One of the LRU isolation modes
1084
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1085 1086 1087
 *
 * returns how many pages were moved onto *@dst.
 */
1088
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1089
		struct lruvec *lruvec, struct list_head *dst,
1090
		unsigned long *nr_scanned, struct scan_control *sc,
1091
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1092
{
H
Hugh Dickins 已提交
1093
	struct list_head *src = &lruvec->lists[lru];
1094
	unsigned long nr_taken = 0;
1095
	unsigned long scan;
L
Linus Torvalds 已提交
1096

1097
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
1098
		struct page *page;
1099
		int nr_pages;
A
Andy Whitcroft 已提交
1100

L
Linus Torvalds 已提交
1101 1102 1103
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
1104
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
1105

1106
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1107
		case 0:
1108 1109
			nr_pages = hpage_nr_pages(page);
			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
A
Andy Whitcroft 已提交
1110
			list_move(&page->lru, dst);
1111
			nr_taken += nr_pages;
A
Andy Whitcroft 已提交
1112 1113 1114 1115 1116 1117
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1118

A
Andy Whitcroft 已提交
1119 1120 1121
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1122 1123
	}

H
Hugh Dickins 已提交
1124
	*nr_scanned = scan;
H
Hugh Dickins 已提交
1125 1126
	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
				    nr_taken, mode, is_file_lru(lru));
L
Linus Torvalds 已提交
1127 1128 1129
	return nr_taken;
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1141 1142 1143
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1159 1160
	VM_BUG_ON(!page_count(page));

1161 1162
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1163
		struct lruvec *lruvec;
1164 1165

		spin_lock_irq(&zone->lru_lock);
1166
		lruvec = mem_cgroup_page_lruvec(page, zone);
1167
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1168
			int lru = page_lru(page);
1169
			get_page(page);
1170
			ClearPageLRU(page);
1171 1172
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1173 1174 1175 1176 1177 1178
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1179
/*
F
Fengguang Wu 已提交
1180 1181 1182 1183 1184
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1185 1186 1187 1188 1189 1190 1191 1192 1193
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1194
	if (!global_reclaim(sc))
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

1205 1206 1207 1208 1209 1210 1211 1212
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
	if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
		inactive >>= 3;

1213 1214 1215
	return isolated > inactive;
}

1216
static noinline_for_stack void
H
Hugh Dickins 已提交
1217
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1218
{
1219 1220
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	struct zone *zone = lruvec_zone(lruvec);
1221
	LIST_HEAD(pages_to_free);
1222 1223 1224 1225 1226

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1227
		struct page *page = lru_to_page(page_list);
1228
		int lru;
1229

1230 1231
		VM_BUG_ON(PageLRU(page));
		list_del(&page->lru);
1232
		if (unlikely(!page_evictable(page))) {
1233 1234 1235 1236 1237
			spin_unlock_irq(&zone->lru_lock);
			putback_lru_page(page);
			spin_lock_irq(&zone->lru_lock);
			continue;
		}
1238 1239 1240

		lruvec = mem_cgroup_page_lruvec(page, zone);

1241
		SetPageLRU(page);
1242
		lru = page_lru(page);
1243 1244
		add_page_to_lru_list(page, lruvec, lru);

1245 1246
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1247 1248
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1249
		}
1250 1251 1252
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1253
			del_page_from_lru_list(page, lruvec, lru);
1254 1255 1256 1257 1258 1259 1260

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, &pages_to_free);
1261 1262 1263
		}
	}

1264 1265 1266 1267
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1268 1269
}

L
Linus Torvalds 已提交
1270
/*
A
Andrew Morton 已提交
1271 1272
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1273
 */
1274
static noinline_for_stack unsigned long
1275
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1276
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1277 1278
{
	LIST_HEAD(page_list);
1279
	unsigned long nr_scanned;
1280
	unsigned long nr_reclaimed = 0;
1281
	unsigned long nr_taken;
1282 1283
	unsigned long nr_dirty = 0;
	unsigned long nr_writeback = 0;
1284
	isolate_mode_t isolate_mode = 0;
1285
	int file = is_file_lru(lru);
1286 1287
	struct zone *zone = lruvec_zone(lruvec);
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1288

1289
	while (unlikely(too_many_isolated(zone, file, sc))) {
1290
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1291 1292 1293 1294 1295 1296

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1297
	lru_add_drain();
1298 1299

	if (!sc->may_unmap)
1300
		isolate_mode |= ISOLATE_UNMAPPED;
1301
	if (!sc->may_writepage)
1302
		isolate_mode |= ISOLATE_CLEAN;
1303

L
Linus Torvalds 已提交
1304
	spin_lock_irq(&zone->lru_lock);
1305

1306 1307
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1308 1309 1310 1311

	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);

1312
	if (global_reclaim(sc)) {
1313 1314
		zone->pages_scanned += nr_scanned;
		if (current_is_kswapd())
H
Hugh Dickins 已提交
1315
			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1316
		else
H
Hugh Dickins 已提交
1317
			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1318
	}
1319
	spin_unlock_irq(&zone->lru_lock);
1320

1321
	if (nr_taken == 0)
1322
		return 0;
A
Andy Whitcroft 已提交
1323

1324 1325
	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
					&nr_dirty, &nr_writeback, false);
1326

1327 1328
	spin_lock_irq(&zone->lru_lock);

1329
	reclaim_stat->recent_scanned[file] += nr_taken;
1330

Y
Ying Han 已提交
1331 1332 1333 1334 1335 1336 1337 1338
	if (global_reclaim(sc)) {
		if (current_is_kswapd())
			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
					       nr_reclaimed);
		else
			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
					       nr_reclaimed);
	}
N
Nick Piggin 已提交
1339

1340
	putback_inactive_pages(lruvec, &page_list);
1341

1342
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1343 1344 1345 1346

	spin_unlock_irq(&zone->lru_lock);

	free_hot_cold_page_list(&page_list, 1);
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	/*
	 * If reclaim is isolating dirty pages under writeback, it implies
	 * that the long-lived page allocation rate is exceeding the page
	 * laundering rate. Either the global limits are not being effective
	 * at throttling processes due to the page distribution throughout
	 * zones or there is heavy usage of a slow backing device. The
	 * only option is to throttle from reclaim context which is not ideal
	 * as there is no guarantee the dirtying process is throttled in the
	 * same way balance_dirty_pages() manages.
	 *
	 * This scales the number of dirty pages that must be under writeback
	 * before throttling depending on priority. It is a simple backoff
	 * function that has the most effect in the range DEF_PRIORITY to
	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
	 * in trouble and reclaim is considered to be in trouble.
	 *
	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
	 * DEF_PRIORITY-1  50% must be PageWriteback
	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
	 * ...
	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
	 *                     isolated page is PageWriteback
	 */
1371 1372
	if (nr_writeback && nr_writeback >=
			(nr_taken >> (DEF_PRIORITY - sc->priority)))
1373 1374
		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);

