trainer.py 41.9 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38
from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
39
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
40
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
41 42
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
43
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
44
import ppdet.utils.stats as stats
45
from ppdet.utils.fuse_utils import fuse_conv_bn
46
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
47

48
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
49
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
50

51 52
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
53
from ppdet.utils.logger import setup_logger
54
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
55 56 57

__all__ = ['Trainer']

58
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
59

N
update  
niuliling123 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
GLOBAL_PROFILE_STATE = False
def add_nvtx_event(event_name, is_first=False, is_last=False):
    global GLOBAL_PROFILE_STATE
    if not GLOBAL_PROFILE_STATE:
        return

    if not is_first:
        paddle.fluid.core.nvprof_nvtx_pop()
    if not is_last:
        paddle.fluid.core.nvprof_nvtx_push(event_name)

def switch_profile(start, end, step_idx, event_name=None):
    global GLOBAL_PROFILE_STATE
    if step_idx > start and step_idx < end:
        GLOBAL_PROFILE_STATE = True
    else:
        GLOBAL_PROFILE_STATE = False

    #if step_idx == start:
    #    paddle.utils.profiler.start_profiler("All", "Default")
    #elif step_idx == end:
    #    paddle.utils.profiler.stop_profiler("total", "tmp.profile")

    if event_name is None:
        event_name = str(step_idx)
    if step_idx == start:
        paddle.fluid.core.nvprof_start()
        paddle.fluid.core.nvprof_enable_record_event()
        paddle.fluid.core.nvprof_nvtx_push(event_name)
    elif step_idx == end:
        paddle.fluid.core.nvprof_nvtx_pop()
        paddle.fluid.core.nvprof_stop()
    elif step_idx > start and step_idx < end:
        paddle.fluid.core.nvprof_nvtx_pop()
        paddle.fluid.core.nvprof_nvtx_push(event_name)
K
Kaipeng Deng 已提交
95 96 97 98 99 100 101

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
102
        self.optimizer = None
103
        self.is_loaded_weights = False
S
shangliang Xu 已提交
104 105
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
106 107
        self.custom_white_list = self.cfg.get('custom_white_list', None)
        self.custom_black_list = self.cfg.get('custom_black_list', None)
K
Kaipeng Deng 已提交
108

G
George Ni 已提交
109
        # build data loader
W
wangguanzhong 已提交
110
        capital_mode = self.mode.capitalize()
111
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
112 113
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
114
        else:
W
wangguanzhong 已提交
115 116
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
117 118 119 120 121

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

122 123 124 125
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
126
        if self.mode == 'train':
W
wangguanzhong 已提交
127
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
128 129 130 131
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
132 133
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
134

F
FlyingQianMM 已提交
135
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
136 137
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
138
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
139

K
Kaipeng Deng 已提交
140
        # build model
141 142 143 144 145
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
146

F
Feng Ni 已提交
147 148 149
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
150 151
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
152

153
        #normalize params for deploy
C
Chang Xu 已提交
154 155 156
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
157 158 159 160 161 162 163
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
164 165
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
166

K
Kaipeng Deng 已提交
167 168 169
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
170 171 172 173 174 175 176 177 178 179 180
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
181
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
182 183 184 185 186

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
187
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
188

M
minghaoBD 已提交
189 190 191 192
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
193
        if self.use_amp and self.amp_level == 'O2':
194 195 196 197
            self.model, self.optimizer = paddle.amp.decorate(
                models=self.model,
                optimizers=self.optimizer,
                level=self.amp_level)
S
shangliang Xu 已提交
198 199 200 201 202 203 204 205 206 207 208
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
                cycle_epoch=cycle_epoch)

W
wangguanzhong 已提交
209 210
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
211

K
Kaipeng Deng 已提交
212 213 214
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
215
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
216 217 218 219 220 221 222 223 224 225 226

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
227
            if self.cfg.get('use_vdl', False):
228
                self._callbacks.append(VisualDLWriter(self))
229 230
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
231 232
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
233 234 235
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
236 237
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
238
            self._compose_callback = ComposeCallback(self._callbacks)
239
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
240 241
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
242 243 244 245
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
246 247
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
248 249
            self._metrics = []
            return
250
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
251
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
252
            # TODO: bias should be unified
W
wangxinxin08 已提交
253
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
254 255
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
256
            save_prediction_only = self.cfg.get('save_prediction_only', False)
257 258 259

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
260 261
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
262 263 264 265 266 267 268

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
269
                dataset = eval_dataset
W
Wenyu 已提交
270 271 272
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
273

