trainer.py 38.5 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51

52 53
from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients

K
Kaipeng Deng 已提交
54
from ppdet.utils.logger import setup_logger
55
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
56 57 58

__all__ = ['Trainer']

59
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
60

K
Kaipeng Deng 已提交
61 62 63 64 65 66 67

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
68
        self.optimizer = None
69
        self.is_loaded_weights = False
S
shangliang Xu 已提交
70 71
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
K
Kaipeng Deng 已提交
72

G
George Ni 已提交
73
        # build data loader
W
wangguanzhong 已提交
74
        capital_mode = self.mode.capitalize()
75
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
76 77
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
78
        else:
W
wangguanzhong 已提交
79 80
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
81 82 83 84 85

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

86 87 88 89
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
90
        if self.mode == 'train':
W
wangguanzhong 已提交
91
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
92 93 94 95
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
96 97
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
98

F
FlyingQianMM 已提交
99
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
100 101
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
102
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
103

K
Kaipeng Deng 已提交
104
        # build model
105 106 107 108 109
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
110

F
Feng Ni 已提交
111 112 113
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
114 115
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
116

117
        #normalize params for deploy
C
Chang Xu 已提交
118 119 120
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
121 122 123 124 125 126 127
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
128 129
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
130

K
Kaipeng Deng 已提交
131 132 133
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
134 135 136 137 138 139 140 141 142 143 144
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
145
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
146 147 148 149 150

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
151
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
152

M
minghaoBD 已提交
153 154 155 156
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
S
shangliang Xu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170
        if self.use_amp and self.amp_level == 'O2':
            self.model = paddle.amp.decorate(
                models=self.model, level=self.amp_level)
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
                cycle_epoch=cycle_epoch)

W
wangguanzhong 已提交
171 172
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
173

K
Kaipeng Deng 已提交
174 175 176
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
177
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
178 179 180 181 182 183 184 185 186 187 188

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
189
            if self.cfg.get('use_vdl', False):
190
                self._callbacks.append(VisualDLWriter(self))
191 192
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
193 194
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
195 196 197
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
198 199
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
200
            self._compose_callback = ComposeCallback(self._callbacks)
201
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
202 203
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
204 205 206 207
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
208 209
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
210 211
            self._metrics = []
            return
212
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
213
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
214
            # TODO: bias should be unified
W
wangxinxin08 已提交
215
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
216 217
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
218
            save_prediction_only = self.cfg.get('save_prediction_only', False)
219 220 221

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
222 223
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
224 225 226 227 228 229 230

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
231
                dataset = eval_dataset
W
Wenyu 已提交
232 233 234
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
235

236
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
237 238 239 240 241 242 243 244 245 246 247
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
248
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
249 250 251 252 253 254 255 256 257
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
258
                        save_prediction_only=save_prediction_only)
259
                ]
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
289
        elif self.cfg.metric == 'VOC':
290 291 292 293
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

K
Kaipeng Deng 已提交
294 295
            self._metrics = [
                VOCMetric(
296
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
297
                    class_num=self.cfg.num_classes,
298
                    map_type=self.cfg.map_type,
299 300 301
                    classwise=classwise,
                    output_eval=output_eval,
                    save_prediction_only=save_prediction_only)
K
Kaipeng Deng 已提交
302
            ]
303 304 305 306 307 308 309 310 311
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
312 313 314 315
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
316
            save_prediction_only = self.cfg.get('save_prediction_only', False)
317
            self._metrics = [
318 319 320 321 322 323
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
324
            ]
Z
zhiboniu 已提交
325 326 327 328
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
329
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
330
            self._metrics = [
331 332 333 334 335 336
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
337
            ]
G
George Ni 已提交
338 339
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
340
        else:
341
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
342
                self.cfg.metric))
K
Kaipeng Deng 已提交
343 344 345 346 347 348 349
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
350
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
364
    def load_weights(self, weights):
365 366
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
367
        self.start_epoch = 0
368
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
369 370
        logger.debug("Load weights {} to start training".format(weights))

371 372 373 374 375 376 377
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
378
    def resume_weights(self, weights):
379 380 381 382 383
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
384 385
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
386
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
387

K
Kaipeng Deng 已提交
388
    def train(self, validate=False):
K
Kaipeng Deng 已提交
389
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
390
        Init_mark = False
W
wangguanzhong 已提交
391
        if validate:
W
wangguanzhong 已提交
392 393
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
394

395
        model = self.model
396
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
397 398
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
399
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
400

401
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
402
        if self.use_amp:
403 404 405 406
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
407
        if self.cfg.get('fleet', False):
408
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
409
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
410
        elif self._nranks > 1:
G
George Ni 已提交
411 412 413
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
414
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
415

K
Kaipeng Deng 已提交
416 417 418 419 420 421 422 423 424 425 426 427
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
428
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
429 430 431
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
432
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
433

434 435
        self._compose_callback.on_train_begin(self.status)

436 437 438
        use_fused_allreduce_gradients = self.cfg[
            'use_fused_allreduce_gradients'] if 'use_fused_allreduce_gradients' in self.cfg else False

K
Kaipeng Deng 已提交
439
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
440
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
441 442 443
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
444
            model.train()
K
Kaipeng Deng 已提交
445 446 447 448
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
449
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
450
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
451
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
452