1375 1376 1377
	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
		zone_idx(zone),
		nr_scanned, nr_reclaimed,
1378
		sc->priority,
M
Mel Gorman 已提交
1379
		trace_shrink_flags(file));
1380
	return nr_reclaimed;
L
Linus Torvalds 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1400

1401
static void move_active_pages_to_lru(struct lruvec *lruvec,
1402
				     struct list_head *list,
1403
				     struct list_head *pages_to_free,
1404 1405
				     enum lru_list lru)
{
1406
	struct zone *zone = lruvec_zone(lruvec);
1407 1408
	unsigned long pgmoved = 0;
	struct page *page;
1409
	int nr_pages;
1410 1411 1412

	while (!list_empty(list)) {
		page = lru_to_page(list);
1413
		lruvec = mem_cgroup_page_lruvec(page, zone);
1414 1415 1416 1417

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

1418 1419
		nr_pages = hpage_nr_pages(page);
		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1420
		list_move(&page->lru, &lruvec->lists[lru]);
1421
		pgmoved += nr_pages;
1422

1423 1424 1425
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1426
			del_page_from_lru_list(page, lruvec, lru);
1427 1428 1429 1430 1431 1432 1433

			if (unlikely(PageCompound(page))) {
				spin_unlock_irq(&zone->lru_lock);
				(*get_compound_page_dtor(page))(page);
				spin_lock_irq(&zone->lru_lock);
			} else
				list_add(&page->lru, pages_to_free);
1434 1435 1436 1437 1438 1439
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1440

H
Hugh Dickins 已提交
1441
static void shrink_active_list(unsigned long nr_to_scan,
1442
			       struct lruvec *lruvec,
1443
			       struct scan_control *sc,
1444
			       enum lru_list lru)
L
Linus Torvalds 已提交
1445
{
1446
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1447
	unsigned long nr_scanned;
1448
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1449
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1450
	LIST_HEAD(l_active);
1451
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1452
	struct page *page;
1453
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1454
	unsigned long nr_rotated = 0;
1455
	isolate_mode_t isolate_mode = 0;
1456
	int file = is_file_lru(lru);
1457
	struct zone *zone = lruvec_zone(lruvec);
L
Linus Torvalds 已提交
1458 1459

	lru_add_drain();
1460 1461

	if (!sc->may_unmap)
1462
		isolate_mode |= ISOLATE_UNMAPPED;
1463
	if (!sc->may_writepage)
1464
		isolate_mode |= ISOLATE_CLEAN;
1465

L
Linus Torvalds 已提交
1466
	spin_lock_irq(&zone->lru_lock);
1467

1468 1469
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
1470
	if (global_reclaim(sc))
H
Hugh Dickins 已提交
1471
		zone->pages_scanned += nr_scanned;
1472

1473
	reclaim_stat->recent_scanned[file] += nr_taken;
1474

H
Hugh Dickins 已提交
1475
	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1476
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
K
KOSAKI Motohiro 已提交
1477
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1478 1479 1480 1481 1482 1483
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1484

1485
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
1486 1487 1488 1489
			putback_lru_page(page);
			continue;
		}

1490 1491 1492 1493 1494 1495 1496 1497
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

1498 1499
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
1500
			nr_rotated += hpage_nr_pages(page);
1501 1502 1503 1504 1505 1506 1507 1508 1509
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1510
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1511 1512 1513 1514
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1515

1516
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1517 1518 1519
		list_add(&page->lru, &l_inactive);
	}

1520
	/*
1521
	 * Move pages back to the lru list.
1522
	 */
1523
	spin_lock_irq(&zone->lru_lock);
1524
	/*
1525 1526 1527 1528
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1529
	 */
1530
	reclaim_stat->recent_rotated[file] += nr_rotated;
1531

1532 1533
	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
K
KOSAKI Motohiro 已提交
1534
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1535
	spin_unlock_irq(&zone->lru_lock);
1536 1537

	free_hot_cold_page_list(&l_hold, 1);
L
Linus Torvalds 已提交
1538 1539
}

1540
#ifdef CONFIG_SWAP
1541
static int inactive_anon_is_low_global(struct zone *zone)
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1554 1555
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1556
 * @lruvec: LRU vector to check
1557 1558 1559 1560
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
1561
static int inactive_anon_is_low(struct lruvec *lruvec)
1562
{
1563 1564 1565 1566 1567 1568 1569
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!total_swap_pages)
		return 0;

1570
	if (!mem_cgroup_disabled())
1571
		return mem_cgroup_inactive_anon_is_low(lruvec);
1572

1573
	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1574
}
1575
#else
1576
static inline int inactive_anon_is_low(struct lruvec *lruvec)
1577 1578 1579 1580
{
	return 0;
}
#endif
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
1594
 * @lruvec: LRU vector to check
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
1606
static int inactive_file_is_low(struct lruvec *lruvec)
1607
{
1608
	if (!mem_cgroup_disabled())
1609
		return mem_cgroup_inactive_file_is_low(lruvec);
1610

1611
	return inactive_file_is_low_global(lruvec_zone(lruvec));
1612 1613
}

H
Hugh Dickins 已提交
1614
static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1615
{
H
Hugh Dickins 已提交
1616
	if (is_file_lru(lru))
1617
		return inactive_file_is_low(lruvec);
1618
	else
1619
		return inactive_anon_is_low(lruvec);
1620 1621
}

1622
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1623
				 struct lruvec *lruvec, struct scan_control *sc)
1624
{
1625
	if (is_active_lru(lru)) {
H
Hugh Dickins 已提交
1626
		if (inactive_list_is_low(lruvec, lru))
1627
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1628 1629 1630
		return 0;
	}

1631
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1632 1633
}

1634
static int vmscan_swappiness(struct scan_control *sc)
1635
{
1636
	if (global_reclaim(sc))
1637
		return vm_swappiness;
1638
	return mem_cgroup_swappiness(sc->target_mem_cgroup);
1639 1640
}

