trainer.py 24.9 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
20
import copy
K
Kaipeng Deng 已提交
21
import time
M
Manuel Garcia 已提交
22

K
Kaipeng Deng 已提交
23 24 25 26
import numpy as np
from PIL import Image

import paddle
W
wangguanzhong 已提交
27 28
import paddle.distributed as dist
from paddle.distributed import fleet
29
from paddle import amp
K
Kaipeng Deng 已提交
30
from paddle.static import InputSpec
31
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
32 33 34

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
35
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
36
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
G
George Ni 已提交
37
from ppdet.metrics import RBoxMetric, JDEDetMetric
K
Kaipeng Deng 已提交
38
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
39 40
import ppdet.utils.stats as stats

41
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
K
Kaipeng Deng 已提交
42 43 44
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
45
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
46 47 48

__all__ = ['Trainer']

49 50
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
51 52 53 54 55 56 57

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
58
        self.optimizer = None
59
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
60

G
George Ni 已提交
61
        # build data loader
62 63 64 65 66 67 68 69 70
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
71 72 73 74 75 76 77 78
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

F
FlyingQianMM 已提交
79 80 81 82
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
            cfg['FairMOTEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

K
Kaipeng Deng 已提交
83
        # build model
84 85 86 87 88
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
89

90 91 92 93 94
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            self.ema = ModelEMA(
                cfg['ema_decay'], self.model, use_thres_step=True)

K
Kaipeng Deng 已提交
95 96 97 98 99 100 101 102
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
103 104 105 106 107 108 109 110

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

W
wangguanzhong 已提交
111 112
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
113

K
Kaipeng Deng 已提交
114 115 116
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
117
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
118 119 120 121 122 123 124 125 126 127 128

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
129
            if self.cfg.get('use_vdl', False):
130
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
131 132 133
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
134 135
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
136
            self._compose_callback = ComposeCallback(self._callbacks)
137
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
138 139
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
140 141 142 143
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
144 145
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
146 147
            self._metrics = []
            return
148
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
149
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
150
            # TODO: bias should be unified
151
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
152 153
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
154
            save_prediction_only = self.cfg.get('save_prediction_only', False)
155 156 157

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
158 159
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
160 161 162 163 164 165 166 167 168

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

169
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
W
wangxinxin08 已提交
170 171
            self._metrics = [
                COCOMetric(
172
                    anno_file=anno_file,
K
Kaipeng Deng 已提交
173
                    clsid2catid=clsid2catid,
174
                    classwise=classwise,
S
shangliang Xu 已提交
175
                    output_eval=output_eval,
176
                    bias=bias,
177
                    IouType=IouType,
178
                    save_prediction_only=save_prediction_only)
W
wangxinxin08 已提交
179
            ]
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
209 210 211
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
212
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
213
                    class_num=self.cfg.num_classes,
214 215
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
216
            ]
217 218 219 220 221 222 223 224 225
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
226 227 228 229 230 231 232 233 234
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownCOCOEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
Z
zhiboniu 已提交
235 236 237 238 239 240 241 242 243
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownMPIIEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
G
George Ni 已提交
244 245
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
246
        else:
247
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
248
                self.cfg.metric))
K
Kaipeng Deng 已提交
249 250 251 252 253 254 255
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
256
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
270
    def load_weights(self, weights):
271 272
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
273
        self.start_epoch = 0
274
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
275 276
        logger.debug("Load weights {} to start training".format(weights))

277 278 279 280 281 282 283
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
284
    def resume_weights(self, weights):
285 286 287 288 289 290
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
291
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
292

K
Kaipeng Deng 已提交
293
    def train(self, validate=False):
K
Kaipeng Deng 已提交
294 295
        assert self.mode == 'train', "Model not in 'train' mode"

K
Kaipeng Deng 已提交
296 297 298 299 300
        # if validation in training is enabled, metrics should be re-init
        if validate:
            self._init_metrics(validate=validate)
            self._reset_metrics()

301
        model = self.model
302
        if self.cfg.get('fleet', False):
303
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
304
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
305
        elif self._nranks > 1:
G
George Ni 已提交
306 307 308 309
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
310 311

        # initial fp16
312
        if self.cfg.get('fp16', False):
313 314
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
315

K
Kaipeng Deng 已提交
316 317 318 319 320 321 322 323 324 325 326 327
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
328 329 330
        if self.cfg.get('print_flops', False):
            self._flops(self.loader)

K
Kaipeng Deng 已提交
331
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
332
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
333 334 335
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
336
            model.train()
K
Kaipeng Deng 已提交
337 338 339 340 341 342
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

343
                if self.cfg.get('fp16', False):
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
361 362 363 364 365 366

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
367
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
368 369 370 371
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
372 373
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
374
                iter_tic = time.time()
K
Kaipeng Deng 已提交
375

376 377
            # apply ema weight on model
            if self.use_ema:
378
                weight = copy.deepcopy(self.model.state_dict())
379 380
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
381 382
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
383
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
384
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
398
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
399 400
                    self._eval_with_loader(self._eval_loader)

401 402 403 404
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

K
Kaipeng Deng 已提交
405
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
406 407 408
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
409 410
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
411 412
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
413
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
433
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
434 435 436
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
437
    def evaluate(self):
438 439
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
440

C
cnn 已提交
441 442 443 444 445
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
446 447 448 449 450 451
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
452 453
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
454

K
Kaipeng Deng 已提交
455 456 457
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
458 459
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
460 461 462 463
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
464

K
Kaipeng Deng 已提交
465 466
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
467
            for key, value in outs.items():
468 469
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
K
Kaipeng Deng 已提交
470 471 472

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
473

K
Kaipeng Deng 已提交
474 475 476 477
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
478
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
479

480
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
481 482 483 484
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
485 486
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
487 488 489 490
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
491
                    int(im_id), catid2name, draw_threshold)
492
                self.status['result_image'] = np.array(image.copy())
493 494
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
495 496 497 498 499
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
500 501
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
502 503 504 505 506 507 508
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
522
        self.model.eval()
K
Kaipeng Deng 已提交
523 524 525 526 527
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
528 529 530 531 532 533
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
534
            image_shape = inputs_def.get('image_shape', None)
535
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
536
        if image_shape is None:
537
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
538

K
Kaipeng Deng 已提交
539
        self.model.eval()
540
        if hasattr(self.model, 'deploy'): self.model.deploy = True
K
Kaipeng Deng 已提交
541

K
Kaipeng Deng 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]
G
George Ni 已提交
555 556 557 558 559
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
K
Kaipeng Deng 已提交
560 561

        # dy2st and save model
562
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
563 564 565 566 567 568 569 570 571 572 573 574 575
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = self._prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
            logger.info("Export model and saved in {}".format(save_dir))
        else:
576
            self.cfg.slim.save_quantized_model(
577 578 579
                self.model,
                os.path.join(save_dir, 'model'),
                input_spec=input_spec)
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec
G
Guanghua Yu 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))