274
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
275 276 277 278 279 280 281 282 283 284 285
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
286
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
287 288 289 290 291 292 293 294 295
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
296
                        save_prediction_only=save_prediction_only)
297
                ]
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
327
        elif self.cfg.metric == 'VOC':
328 329 330 331
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
332 333
            self._metrics = [
                VOCMetric(
334
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
335
                    class_num=self.cfg.num_classes,
336
                    map_type=self.cfg.map_type,
337 338 339
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
340
            ]
341 342 343 344 345 346 347 348 349
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
350 351 352 353
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
354
            save_prediction_only = self.cfg.get('save_prediction_only', False)
355
            self._metrics = [
356 357 358 359 360 361
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
362
            ]
Z
zhiboniu 已提交
363 364 365 366
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
367
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
368
            self._metrics = [
369 370 371 372 373 374
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
375
            ]
G
George Ni 已提交
376 377
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
378
        else:
379
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
380
                self.cfg.metric))
K
Kaipeng Deng 已提交
381 382 383 384 385 386 387
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
388
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
402
    def load_weights(self, weights):
403 404
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
405
        self.start_epoch = 0
406
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
407 408
        logger.debug("Load weights {} to start training".format(weights))

409 410 411 412 413 414 415
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
416
    def resume_weights(self, weights):
417 418 419 420 421
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
422 423
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
424
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
425

K
Kaipeng Deng 已提交
426
    def train(self, validate=False):
K
Kaipeng Deng 已提交
427
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
428
        Init_mark = False
W
wangguanzhong 已提交
429
        if validate:
W
wangguanzhong 已提交
430 431
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
432

433
        model = self.model
434
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
435 436
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
437
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
438

439
        # enabel auto mixed precision mode
N
update  
niuliling123 已提交
440
        print("use_amp={}, amp_level={}".format(self.use_amp, self.amp_level))
S
shangliang Xu 已提交
441
        if self.use_amp:
442 443 444 445
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
446
        if self.cfg.get('fleet', False):
447
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
448
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
449
        elif self._nranks > 1:
G
George Ni 已提交
450 451 452
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
453
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
454

K
Kaipeng Deng 已提交
455 456 457 458 459 460 461 462 463 464 465 466
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
467
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
468 469 470
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
471
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
472

473
        self._compose_callback.on_train_begin(self.status)
N
update  
niuliling123 已提交
474
        train_batch_size = self.cfg.TrainReader['batch_size']
475 476
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False
N
update  
niuliling123 已提交
477 478 479 480
        prof = paddle.profiler.Profiler(targets=[paddle.profiler.ProfilerTarget.CPU,paddle. paddle.profiler.ProfilerTarget.GPU],
                                 scheduler=[60, 70],
                                 timer_only=True)
        prof.start() 
K
Kaipeng Deng 已提交
481
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
482
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
483 484 485
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
486
            model.train()
K
Kaipeng Deng 已提交
487 488 489 490
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
491
                profiler.add_profiler_step(profiler_options)
N
update  
niuliling123 已提交
492
                #switch_profile(60, 70, step_id,"(iter is ={})".format(step_id))
K
Kaipeng Deng 已提交
493
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
494
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
495

S
shangliang Xu 已提交
496
                if self.use_amp:
497 498 499 500
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
501
                            with paddle.amp.auto_cast(
502 503 504
                                    enable=self.cfg.use_gpu,
                                    custom_white_list=self.custom_white_list,
                                    custom_black_list=self.custom_black_list,
505 506 507 508 509 510 511 512 513 514
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
515
                        with paddle.amp.auto_cast(
516 517 518 519
                                enable=self.cfg.use_gpu,
                                custom_white_list=self.custom_white_list,
                                custom_black_list=self.custom_black_list,
                                level=self.amp_level):
520
                            # model forward
N
update  
niuliling123 已提交
521
                            add_nvtx_event("forward", is_first=True, is_last=False)
522
                            outputs = model(data)
N
update  
niuliling123 已提交
523
                            add_nvtx_event("loss", is_first=False, is_last=False)
524 525
                            loss = outputs['loss']
                        # model backward
N
update  
niuliling123 已提交
526
                        add_nvtx_event("scaleloss", is_first=False, is_last=False)
527
                        scaled_loss = scaler.scale(loss)
N
update  
niuliling123 已提交
528
                        add_nvtx_event("backward", is_first=False, is_last=False)
529
                        scaled_loss.backward()
530
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
N
update  
niuliling123 已提交
531
                    add_nvtx_event("optimizer", is_first=False, is_last=False)
532 533
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
534 535 536 537 538 539 540 541 542 543 544 545 546
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
N
update  
niuliling123 已提交
547
                        add_nvtx_event("forward", is_first=True, is_last=False)
548
                        outputs = model(data)
N
update  
niuliling123 已提交
549
                        add_nvtx_event("loss", is_first=False, is_last=False)
550 551
                        loss = outputs['loss']
                        # model backward
N
update  
niuliling123 已提交
552
                        add_nvtx_event("backward", is_first=False, is_last=False)
553
                        loss.backward()
N
update  
niuliling123 已提交
554
                    add_nvtx_event("optimizer", is_first=False, is_last=False)
555
                    self.optimizer.step()
N
update  
niuliling123 已提交
556
                add_nvtx_event("curr_lr", is_first=False, is_last=False)
K
Kaipeng Deng 已提交
557 558
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
559 560
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
N
update  
niuliling123 已提交
561
                add_nvtx_event("clear_grad", is_first=False, is_last=False)
K
Kaipeng Deng 已提交
562
                self.optimizer.clear_grad()
N
update  
niuliling123 已提交
563
                add_nvtx_event("status", is_first=False, is_last=False)
K
Kaipeng Deng 已提交
564 565
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
566
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
567 568 569
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
N
update  
niuliling123 已提交
570 571
                add_nvtx_event("other", is_first=False, is_last=True)
                prof.step(num_samples=train_batch_size)
K
Kaipeng Deng 已提交
572
                self._compose_callback.on_step_end(self.status)
573
                if self.use_ema:
S
shangliang Xu 已提交
574
                    self.ema.update()
F
Feng Ni 已提交
575
                iter_tic = time.time()
K
Kaipeng Deng 已提交
576