1641 1642 1643 1644 1645 1646
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
1647 1648
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1649
 */
1650
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1651
			   unsigned long *nr)
1652 1653 1654 1655
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1656
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1657
	u64 fraction[2], denominator;
H
Hugh Dickins 已提交
1658
	enum lru_list lru;
1659
	bool force_scan = false;
1660
	struct zone *zone = lruvec_zone(lruvec);
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	/*
	 * If the zone or memcg is small, nr[l] can be 0.  This
	 * results in no scanning on this priority and a potential
	 * priority drop.  Global direct reclaim can go to the next
	 * zone and tends to have no problems. Global kswapd is for
	 * zone balancing and it needs to scan a minimum amount. When
	 * reclaiming for a memcg, a priority drop can cause high
	 * latencies, so it's better to scan a minimum amount there as
	 * well.
	 */
1672
	if (current_is_kswapd() && zone->all_unreclaimable)
1673
		force_scan = true;
1674
	if (!global_reclaim(sc))
1675
		force_scan = true;
1676 1677 1678 1679 1680 1681 1682 1683

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1684

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
	if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
	if (!sc->priority && vmscan_swappiness(sc)) {
		fraction[0] = 1;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}

1711 1712 1713 1714
	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
		get_lru_size(lruvec, LRU_INACTIVE_ANON);
	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
		get_lru_size(lruvec, LRU_INACTIVE_FILE);
1715

1716 1717 1718 1719 1720 1721
	/*
	 * If it's foreseeable that reclaiming the file cache won't be
	 * enough to get the zone back into a desirable shape, we have
	 * to swap.  Better start now and leave the - probably heavily
	 * thrashing - remaining file pages alone.
	 */
1722
	if (global_reclaim(sc)) {
1723
		free = zone_page_state(zone, NR_FREE_PAGES);
1724
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1725 1726 1727 1728
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1729
		}
1730 1731
	}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	/*
	 * There is enough inactive page cache, do not reclaim
	 * anything from the anonymous working set right now.
	 */
	if (!inactive_file_is_low(lruvec)) {
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}

1743 1744 1745 1746
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
1747
	anon_prio = vmscan_swappiness(sc);
H
Hugh Dickins 已提交
1748
	file_prio = 200 - anon_prio;
1749

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1761
	spin_lock_irq(&zone->lru_lock);
1762 1763 1764
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1765 1766
	}

1767 1768 1769
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1770 1771 1772
	}

	/*
1773 1774 1775
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1776
	 */
1777
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1778
	ap /= reclaim_stat->recent_rotated[0] + 1;
1779

1780
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1781
	fp /= reclaim_stat->recent_rotated[1] + 1;
1782
	spin_unlock_irq(&zone->lru_lock);
1783

1784 1785 1786 1787
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
H
Hugh Dickins 已提交
1788 1789
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
1790
		unsigned long size;
1791
		unsigned long scan;
1792

1793
		size = get_lru_size(lruvec, lru);
1794 1795 1796 1797
		scan = size >> sc->priority;
		if (!scan && force_scan)
			scan = min(size, SWAP_CLUSTER_MAX);
		scan = div64_u64(scan * fraction[file], denominator);
H
Hugh Dickins 已提交
1798
		nr[lru] = scan;
1799
	}
1800
}
1801

M
Mel Gorman 已提交
1802
/* Use reclaim/compaction for costly allocs or under memory pressure */
1803
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
1804
{
1805
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
1806
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1807
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
1808 1809 1810 1811 1812
		return true;

	return false;
}

1813
/*
M
Mel Gorman 已提交
1814 1815 1816 1817 1818
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
1819
 */
1820
static inline bool should_continue_reclaim(struct lruvec *lruvec,
1821 1822 1823 1824 1825 1826 1827 1828
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;

	/* If not in reclaim/compaction mode, stop */
1829
	if (!in_reclaim_compaction(sc))
1830 1831
		return false;

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	/* Consider stopping depending on scan and reclaim activity */
	if (sc->gfp_mask & __GFP_REPEAT) {
		/*
		 * For __GFP_REPEAT allocations, stop reclaiming if the
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
		 * expensive but a __GFP_REPEAT caller really wants to succeed
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
		 * For non-__GFP_REPEAT allocations which can presumably
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
1854 1855 1856 1857 1858 1859

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
	pages_for_compaction = (2UL << sc->order);
1860
	inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1861
	if (nr_swap_pages > 0)
1862
		inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1863 1864 1865 1866 1867
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
1868
	switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1869 1870 1871 1872 1873 1874 1875 1876
	case COMPACT_PARTIAL:
	case COMPACT_CONTINUE:
		return false;
	default:
		return true;
	}
}

L
Linus Torvalds 已提交
1877 1878 1879
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1880
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
L
Linus Torvalds 已提交
1881
{
1882
	unsigned long nr[NR_LRU_LISTS];
1883
	unsigned long nr_to_scan;
H
Hugh Dickins 已提交
1884
	enum lru_list lru;
1885
	unsigned long nr_reclaimed, nr_scanned;
1886
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1887
	struct blk_plug plug;
1888

1889 1890
restart:
	nr_reclaimed = 0;
1891
	nr_scanned = sc->nr_scanned;
1892
	get_scan_count(lruvec, sc, nr);
L
Linus Torvalds 已提交
1893

1894
	blk_start_plug(&plug);
1895 1896
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
H
Hugh Dickins 已提交
1897 1898
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
K
KOSAKI Motohiro 已提交
1899
				nr_to_scan = min_t(unsigned long,
H
Hugh Dickins 已提交
1900 1901
						   nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;
L
Linus Torvalds 已提交
1902

H
Hugh Dickins 已提交
1903
				nr_reclaimed += shrink_list(lru, nr_to_scan,
1904
							    lruvec, sc);
1905
			}
L
Linus Torvalds 已提交
1906
		}
1907 1908 1909 1910 1911 1912 1913 1914
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1915 1916
		if (nr_reclaimed >= nr_to_reclaim &&
		    sc->priority < DEF_PRIORITY)
1917
			break;
L
Linus Torvalds 已提交
1918
	}
1919
	blk_finish_plug(&plug);
1920
	sc->nr_reclaimed += nr_reclaimed;
1921

1922 1923 1924 1925
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1926
	if (inactive_anon_is_low(lruvec))
1927
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1928
				   sc, LRU_ACTIVE_ANON);
1929

1930
	/* reclaim/compaction might need reclaim to continue */
1931
	if (should_continue_reclaim(lruvec, nr_reclaimed,
1932
				    sc->nr_scanned - nr_scanned, sc))
1933 1934
		goto restart;