S
shangliang Xu 已提交
453
                if self.use_amp:
454 455 456 457
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
F
Feng Ni 已提交
458
                            with paddle.amp.auto_cast(
459 460 461 462 463 464 465 466 467 468 469
                                    enable=self.cfg.use_gpus,
                                    level=self.amp_level):
                                # model forward
                                outputs = model(data)
                                loss = outputs['loss']
                            # model backward
                            scaled_loss = scaler.scale(loss)
                            scaled_loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
F
Feng Ni 已提交
470
                        with paddle.amp.auto_cast(
471 472 473 474 475 476 477
                                enable=self.cfg.use_gpu, level=self.amp_level):
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                        # model backward
                        scaled_loss = scaler.scale(loss)
                        scaled_loss.backward()
478 479
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
480

481
                else:
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
                    if isinstance(
                            model, paddle.
                            DataParallel) and use_fused_allreduce_gradients:
                        with model.no_sync():
                            # model forward
                            outputs = model(data)
                            loss = outputs['loss']
                            # model backward
                            loss.backward()
                        fused_allreduce_gradients(
                            list(model.parameters()), None)
                    else:
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                        # model backward
                        loss.backward()
499
                    self.optimizer.step()
K
Kaipeng Deng 已提交
500 501
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
502 503
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
504 505 506
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
507
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
508 509 510 511
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
512
                if self.use_ema:
S
shangliang Xu 已提交
513
                    self.ema.update()
F
Feng Ni 已提交
514
                iter_tic = time.time()
K
Kaipeng Deng 已提交
515

M
minghaoBD 已提交
516 517
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
518

S
shangliang Xu 已提交
519 520 521 522 523 524 525 526
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
527 528
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
529
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
530 531 532 533 534 535 536
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
537 538 539
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
540 541 542 543
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
544 545 546 547 548 549
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
550

K
Kaipeng Deng 已提交
551
                with paddle.no_grad():
552
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
553 554
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
555 556
            if is_snapshot and self.use_ema:
                # reset original weight
557
                self.model.set_dict(weight)
S
shangliang Xu 已提交
558
                self.status.pop('weight')
559

560 561
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
562
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
563 564 565
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
566 567
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
568
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
569 570 571
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
572
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
573 574 575
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
576 577 578 579 580 581
            if self.use_amp:
                with paddle.amp.auto_cast(
                        enable=self.cfg.use_gpu, level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
582 583 584 585 586

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
587 588 589 590 591
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
592 593 594 595 596 597 598 599 600
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
601
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
602 603 604
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
605
    def evaluate(self):
606 607
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
608

C
cnn 已提交
609 610 611 612
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
613
                save_results=False):
K
Kaipeng Deng 已提交
614 615 616
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
652 653 654
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
655 656
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
657

K
Kaipeng Deng 已提交
658 659 660
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
661
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
662 663
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
664
        results = []
F
Feng Ni 已提交
665
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
666 667 668
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
669

W
Wenyu 已提交
670 671 672
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
673
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
674 675 676 677
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
678
            for key, value in outs.items():
679 680
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
681
            results.append(outs)
W
Wenyu 已提交
682

683 684
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
685 686
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
687

W
Wenyu 已提交
688 689 690 691
        for _m in metrics:
            _m.accumulate()
            _m.reset()

692
        for outs in results:
K
Kaipeng Deng 已提交
693 694
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
695

K
Kaipeng Deng 已提交
696 697 698 699
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
700
                image = ImageOps.exif_transpose(image)
701
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
702

703
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
704 705 706 707
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
708 709
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
710 711 712 713
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
714
                    int(im_id), catid2name, draw_threshold)
715
                self.status['result_image'] = np.array(image.copy())
716 717
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
718 719 720 721 722
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
723

K
Kaipeng Deng 已提交
724 725 726 727 728 729 730 731 732 733 734 735
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
736 737 738 739
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
740
        image_shape = None
741 742
        im_shape = [None, 2]
        scale_factor = [None, 2]
743 744 745 746 747 748
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
749
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
750
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
751
        if image_shape is None:
G
Guanghua Yu 已提交
752
            image_shape = [None, 3, -1, -1]
753

G
Guanghua Yu 已提交
754 755
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
756 757 758
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
759

760
        if hasattr(self.model, 'deploy'):
761
            self.model.deploy = True
S
shangliang Xu 已提交
762

763 764 765 766
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
767

768 769 770 771 772 773
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
774 775 776
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
777 778 779 780 781 782
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
783

K
Kaipeng Deng 已提交
784 785 786 787 788 789 790
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
791
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
792
            "im_shape": InputSpec(
793
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
794
            "scale_factor": InputSpec(
795
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
796
        }]
G
George Ni 已提交
797 798 799 800 801
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
802 803 804 805 806 807 808 809 810 811 812 813
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
814
        # TODO: Hard code, delete it when support prune input_spec.
815
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
816 817 818 819
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
833

G
Guanghua Yu 已提交
834 835 836 837
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
838 839 840 841 842

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
843 844 845 846
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
847

G
Guanghua Yu 已提交
848 849
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
850 851

        # dy2st and save model
852
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
853 854 855 856 857
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
858
            self.cfg.slim.save_quantized_model(
859 860
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
861 862
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
863

G
Guanghua Yu 已提交
864 865 866 867 868 869 870 871 872 873 874 875
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
876
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
877
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
878
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
879 880 881 882 883 884

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
933 934 935
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images