M
minghaoBD 已提交
577 578
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
579

S
shangliang Xu 已提交
580 581 582 583 584 585 586 587
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
588 589
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
590
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
591 592 593 594 595 596 597
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
598 599 600
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
601 602 603 604
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
605 606 607 608 609 610
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
611

K
Kaipeng Deng 已提交
612
                with paddle.no_grad():
613
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
614 615
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
616 617
            if is_snapshot and self.use_ema:
                # reset original weight
618
                self.model.set_dict(weight)
S
shangliang Xu 已提交
619
                self.status.pop('weight')
N
update  
niuliling123 已提交
620 621
        prof.stop()
        prof.summary(op_detail=True)
622 623
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
624
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
625 626 627
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
628 629
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
630
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
631 632 633
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
634
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
635 636 637
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
638 639
            if self.use_amp:
                with paddle.amp.auto_cast(
640 641 642 643
                        enable=self.cfg.use_gpu,
                        custom_white_list=self.custom_white_list,
                        custom_black_list=self.custom_black_list,
                        level=self.amp_level):
S
shangliang Xu 已提交
644 645 646
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
647 648 649 650 651

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
652 653 654 655 656
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
657 658 659 660 661 662 663 664 665
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
666
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
667 668 669
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
670
    def evaluate(self):
671 672
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
673

C
cnn 已提交
674 675 676 677
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
678
                save_results=False):
K
Kaipeng Deng 已提交
679 680 681
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
717 718 719
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
720 721
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
722

K
Kaipeng Deng 已提交
723 724 725
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
726
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
727 728
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
729
        results = []
F
Feng Ni 已提交
730
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
731 732 733
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
734

W
Wenyu 已提交
735 736 737
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
738
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
739 740 741 742
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
743
            for key, value in outs.items():
744 745
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
746
            results.append(outs)
W
Wenyu 已提交
747

748 749
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
750 751
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
752

W
Wenyu 已提交
753 754 755 756
        for _m in metrics:
            _m.accumulate()
            _m.reset()

757
        for outs in results:
K
Kaipeng Deng 已提交
758 759
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
760

K
Kaipeng Deng 已提交
761 762 763 764
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
765
                image = ImageOps.exif_transpose(image)
766
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
767

768
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
769 770 771 772
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
773 774
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
775 776 777 778
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
779
                    int(im_id), catid2name, draw_threshold)
780
                self.status['result_image'] = np.array(image.copy())
781 782
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
783 784 785 786 787
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
788

K
Kaipeng Deng 已提交
789 790 791 792 793 794 795 796 797 798 799 800
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
801 802 803 804
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
805
        image_shape = None
806 807
        im_shape = [None, 2]
        scale_factor = [None, 2]
808 809 810 811 812 813
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
814
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
815
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
816
        if image_shape is None:
G
Guanghua Yu 已提交
817
            image_shape = [None, 3, -1, -1]
818

G
Guanghua Yu 已提交
819 820
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
821 822 823
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
824

825
        if hasattr(self.model, 'deploy'):
826
            self.model.deploy = True
S
shangliang Xu 已提交
827

828 829 830 831
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
832

833 834 835 836 837 838
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
839 840 841
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
842 843 844 845 846 847
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
848

K
Kaipeng Deng 已提交
849 850 851 852 853 854 855
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
856
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
857
            "im_shape": InputSpec(
858
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
859
            "scale_factor": InputSpec(
860
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
861
        }]
G
George Ni 已提交
862 863 864 865 866
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
867 868 869 870 871 872 873 874 875 876 877 878
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
879
        # TODO: Hard code, delete it when support prune input_spec.
880
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
881 882 883 884
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
898

G
Guanghua Yu 已提交
899 900 901 902
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
903 904 905 906 907

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
908 909 910 911
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
912

G
Guanghua Yu 已提交
913 914
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
915 916

        # dy2st and save model
917
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
918 919 920 921 922
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
923
            self.cfg.slim.save_quantized_model(
924 925
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
926 927
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
928

G
Guanghua Yu 已提交
929 930 931 932 933 934 935 936 937 938 939 940
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
941
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
942
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
943
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
944 945 946 947 948 949

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
998 999 1000
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images