1935
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1936 1937
}

1938
static void shrink_zone(struct zone *zone, struct scan_control *sc)
1939
{
1940 1941
	struct mem_cgroup *root = sc->target_mem_cgroup;
	struct mem_cgroup_reclaim_cookie reclaim = {
1942
		.zone = zone,
1943
		.priority = sc->priority,
1944
	};
1945 1946 1947 1948
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root, NULL, &reclaim);
	do {
1949 1950 1951
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);

		shrink_lruvec(lruvec, sc);
1952

1953 1954 1955 1956 1957
		/*
		 * Limit reclaim has historically picked one memcg and
		 * scanned it with decreasing priority levels until
		 * nr_to_reclaim had been reclaimed.  This priority
		 * cycle is thus over after a single memcg.
1958 1959 1960 1961
		 *
		 * Direct reclaim and kswapd, on the other hand, have
		 * to scan all memory cgroups to fulfill the overall
		 * scan target for the zone.
1962 1963 1964 1965 1966 1967 1968
		 */
		if (!global_reclaim(sc)) {
			mem_cgroup_iter_break(root, memcg);
			break;
		}
		memcg = mem_cgroup_iter(root, memcg, &reclaim);
	} while (memcg);
1969 1970
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/* Returns true if compaction should go ahead for a high-order request */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{
	unsigned long balance_gap, watermark;
	bool watermark_ok;

	/* Do not consider compaction for orders reclaim is meant to satisfy */
	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * Compaction takes time to run and there are potentially other
	 * callers using the pages just freed. Continue reclaiming until
	 * there is a buffer of free pages available to give compaction
	 * a reasonable chance of completing and allocating the page
	 */
	balance_gap = min(low_wmark_pages(zone),
		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			KSWAPD_ZONE_BALANCE_GAP_RATIO);
	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);

	/*
	 * If compaction is deferred, reclaim up to a point where
	 * compaction will have a chance of success when re-enabled
	 */
1997
	if (compaction_deferred(zone, sc->order))
1998 1999 2000 2001 2002 2003 2004 2005 2006
		return watermark_ok;

	/* If compaction is not ready to start, keep reclaiming */
	if (!compaction_suitable(zone, sc->order))
		return false;

	return watermark_ok;
}

L
Linus Torvalds 已提交
2007 2008 2009 2010 2011
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
2012 2013
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
2014 2015
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
2016 2017 2018
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
2019 2020 2021
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
2022 2023
 *
 * This function returns true if a zone is being reclaimed for a costly
2024
 * high-order allocation and compaction is ready to begin. This indicates to
2025 2026
 * the caller that it should consider retrying the allocation instead of
 * further reclaim.
L
Linus Torvalds 已提交
2027
 */
2028
static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2029
{
2030
	struct zoneref *z;
2031
	struct zone *zone;
2032 2033
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2034
	bool aborted_reclaim = false;
2035

2036 2037 2038 2039 2040 2041 2042 2043
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
	if (buffer_heads_over_limit)
		sc->gfp_mask |= __GFP_HIGHMEM;

2044 2045
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(sc->gfp_mask), sc->nodemask) {
2046
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
2047
			continue;
2048 2049 2050 2051
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2052
		if (global_reclaim(sc)) {
2053 2054
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
2055 2056
			if (zone->all_unreclaimable &&
					sc->priority != DEF_PRIORITY)
2057
				continue;	/* Let kswapd poll it */
2058
			if (IS_ENABLED(CONFIG_COMPACTION)) {
2059
				/*
2060 2061 2062 2063 2064
				 * If we already have plenty of memory free for
				 * compaction in this zone, don't free any more.
				 * Even though compaction is invoked for any
				 * non-zero order, only frequent costly order
				 * reclamation is disruptive enough to become a
2065 2066
				 * noticeable problem, like transparent huge
				 * page allocations.
2067
				 */
2068
				if (compaction_ready(zone, sc)) {
2069
					aborted_reclaim = true;
2070
					continue;
2071
				}
2072
			}
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
			/* need some check for avoid more shrink_zone() */
2086
		}
2087

2088
		shrink_zone(zone, sc);
L
Linus Torvalds 已提交
2089
	}
2090

2091
	return aborted_reclaim;
2092 2093 2094 2095 2096 2097 2098
}

static bool zone_reclaimable(struct zone *zone)
{
	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
}

2099
/* All zones in zonelist are unreclaimable? */
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
static bool all_unreclaimable(struct zonelist *zonelist,
		struct scan_control *sc)
{
	struct zoneref *z;
	struct zone *zone;

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
			gfp_zone(sc->gfp_mask), sc->nodemask) {
		if (!populated_zone(zone))
			continue;
		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
			continue;
2112 2113
		if (!zone->all_unreclaimable)
			return false;
2114 2115
	}

2116
	return true;
L
Linus Torvalds 已提交
2117
}
2118

L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2127 2128 2129 2130
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2131 2132 2133
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2134
 */
2135
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2136 2137
					struct scan_control *sc,
					struct shrink_control *shrink)
L
Linus Torvalds 已提交
2138
{
2139
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
2140
	struct reclaim_state *reclaim_state = current->reclaim_state;
2141
	struct zoneref *z;
2142
	struct zone *zone;
2143
	unsigned long writeback_threshold;
2144
	bool aborted_reclaim;
L
Linus Torvalds 已提交
2145

2146 2147
	delayacct_freepages_start();

2148
	if (global_reclaim(sc))
2149
		count_vm_event(ALLOCSTALL);
L
Linus Torvalds 已提交
2150

2151
	do {
2152
		sc->nr_scanned = 0;
2153
		aborted_reclaim = shrink_zones(zonelist, sc);
2154

2155 2156 2157 2158
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
2159
		if (global_reclaim(sc)) {
2160
			unsigned long lru_pages = 0;
2161 2162
			for_each_zone_zonelist(zone, z, zonelist,
					gfp_zone(sc->gfp_mask)) {
2163 2164 2165 2166 2167 2168
				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
					continue;

				lru_pages += zone_reclaimable_pages(zone);
			}

2169
			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2170
			if (reclaim_state) {
2171
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2172 2173
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
2174
		}
2175
		total_scanned += sc->nr_scanned;
2176
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
2186 2187
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
2188 2189
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
						WB_REASON_TRY_TO_FREE_PAGES);
2190
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
2191 2192 2193
		}

		/* Take a nap, wait for some writeback to complete */
2194
		if (!sc->hibernation_mode && sc->nr_scanned &&
2195
		    sc->priority < DEF_PRIORITY - 2) {
2196 2197 2198
			struct zone *preferred_zone;

