Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
a06f512a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a06f512a
编写于
8月 17, 2022
作者:
N
niuliling123
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
0b463621
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
62 addition
and
4 deletion
+62
-4
ppdet/data/reader.py
ppdet/data/reader.py
+4
-0
ppdet/engine/trainer.py
ppdet/engine/trainer.py
+58
-4
未找到文件。
ppdet/data/reader.py
浏览文件 @
a06f512a
...
...
@@ -140,6 +140,7 @@ class BaseDataLoader(object):
collate_batch
=
True
,
use_shared_memory
=
False
,
**
kwargs
):
print
(
"[BaseDataLoader] batch_size={}, shuffle={}, use_shared_memory={}"
.
format
(
batch_size
,
shuffle
,
use_shared_memory
))
# sample transform
self
.
_sample_transforms
=
Compose
(
sample_transforms
,
num_classes
=
num_classes
)
...
...
@@ -187,6 +188,9 @@ class BaseDataLoader(object):
"disable shared_memory in DataLoader"
)
use_shared_memory
=
False
print
(
"=========================================================================="
)
print
(
"worker_num={}, use_shared_memory={}"
.
format
(
worker_num
,
use_shared_memory
))
print
(
"=========================================================================="
)
self
.
dataloader
=
DataLoader
(
dataset
=
self
.
dataset
,
batch_sampler
=
self
.
_batch_sampler
,
...
...
ppdet/engine/trainer.py
浏览文件 @
a06f512a
...
...
@@ -34,7 +34,6 @@ import paddle.distributed as dist
from
paddle.distributed
import
fleet
from
paddle.static
import
InputSpec
from
ppdet.optimizer
import
ModelEMA
from
ppdet.core.workspace
import
create
from
ppdet.utils.checkpoint
import
load_weight
,
load_pretrain_weight
from
ppdet.utils.visualizer
import
visualize_results
,
save_result
...
...
@@ -58,6 +57,41 @@ __all__ = ['Trainer']
MOT_ARCH
=
[
'DeepSORT'
,
'JDE'
,
'FairMOT'
,
'ByteTrack'
]
GLOBAL_PROFILE_STATE
=
False
def
add_nvtx_event
(
event_name
,
is_first
=
False
,
is_last
=
False
):
global
GLOBAL_PROFILE_STATE
if
not
GLOBAL_PROFILE_STATE
:
return
if
not
is_first
:
paddle
.
fluid
.
core
.
nvprof_nvtx_pop
()
if
not
is_last
:
paddle
.
fluid
.
core
.
nvprof_nvtx_push
(
event_name
)
def
switch_profile
(
start
,
end
,
step_idx
,
event_name
=
None
):
global
GLOBAL_PROFILE_STATE
if
step_idx
>
start
and
step_idx
<
end
:
GLOBAL_PROFILE_STATE
=
True
else
:
GLOBAL_PROFILE_STATE
=
False
#if step_idx == start:
# paddle.utils.profiler.start_profiler("All", "Default")
#elif step_idx == end:
# paddle.utils.profiler.stop_profiler("total", "tmp.profile")
if
event_name
is
None
:
event_name
=
str
(
step_idx
)
if
step_idx
==
start
:
paddle
.
fluid
.
core
.
nvprof_start
()
paddle
.
fluid
.
core
.
nvprof_enable_record_event
()
paddle
.
fluid
.
core
.
nvprof_nvtx_push
(
event_name
)
elif
step_idx
==
end
:
paddle
.
fluid
.
core
.
nvprof_nvtx_pop
()
paddle
.
fluid
.
core
.
nvprof_stop
()
elif
step_idx
>
start
and
step_idx
<
end
:
paddle
.
fluid
.
core
.
nvprof_nvtx_pop
()
paddle
.
fluid
.
core
.
nvprof_nvtx_push
(
event_name
)
class
Trainer
(
object
):
def
__init__
(
self
,
cfg
,
mode
=
'train'
):
...
...
@@ -403,6 +437,7 @@ class Trainer(object):
model
=
paddle
.
nn
.
SyncBatchNorm
.
convert_sync_batchnorm
(
model
)
# enabel auto mixed precision mode
print
(
"use_amp={}, amp_level={}"
.
format
(
self
.
use_amp
,
self
.
amp_level
))
if
self
.
use_amp
:
scaler
=
paddle
.
amp
.
GradScaler
(
enable
=
self
.
cfg
.
use_gpu
or
self
.
cfg
.
use_npu
,
...
...
@@ -436,10 +471,13 @@ class Trainer(object):
profiler_options
=
self
.
cfg
.
get
(
'profiler_options'
,
None
)
self
.
