trainer.py 25.6 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24 25 26 27
import numpy as np
from PIL import Image

import paddle
W
wangguanzhong 已提交
28 29
import paddle.distributed as dist
from paddle.distributed import fleet
30
from paddle import amp
K
Kaipeng Deng 已提交
31
from paddle.static import InputSpec
32
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
33 34 35

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
36
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
37
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
G
George Ni 已提交
38
from ppdet.metrics import RBoxMetric, JDEDetMetric
K
Kaipeng Deng 已提交
39
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
40 41
import ppdet.utils.stats as stats

42
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
K
Kaipeng Deng 已提交
43 44 45
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
46
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
47 48 49

__all__ = ['Trainer']

50 51
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
52 53 54 55 56 57 58

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
59
        self.optimizer = None
60
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
61

G
George Ni 已提交
62
        # build data loader
63 64 65 66 67 68 69 70 71
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
72 73 74 75 76 77 78 79
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

F
FlyingQianMM 已提交
80 81 82 83
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
            cfg['FairMOTEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

K
Kaipeng Deng 已提交
84
        # build model
85 86 87 88 89
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
90

91 92
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
93 94
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
95
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
96 97 98 99
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
100

K
Kaipeng Deng 已提交
101 102 103 104 105 106 107 108
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
109 110 111 112 113 114 115 116

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

W
wangguanzhong 已提交
117 118
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
119

K
Kaipeng Deng 已提交
120 121 122
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
123
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
124 125 126 127 128 129 130 131 132 133 134

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
135
            if self.cfg.get('use_vdl', False):
136
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
137 138 139
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
140 141
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
142
            self._compose_callback = ComposeCallback(self._callbacks)
143
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
144 145
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
146 147 148 149
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
150 151
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
152 153
            self._metrics = []
            return
154
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
155
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
156
            # TODO: bias should be unified
157
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
158 159
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
160
            save_prediction_only = self.cfg.get('save_prediction_only', False)
161 162 163

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
164 165
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
166 167 168 169 170 171 172 173 174

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

175
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
W
wangxinxin08 已提交
176 177
            self._metrics = [
                COCOMetric(
178
                    anno_file=anno_file,
K
Kaipeng Deng 已提交
179
                    clsid2catid=clsid2catid,
180
                    classwise=classwise,
S
shangliang Xu 已提交
181
                    output_eval=output_eval,
182
                    bias=bias,
183
                    IouType=IouType,
184
                    save_prediction_only=save_prediction_only)
W
wangxinxin08 已提交
185
            ]
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
215 216 217
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
218
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
219
                    class_num=self.cfg.num_classes,
220 221
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
222
            ]
223 224 225 226 227 228 229 230 231
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
232 233 234 235
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
236
            save_prediction_only = self.cfg.get('save_prediction_only', False)
237
            self._metrics = [
238 239 240 241 242 243
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
244
            ]
Z
zhiboniu 已提交
245 246 247 248
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
249
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
250
            self._metrics = [
251 252 253 254 255 256
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
257
            ]
G
George Ni 已提交
258 259
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
260
        else:
261
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
262
                self.cfg.metric))
K
Kaipeng Deng 已提交
263 264 265 266 267 268 269
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
270
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
284
    def load_weights(self, weights):
285 286
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
287
        self.start_epoch = 0
288
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
289 290
        logger.debug("Load weights {} to start training".format(weights))

291 292 293 294 295 296 297
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
298
    def resume_weights(self, weights):
299 300 301 302 303 304
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
305
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
306

K
Kaipeng Deng 已提交
307
    def train(self, validate=False):
K
Kaipeng Deng 已提交
308
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
309
        Init_mark = False
K
Kaipeng Deng 已提交
310

311
        model = self.model
312
        if self.cfg.get('fleet', False):
313
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
314
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
315
        elif self._nranks > 1:
G
George Ni 已提交
316 317 318 319
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
320 321

        # initial fp16
322
        if self.cfg.get('fp16', False):
323 324
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
325

K
Kaipeng Deng 已提交
326 327 328 329 330 331 332 333 334 335 336 337
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
338 339 340
        if self.cfg.get('print_flops', False):
            self._flops(self.loader)

K
Kaipeng Deng 已提交
341
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
342
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
343 344 345
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
346
            model.train()
K
Kaipeng Deng 已提交
347 348 349 350 351 352
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

353
                if self.cfg.get('fp16', False):
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
371 372 373 374 375 376

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
377
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
378 379 380 381
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
382 383
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
384
                iter_tic = time.time()
K
Kaipeng Deng 已提交
385

386 387
            # apply ema weight on model
            if self.use_ema:
388
                weight = copy.deepcopy(self.model.state_dict())
389 390
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
391 392
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
393
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
394
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
395 396 397 398 399 400 401 402 403 404 405 406
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
407 408 409 410 411 412
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
413
                with paddle.no_grad():
414
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
415 416
                    self._eval_with_loader(self._eval_loader)

417 418 419 420
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

K
Kaipeng Deng 已提交
421
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
422 423 424
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
425 426
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
427 428
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
429
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
449
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
450 451 452
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
453
    def evaluate(self):
454 455
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
456

C
cnn 已提交
457 458 459 460 461
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
462 463 464 465 466 467
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
468 469
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
470

K
Kaipeng Deng 已提交
471 472 473
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
474 475
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
476 477 478 479
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
480

K
Kaipeng Deng 已提交
481 482
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
483
            for key, value in outs.items():
484 485
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
K
Kaipeng Deng 已提交
486 487 488

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
489

K
Kaipeng Deng 已提交
490 491 492 493
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
494
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
495

496
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
497 498 499 500
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
501 502
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
503 504 505 506
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
507
                    int(im_id), catid2name, draw_threshold)
508
                self.status['result_image'] = np.array(image.copy())
509 510
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
511 512 513 514 515
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
516 517
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
518 519 520 521 522 523 524
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
538
        self.model.eval()
K
Kaipeng Deng 已提交
539 540 541 542 543
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
544 545 546 547 548 549
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
550
            image_shape = inputs_def.get('image_shape', None)
551
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
552
        if image_shape is None:
553
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
554

555
        if hasattr(self.model, 'deploy'): self.model.deploy = True
G
Guanghua Yu 已提交
556 557
        if hasattr(self.cfg, 'lite_deploy'):
            self.model.lite_deploy = self.cfg.lite_deploy
K
Kaipeng Deng 已提交
558

K
Kaipeng Deng 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]
G
George Ni 已提交
572 573 574 575 576
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
K
Kaipeng Deng 已提交
577

Z
zhiboniu 已提交
578
        static_model = paddle.jit.to_static(self.model, input_spec=input_spec)
G
Guanghua Yu 已提交
579 580 581
        # NOTE: dy2st do not pruned program, but jit.save will prune program
        # input spec, prune input spec here and save with pruned input spec
        pruned_input_spec = self._prune_input_spec(
Z
zhiboniu 已提交
582 583
            input_spec, static_model.forward.main_program,
            static_model.forward.outputs)
G
Guanghua Yu 已提交
584 585 586

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
587 588 589 590 591
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
592
            self.cfg.slim.save_quantized_model(
593 594
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
595 596
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec
G
Guanghua Yu 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))