			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2199 2200
						&cpuset_current_mems_allowed,
						&preferred_zone);
2201 2202
			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
		}
2203
	} while (--sc->priority >= 0);
2204

L
Linus Torvalds 已提交
2205
out:
2206 2207
	delayacct_freepages_end();

2208 2209 2210
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2211 2212 2213 2214 2215 2216 2217 2218
	/*
	 * As hibernation is going on, kswapd is freezed so that it can't mark
	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
	 * check.
	 */
	if (oom_killer_disabled)
		return 0;

2219 2220
	/* Aborted reclaim to try compaction? don't OOM, then */
	if (aborted_reclaim)
2221 2222
		return 1;

2223
	/* top priority shrink_zones still had more to do? don't OOM, then */
2224
	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2225 2226 2227
		return 1;

	return 0;
L
Linus Torvalds 已提交
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
		pgdat->classzone_idx = min(pgdat->classzone_idx,
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
2260 2261 2262 2263
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
2264
 */
2265
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
					nodemask_t *nodemask)
{
	struct zone *zone;
	int high_zoneidx = gfp_zone(gfp_mask);
	pg_data_t *pgdat;

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
2280 2281 2282 2283 2284 2285 2286 2287
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
2288 2289 2290 2291 2292

	/* Check if the pfmemalloc reserves are ok */
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
	pgdat = zone->zone_pgdat;
	if (pfmemalloc_watermark_ok(pgdat))
2293
		goto out;
2294

2295 2296 2297
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
			pfmemalloc_watermark_ok(pgdat), HZ);
2309 2310

		goto check_pending;
2311 2312 2313 2314 2315
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
		pfmemalloc_watermark_ok(pgdat));
2316 2317 2318 2319 2320 2321 2322

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
2323 2324
}

2325
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2326
				gfp_t gfp_mask, nodemask_t *nodemask)
2327
{
2328
	unsigned long nr_reclaimed;
2329 2330 2331
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
2332
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2333
		.may_unmap = 1,
2334
		.may_swap = 1,
2335
		.order = order,
2336
		.priority = DEF_PRIORITY,
2337
		.target_mem_cgroup = NULL,
2338
		.nodemask = nodemask,
2339
	};
2340 2341 2342
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
2343

2344
	/*
2345 2346 2347
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
2348
	 */
2349
	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2350 2351
		return 1;

2352 2353 2354 2355
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
				gfp_mask);

2356
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2357 2358 2359 2360

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2361 2362
}

A
Andrew Morton 已提交
2363
#ifdef CONFIG_MEMCG
2364

2365
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2366
						gfp_t gfp_mask, bool noswap,
2367 2368
						struct zone *zone,
						unsigned long *nr_scanned)
2369 2370
{
	struct scan_control sc = {
2371
		.nr_scanned = 0,
2372
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2373 2374 2375 2376
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.order = 0,
2377
		.priority = 0,
2378
		.target_mem_cgroup = memcg,
2379
	};
2380
	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2381

2382 2383
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2384

2385
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2386 2387 2388
						      sc.may_writepage,
						      sc.gfp_mask);

2389 2390 2391 2392 2393 2394 2395
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
2396
	shrink_lruvec(lruvec, &sc);
2397 2398 2399

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

2400
	*nr_scanned = sc.nr_scanned;
2401 2402 2403
	return sc.nr_reclaimed;
}

2404
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
K
KOSAKI Motohiro 已提交
2405
					   gfp_t gfp_mask,
2406
					   bool noswap)
2407
{
2408
	struct zonelist *zonelist;
2409
	unsigned long nr_reclaimed;
2410
	int nid;
2411 2412
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
2413
		.may_unmap = 1,
2414
		.may_swap = !noswap,
2415
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2416
		.order = 0,
2417
		.priority = DEF_PRIORITY,
2418
		.target_mem_cgroup = memcg,
2419
		.nodemask = NULL, /* we don't care the placement */
2420 2421 2422 2423 2424
		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
	};
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
2425 2426
	};

2427 2428 2429 2430 2431
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
2432
	nid = mem_cgroup_select_victim_node(memcg);
2433 2434

	zonelist = NODE_DATA(nid)->node_zonelists;
2435 2436 2437 2438 2439

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
					    sc.gfp_mask);

2440
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2441 2442 2443 2444

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
2445 2446 2447
}
#endif

2448
static void age_active_anon(struct zone *zone, struct scan_control *sc)
2449
{
2450
	struct mem_cgroup *memcg;
2451

2452 2453 2454 2455 2456
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
2457
		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2458

2459
		if (inactive_anon_is_low(lruvec))
2460
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2461
					   sc, LRU_ACTIVE_ANON);
2462 2463 2464

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
2465 2466
}

2467 2468 2469 2470 2471 2472 2473
static bool zone_balanced(struct zone *zone, int order,
			  unsigned long balance_gap, int classzone_idx)
{
	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
				    balance_gap, classzone_idx, 0))
		return false;

2474 2475
	if (IS_ENABLED(CONFIG_COMPACTION) && order &&
	    !compaction_suitable(zone, order))
2476 2477 2478 2479 2480
		return false;

	return true;
}

2481
/*
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
2492 2493 2494 2495
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
L
Lucas De Marchi 已提交
2496
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
2497 2498 2499 2500
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
2501
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2502 2503
{
	unsigned long present_pages = 0;
2504
	unsigned long balanced_pages = 0;
2505 2506
	int i;

2507 2508 2509
	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;
2510

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		if (!populated_zone(zone))
			continue;

		present_pages += zone->present_pages;

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (zone->all_unreclaimable) {
			balanced_pages += zone->present_pages;
			continue;
		}

		if (zone_balanced(zone, order, 0, i))
			balanced_pages += zone->present_pages;
		else if (!order)
			return false;
	}

	if (order)
		return balanced_pages >= (present_pages >> 2);
	else
		return true;
2538 2539
}

2540 2541 2542 2543 2544 2545 2546
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2547
					int classzone_idx)
2548 2549 2550
{
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
		return false;

	/*
	 * There is a potential race between when kswapd checks its watermarks
	 * and a process gets throttled. There is also a potential race if
	 * processes get throttled, kswapd wakes, a large process exits therby
	 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
	 * is going to sleep, no process should be sleeping on pfmemalloc_wait
	 * so wake them now if necessary. If necessary, processes will wake
	 * kswapd and get throttled again
	 */
	if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
		wake_up(&pgdat->pfmemalloc_wait);
		return false;
	}
2566