_compose_callback
.
on_train_begin
(
self
.
status
)
train_batch_size
=
self
.
cfg
.
TrainReader
[
'batch_size'
]
use_fused_allreduce_gradients
=
self
.
cfg
[
'use_fused_allreduce_gradients'
]
if
'use_fused_allreduce_gradients'
in
self
.
cfg
else
False
prof
=
paddle
.
profiler
.
Profiler
(
targets
=
[
paddle
.
profiler
.
ProfilerTarget
.
CPU
,
paddle
.
paddle
.
profiler
.
ProfilerTarget
.
GPU
],
scheduler
=
[
60
,
70
],
timer_only
=
True
)
prof
.
start
()
for
epoch_id
in
range
(
self
.
start_epoch
,
self
.
cfg
.
epoch
):
self
.
status
[
'mode'
]
=
'train'
self
.
status
[
'epoch_id'
]
=
epoch_id
...
...
@@ -451,6 +489,7 @@ class Trainer(object):
self
.
status
[
'data_time'
].
update
(
time
.
time
()
-
iter_tic
)
self
.
status
[
'step_id'
]
=
step_id
profiler
.
add_profiler_step
(
profiler_options
)
#switch_profile(60, 70, step_id,"(iter is ={})".format(step_id))
self
.
_compose_callback
.
on_step_begin
(
self
.
status
)
data
[
'epoch_id'
]
=
epoch_id
...
...
@@ -479,12 +518,17 @@ class Trainer(object):
custom_black_list
=
self
.
custom_black_list
,
level
=
self
.
amp_level
):
# model forward
add_nvtx_event
(
"forward"
,
is_first
=
True
,
is_last
=
False
)
outputs
=
model
(
data
)
add_nvtx_event
(
"loss"
,
is_first
=
False
,
is_last
=
False
)
loss
=
outputs
[
'loss'
]
# model backward
add_nvtx_event
(
"scaleloss"
,
is_first
=
False
,
is_last
=
False
)
scaled_loss
=
scaler
.
scale
(
loss
)
add_nvtx_event
(
"backward"
,
is_first
=
False
,
is_last
=
False
)
scaled_loss
.
backward
()
# in dygraph mode, optimizer.minimize is equal to optimizer.step
add_nvtx_event
(
"optimizer"
,
is_first
=
False
,
is_last
=
False
)
scaler
.
minimize
(
self
.
optimizer
,
scaled_loss
)
else
:
if
isinstance
(
...
...
@@ -500,22 +544,31 @@ class Trainer(object):
list
(
model
.
parameters
()),
None
)
else
:
# model forward
add_nvtx_event
(
"forward"
,
is_first
=
True
,
is_last
=
False
)
outputs
=
model
(
data
)
add_nvtx_event
(
"loss"
,
is_first
=
False
,
is_last
=
False
)
loss
=
outputs
[
'loss'
]
# model backward
add_nvtx_event
(
"backward"
,
is_first
=
False
,
is_last
=
False
)
loss
.
backward
()
add_nvtx_event
(
"optimizer"
,
is_first
=
False
,
is_last
=
False
)
self
.
optimizer
.
step
()
add_nvtx_event
(
"curr_lr"
,
is_first
=
False
,
is_last
=
False
)
curr_lr
=
self
.
optimizer
.
get_lr
()
self
.
lr
.
step
()
if
self
.
cfg
.
get
(
'unstructured_prune'
):
self
.
pruner
.
step
()
add_nvtx_event
(
"clear_grad"
,
is_first
=
False
,
is_last
=
False
)
self
.
optimizer
.
clear_grad
()
add_nvtx_event
(
"status"
,
is_first
=
False
,
is_last
=
False
)
self
.
status
[
'learning_rate'
]
=
curr_lr
if
self
.
_nranks
<
2
or
self
.
_local_rank
==
0
:
self
.
status
[
'training_staus'
].
update
(
outputs
)
self
.
status
[
'batch_time'
].
update
(
time
.
time
()
-
iter_tic
)
add_nvtx_event
(
"other"
,
is_first
=
False
,
is_last
=
True
)
prof
.
step
(
num_samples
=
train_batch_size
)
self
.
_compose_callback
.
on_step_end
(
self
.
status
)
if
self
.
use_ema
:
self
.
ema
.
update
()
...
...
@@ -564,7 +617,8 @@ class Trainer(object):
# reset original weight
self
.
model
.
set_dict
(
weight
)
self
.
status
.
pop
(
'weight'
)
prof
.
stop
()
prof
.
summary
(
op_detail
=
True
)
self
.
_compose_callback
.
on_train_end
(
self
.
status
)
def
_eval_with_loader
(
self
,
loader
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录