2567
	return pgdat_balanced(pgdat, order, classzone_idx);
2568 2569
}

L
Linus Torvalds 已提交
2570 2571
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
2572
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
2573
 *
2574
 * Returns the final order kswapd was reclaiming at
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2585 2586 2587 2588 2589
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2590
 */
2591
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2592
							int *classzone_idx)
L
Linus Torvalds 已提交
2593
{
2594
	struct zone *unbalanced_zone;
L
Linus Torvalds 已提交
2595
	int i;
2596
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2597
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2598
	struct reclaim_state *reclaim_state = current->reclaim_state;
2599 2600
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2601 2602
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2603
		.may_unmap = 1,
2604
		.may_swap = 1,
2605 2606 2607 2608 2609
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
A
Andy Whitcroft 已提交
2610
		.order = order,
2611
		.target_mem_cgroup = NULL,
2612
	};
2613 2614 2615
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
L
Linus Torvalds 已提交
2616 2617
loop_again:
	total_scanned = 0;
2618
	sc.priority = DEF_PRIORITY;
2619
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2620
	sc.may_writepage = !laptop_mode;
2621
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2622

2623
	do {
L
Linus Torvalds 已提交
2624
		unsigned long lru_pages = 0;
2625
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2626

2627
		unbalanced_zone = NULL;
L
Linus Torvalds 已提交
2628

2629 2630 2631 2632 2633 2634
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2635

2636 2637
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2638

2639 2640
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
2641
				continue;
L
Linus Torvalds 已提交
2642

2643 2644 2645 2646
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2647
			age_active_anon(zone, &sc);
2648

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
			/*
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * has a highmem zone, force kswapd to reclaim from
			 * it to relieve lowmem pressure.
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				break;
			}

2660
			if (!zone_balanced(zone, order, 0, 0)) {
2661
				end_zone = i;
A
Andrew Morton 已提交
2662
				break;
2663 2664 2665
			} else {
				/* If balanced, clear the congested flag */
				zone_clear_flag(zone, ZONE_CONGESTED);
L
Linus Torvalds 已提交
2666 2667
			}
		}
A
Andrew Morton 已提交
2668 2669 2670
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2671 2672 2673
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2674
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2688
			int nr_slab, testorder;
2689
			unsigned long balance_gap;
L
Linus Torvalds 已提交
2690

2691
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2692 2693
				continue;

2694 2695
			if (zone->all_unreclaimable &&
			    sc.priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2696 2697 2698
				continue;

			sc.nr_scanned = 0;
2699

2700
			nr_soft_scanned = 0;
2701 2702 2703
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 */
2704 2705 2706 2707 2708
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
			sc.nr_reclaimed += nr_soft_reclaimed;
			total_scanned += nr_soft_scanned;
2709

2710
			/*
2711 2712 2713 2714 2715 2716
			 * We put equal pressure on every zone, unless
			 * one zone has way too many pages free
			 * already. The "too many pages" is defined
			 * as the high wmark plus a "gap" where the
			 * gap is either the low watermark or 1%
			 * of the zone, whichever is smaller.
2717
			 */
2718 2719 2720 2721
			balance_gap = min(low_wmark_pages(zone),
				(zone->present_pages +
					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2722 2723 2724 2725 2726 2727 2728 2729
			/*
			 * Kswapd reclaims only single pages with compaction
			 * enabled. Trying too hard to reclaim until contiguous
			 * free pages have become available can hurt performance
			 * by evicting too much useful data from memory.
			 * Do not reclaim more than needed for compaction.
			 */
			testorder = order;
2730
			if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2731 2732 2733 2734
					compaction_suitable(zone, order) !=
						COMPACT_SKIPPED)
				testorder = 0;

2735
			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2736 2737
			    !zone_balanced(zone, testorder,
					   balance_gap, end_zone)) {
2738
				shrink_zone(zone, &sc);
2739

2740 2741 2742 2743 2744 2745 2746 2747 2748
				reclaim_state->reclaimed_slab = 0;
				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
				total_scanned += sc.nr_scanned;

				if (nr_slab == 0 && !zone_reclaimable(zone))
					zone->all_unreclaimable = 1;
			}

L
Linus Torvalds 已提交
2749 2750 2751 2752 2753 2754
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2755
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2756
				sc.may_writepage = 1;
2757

2758 2759 2760
			if (zone->all_unreclaimable) {
				if (end_zone && end_zone == i)
					end_zone--;
2761
				continue;
2762
			}
2763

2764
			if (!zone_balanced(zone, testorder, 0, end_zone)) {
2765
				unbalanced_zone = zone;
2766 2767 2768 2769 2770
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
2771
				if (!zone_watermark_ok_safe(zone, order,
2772 2773
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
2774 2775 2776 2777 2778 2779
			} else {
				/*
				 * If a zone reaches its high watermark,
				 * consider it to be no longer congested. It's
				 * possible there are dirty pages backed by
				 * congested BDIs but as pressure is relieved,
2780
				 * speculatively avoid congestion waits
2781 2782
				 */
				zone_clear_flag(zone, ZONE_CONGESTED);
2783
			}
2784

L
Linus Torvalds 已提交
2785
		}
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
				pfmemalloc_watermark_ok(pgdat))
			wake_up(&pgdat->pfmemalloc_wait);

2796
		if (pgdat_balanced(pgdat, order, *classzone_idx))
L
Linus Torvalds 已提交
2797 2798 2799 2800 2801
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2802
		if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2803 2804
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2805
			else if (unbalanced_zone)
2806
				wait_iff_congested(unbalanced_zone, BLK_RW_ASYNC, HZ/10);
2807
		}
L
Linus Torvalds 已提交
2808 2809 2810 2811 2812 2813 2814

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2815
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2816
			break;
2817
	} while (--sc.priority >= 0);
L
Linus Torvalds 已提交
2818
out:
2819

2820
	if (!pgdat_balanced(pgdat, order, *classzone_idx)) {
L
Linus Torvalds 已提交
2821
		cond_resched();
2822 2823 2824

		try_to_freeze();

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2842 2843 2844
		goto loop_again;
	}

2845 2846 2847 2848 2849 2850 2851 2852 2853
	/*
	 * If kswapd was reclaiming at a higher order, it has the option of
	 * sleeping without all zones being balanced. Before it does, it must
	 * ensure that the watermarks for order-0 on *all* zones are met and
	 * that the congestion flags are cleared. The congestion flag must
	 * be cleared as kswapd is the only mechanism that clears the flag
	 * and it is potentially going to sleep here.
	 */
	if (order) {
2854 2855
		int zones_need_compaction = 1;

2856 2857 2858 2859 2860 2861
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
				continue;

2862 2863 2864 2865
			/* Check if the memory needs to be defragmented. */
			if (zone_watermark_ok(zone, order,
				    low_wmark_pages(zone), *classzone_idx, 0))
				zones_need_compaction = 0;
2866
		}
2867 2868 2869

		if (zones_need_compaction)
			compact_pgdat(pgdat, order);
2870 2871
	}

2872
	/*
2873
	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2874 2875 2876 2877
	 * makes a decision on the order we were last reclaiming at. However,
	 * if another caller entered the allocator slow path while kswapd
	 * was awake, order will remain at the higher level
	 */
2878
	*classzone_idx = end_zone;
2879
	return order;
L
Linus Torvalds 已提交
2880 2881
}

2882
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

	/* Try to sleep for a short interval */
2893
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2894 2895 2896 2897 2898 2899 2900 2901 2902
		remaining = schedule_timeout(HZ/10);
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
2903
	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2915

2916 2917 2918 2919 2920 2921 2922 2923
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

2924 2925 2926
		if (!kthread_should_stop())
			schedule();

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
2937 2938
/*
 * The background pageout daemon, started as a kernel thread
2939
 * from the init process.
L
Linus Torvalds 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
2952
	unsigned long order, new_order;
2953
	unsigned balanced_order;
2954
	int classzone_idx, new_classzone_idx;
2955
	int balanced_classzone_idx;
L
Linus Torvalds 已提交
2956 2957
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
2958

L
Linus Torvalds 已提交
2959 2960 2961
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2962
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2963

2964 2965
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2966
	if (!cpumask_empty(cpumask))
2967
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2982
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2983
	set_freezable();
L
Linus Torvalds 已提交
2984

2985
	order = new_order = 0;
2986
	balanced_order = 0;
2987
	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2988
	balanced_classzone_idx = classzone_idx;
L
Linus Torvalds 已提交
2989
	for ( ; ; ) {
2990
		bool ret;
2991

2992 2993 2994 2995 2996
		/*
		 * If the last balance_pgdat was unsuccessful it's unlikely a
		 * new request of a similar or harder type will succeed soon
		 * so consider going to sleep on the basis we reclaimed at
		 */
2997 2998
		if (balanced_classzone_idx >= new_classzone_idx &&
					balanced_order == new_order) {
2999 3000 3001 3002 3003 3004
			new_order = pgdat->kswapd_max_order;
			new_classzone_idx = pgdat->classzone_idx;
			pgdat->kswapd_max_order =  0;
			pgdat->classzone_idx = pgdat->nr_zones - 1;
		}

3005
		if (order < new_order || classzone_idx > new_classzone_idx) {
L
Linus Torvalds 已提交
3006 3007
			/*
			 * Don't sleep if someone wants a larger 'order'
3008
			 * allocation or has tigher zone constraints
L
Linus Torvalds 已提交
3009 3010
			 */
			order = new_order;
3011
			classzone_idx = new_classzone_idx;
L
Linus Torvalds 已提交
3012
		} else {
3013 3014
			kswapd_try_to_sleep(pgdat, balanced_order,
						balanced_classzone_idx);
L
Linus Torvalds 已提交
3015
			order = pgdat->kswapd_max_order;
3016
			classzone_idx = pgdat->classzone_idx;
3017 3018
			new_order = order;
			new_classzone_idx = classzone_idx;
3019
			pgdat->kswapd_max_order = 0;
3020
			pgdat->classzone_idx = pgdat->nr_zones - 1;
L
Linus Torvalds 已提交
3021 3022
		}

3023 3024 3025 3026 3027 3028 3029 3030
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3031 3032
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3033 3034 3035
			balanced_classzone_idx = classzone_idx;
			balanced_order = balance_pgdat(pgdat, order,
						&balanced_classzone_idx);
3036
		}
L
Linus Torvalds 已提交
3037
	}
3038 3039

	current->reclaim_state = NULL;
L
Linus Torvalds 已提交
3040 3041 3042 3043 3044 3045
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
3046
void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3047 3048 3049
{
	pg_data_t *pgdat;

3050
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
3051 3052
		return;

3053
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
3054
		return;
3055
	pgdat = zone->zone_pgdat;
3056
	if (pgdat->kswapd_max_order < order) {
L
Linus Torvalds 已提交
3057
		pgdat->kswapd_max_order = order;
3058 3059
		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
	}
3060
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3061
		return;
3062 3063 3064 3065
	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
		return;

	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3066
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3067 3068
}

3069 3070 3071 3072 3073 3074 3075 3076
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
3077
{
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
3102 3103
}

3104
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3105
/*
3106
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3107 3108 3109 3110 3111
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3112
 */
3113
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3114
{
3115 3116
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3117 3118 3119
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
3120
		.may_writepage = 1,
3121 3122 3123
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.order = 0,
3124
		.priority = DEF_PRIORITY,
L
Linus Torvalds 已提交
3125
	};
3126 3127 3128 3129
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3130 3131
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
3132

3133 3134 3135 3136
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3137

3138
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3139

3140 3141 3142
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
3143

3144
	return nr_reclaimed;
L
Linus Torvalds 已提交
3145
}
3146
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3147 3148 3149 3150 3151

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3152 3153
static int cpu_callback(struct notifier_block *nfb, unsigned long action,
			void *hcpu)
L
Linus Torvalds 已提交
3154
{
3155
	int nid;
L
Linus Torvalds 已提交
3156

3157
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3158
		for_each_node_state(nid, N_MEMORY) {
3159
			pg_data_t *pgdat = NODE_DATA(nid);
3160 3161 3162
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
3163

3164
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
3165
				/* One of our CPUs online: restore mask */
3166
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171
		}
	}
	return NOTIFY_OK;
}

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
3188
		pgdat->kswapd = NULL;
3189 3190
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3191 3192 3193 3194
	}
	return ret;
}

3195
/*
3196 3197
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * hold lock_memory_hotplug().
3198 3199 3200 3201 3202
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3203
	if (kswapd) {
3204
		kthread_stop(kswapd);
3205 3206
		NODE_DATA(nid)->kswapd = NULL;
	}
3207 3208
}

L
Linus Torvalds 已提交
3209 3210
static int __init kswapd_init(void)
{
3211
	int nid;
3212

L
Linus Torvalds 已提交
3213
	swap_setup();
3214
	for_each_node_state(nid, N_MEMORY)
3215
 		kswapd_run(nid);
L
Linus Torvalds 已提交
3216 3217 3218 3219 3220
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

3231
#define RECLAIM_OFF 0
3232
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3233 3234 3235
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

3236 3237 3238 3239 3240 3241 3242
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

3243 3244 3245 3246 3247 3248
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3249 3250 3251 3252 3253 3254
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3297 3298 3299
/*
 * Try to free up some pages from this zone through reclaim.
 */
3300
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3301
{
3302
	/* Minimum pages needed in order to stay on node */
3303
	const unsigned long nr_pages = 1 << order;
3304 3305
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3306 3307
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3308
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3309
		.may_swap = 1,
3310 3311
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
3312
		.gfp_mask = gfp_mask,
3313
		.order = order,
3314
		.priority = ZONE_RECLAIM_PRIORITY,
3315
	};
3316 3317 3318
	struct shrink_control shrink = {
		.gfp_mask = sc.gfp_mask,
	};
3319
	unsigned long nr_slab_pages0, nr_slab_pages1;
3320 3321

	cond_resched();
3322 3323 3324 3325 3326 3327
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3328
	lockdep_set_current_reclaim_state(gfp_mask);
3329 3330
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3331

3332
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3333 3334 3335 3336 3337
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		do {
3338 3339
			shrink_zone(zone, &sc);
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3340
	}
3341

3342 3343
	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (nr_slab_pages0 > zone->min_slab_pages) {
3344
		/*
3345
		 * shrink_slab() does not currently allow us to determine how
3346 3347 3348 3349
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
3350
		 *
3351 3352
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
3353
		 */
3354 3355 3356 3357
		for (;;) {
			unsigned long lru_pages = zone_reclaimable_pages(zone);

			/* No reclaimable slab or very low memory pressure */
3358
			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3359 3360 3361 3362 3363 3364 3365 3366
				break;

			/* Freed enough memory */
			nr_slab_pages1 = zone_page_state(zone,
							NR_SLAB_RECLAIMABLE);
			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
				break;
		}
3367 3368 3369 3370 3371

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
3372 3373 3374
		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
		if (nr_slab_pages1 < nr_slab_pages0)
			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3375 3376
	}

3377
	p->reclaim_state = NULL;
3378
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3379
	lockdep_clear_current_reclaim_state();
3380
	return sc.nr_reclaimed >= nr_pages;
3381
}
3382 3383 3384 3385

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
3386
	int ret;
3387 3388

	/*
3389 3390
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
3391
	 *
3392 3393 3394 3395 3396
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
3397
	 */
3398 3399
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3400
		return ZONE_RECLAIM_FULL;
3401

3402
	if (zone->all_unreclaimable)
3403
		return ZONE_RECLAIM_FULL;
3404

3405
	/*
3406
	 * Do not scan if the allocation should not be delayed.
3407
	 */
3408
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3409
		return ZONE_RECLAIM_NOSCAN;
3410 3411 3412 3413 3414 3415 3416

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
3417
	node_id = zone_to_nid(zone);
3418
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3419
		return ZONE_RECLAIM_NOSCAN;
3420 3421

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3422 3423
		return ZONE_RECLAIM_NOSCAN;

3424 3425 3426
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

3427 3428 3429
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

3430
	return ret;
3431
}
3432
#endif
L
Lee Schermerhorn 已提交
3433 3434 3435 3436 3437 3438

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
3439
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
3440 3441
 *
 * Reasons page might not be evictable:
3442
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
3443
 * (2) page is part of an mlocked VMA
3444
 *
L
Lee Schermerhorn 已提交
3445
 */
3446
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
3447
{
3448
	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
L
Lee Schermerhorn 已提交
3449
}
3450

3451
#ifdef CONFIG_SHMEM
3452
/**
3453 3454 3455
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
3456
 *
3457
 * Checks pages for evictability and moves them to the appropriate lru list.
3458 3459
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
3460
 */
3461
void check_move_unevictable_pages(struct page **pages, int nr_pages)
3462
{
3463
	struct lruvec *lruvec;
3464 3465 3466 3467
	struct zone *zone = NULL;
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
3468

3469 3470 3471
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
		struct zone *pagezone;
3472

3473 3474 3475 3476 3477 3478 3479 3480
		pgscanned++;
		pagezone = page_zone(page);
		if (pagezone != zone) {
			if (zone)
				spin_unlock_irq(&zone->lru_lock);
			zone = pagezone;
			spin_lock_irq(&zone->lru_lock);
		}
3481
		lruvec = mem_cgroup_page_lruvec(page, zone);
3482

3483 3484
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
3485

3486
		if (page_evictable(page)) {
3487 3488 3489 3490
			enum lru_list lru = page_lru_base_type(page);

			VM_BUG_ON(PageActive(page));
			ClearPageUnevictable(page);
3491 3492
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
3493
			pgrescued++;
3494
		}
3495
	}
3496

3497 3498 3499 3500
	if (zone) {
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
		spin_unlock_irq(&zone->lru_lock);
3501 3502
	}
}
3503
#endif /* CONFIG_SHMEM */
3504

3505
static void warn_scan_unevictable_pages(void)
3506
{
3507
	printk_once(KERN_WARNING
3508
		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3509
		    "disabled for lack of a legitimate use case.  If you have "
3510 3511
		    "one, please send an email to linux-mm@kvack.org.\n",
		    current->comm);
3512 3513 3514 3515 3516 3517 3518 3519 3520
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
3521
			   void __user *buffer,
3522 3523
			   size_t *length, loff_t *ppos)
{
3524
	warn_scan_unevictable_pages();
3525
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3526 3527 3528 3529
	scan_unevictable_pages = 0;
	return 0;
}

3530
#ifdef CONFIG_NUMA
3531 3532 3533 3534 3535
/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

3536 3537
static ssize_t read_scan_unevictable_node(struct device *dev,
					  struct device_attribute *attr,
3538 3539
					  char *buf)
{
3540
	warn_scan_unevictable_pages();
3541 3542 3543
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

3544 3545
static ssize_t write_scan_unevictable_node(struct device *dev,
					   struct device_attribute *attr,
3546 3547
					const char *buf, size_t count)
{
3548
	warn_scan_unevictable_pages();
3549 3550 3551 3552
	return 1;
}


3553
static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3554 3555 3556 3557 3558
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
3559
	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3560 3561 3562 3563
}

void scan_unevictable_unregister_node(struct node *node)
{
3564
	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3565
}
3566
#endif