未验证 提交 e3ff4417 编写于 作者: G Guanghua Yu 提交者: GitHub

add Distill model and refactor slim (#2445)

* add Distill model
* add distill+prune
上级 7b7b63b1
......@@ -4,33 +4,11 @@
- [剪裁](prune)
- [量化](quant)
- [蒸馏](distill)
- [联合策略](extensions)
推荐您使用剪裁和蒸馏联合训练,或者使用剪裁和量化,进行检测模型压缩。 下面以YOLOv3为例,进行剪裁、蒸馏和量化实验。
## Benchmark
### 剪裁
#### Pascal VOC上benchmark
| 模型 | 压缩策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | 预测时延(SD855)| Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| :----------------| :-------: | :------------: | :-------------: | :------: | :--------: | :------: | :-----------------------------------------------------: |:-------------: | :------: |
| YOLOv3-MobileNetV1 | baseline | 24.13 | 93 | 608 | 289.9ms | 75.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) | - |
| YOLOv3-MobileNetV1 | 剪裁-l1_norm(sensity) | 15.78(-34.49%) | 66(-29%) | 608 | - | 77.6(+2.5) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_voc_prune_l1_norm.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/slim/prune/yolov3_prune_l1_norm.yml) |
### 量化
#### COCO上benchmark
| 模型 | 压缩策略 | 输入尺寸 | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| ------------------ | ------------ | -------- | :---------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| YOLOv3-MobileNetV1 | baseline | 608 | 28.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 普通在线量化 | 608 | 27.5 (-1.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/slim/quant/yolov3_mobilenet_v1_qat.yml) |
| YOLOv3-MobileNetV3 | baseline | 608 | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) | - |
| YOLOv3-MobileNetV3 | PACT在线量化 | 608 | 29.0 (-2.4) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v3_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/slim/quant/yolov3_mobilenet_v3_qat.yml) |
- SD855预测时延为使用PaddleLite部署,使用arm8架构并使用4线程(4 Threads)推理时延
## 实验环境
- Python 3.7+
......@@ -39,6 +17,8 @@
- CUDA 9.0+
- cuDNN >=7.5
**注意:** 量化训练需要依赖Paddle develop分支,可在[PaddlePaddle每日版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev)中下载安装合适的PaddlePaddle版本。
## 快速开始
### 训练
......@@ -84,3 +64,56 @@ python tools/export_model.py -c configs/{MODEL.yml} --slim_config configs/slim/{
- `-c`: 指定模型配置文件。
- `--slim_config`: 指定压缩策略配置文件。
- `-o weights`: 指定压缩算法训好的模型路径。
## Benchmark
### 剪裁
#### Pascal VOC上benchmark
| 模型 | 压缩策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | 预测时延(SD855)| Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| :----------------| :-------: | :------------: | :-------------: | :------: | :--------: | :------: | :-----------------------------------------------------: |:-------------: | :------: |
| YOLOv3-MobileNetV1 | baseline | 24.13 | 93 | 608 | 289.9ms | 75.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) | - |
| YOLOv3-MobileNetV1 | 剪裁-l1_norm(sensity) | 15.78(-34.49%) | 66(-29%) | 608 | - | 77.6(+2.5) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_voc_prune_l1_norm.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/slim/prune/yolov3_prune_l1_norm.yml) |
- 目前剪裁支持YOLO系列、SSD、TTFNet、BlazeFace,其余模型正在开发支持中。
- SD855预测时延为使用PaddleLite部署,使用arm8架构并使用4线程(4 Threads)推理时延。
### 量化
#### COCO上benchmark
| 模型 | 压缩策略 | 输入尺寸 | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| ------------------ | ------------ | -------- | :---------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| YOLOv3-MobileNetV1 | baseline | 608 | 28.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 普通在线量化 | 608 | 30.3 (+1.5) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/yolov3_mobilenet_v1_qat.yml) |
| YOLOv3-MobileNetV3 | baseline | 608 | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) | - |
| YOLOv3-MobileNetV3 | PACT在线量化 | 608 | 29.5 (-1.9) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v3_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/yolov3_mobilenet_v3_qat.yml) |
| YOLOv3-DarkNet53 | baseline | 608 | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) | - |
| YOLOv3-DarkNet53 | 普通在线量化 | 608 | 38.7 (-0.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_darknet_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/yolov3_darknet_qat.yml) |
| SSD-MobileNet_v1 | baseline | 300 | 73.8 | [下载链接](https://paddledet.bj.bcebos.com/models/ssd_mobilenet_v1_300_120e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ssd/ssd_mobilenet_v1_300_120e_voc.yml) | - |
| SSD-MobileNet_v1 | 普通在线量化 | 300 | 73.1(-0.7) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/ssd_mobilenet_v1_300_voc_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ssd/ssd_mobilenet_v1_300_120e_voc.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/ssd_mobilenet_v1_qat.yml) |
| Mask-ResNet50-FPN | baseline | (800, 1333) | 39.2/35.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml) | - |
| Mask-ResNet50-FPN | 普通在线量化 | (800, 1333) | 39.7(+0.5)/35.9(+0.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/mask_rcnn_r50_fpn_1x_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/mask_rcnn_r50_fpn_1x_qat.yml) |
### 蒸馏
#### COCO上benchmark
| 模型 | 压缩策略 | 输入尺寸 | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| ------------------ | ------------ | -------- | :---------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| YOLOv3-MobileNetV1 | baseline | 608 | 28.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 蒸馏 | 608 | 29.0 | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_distill.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/distill/yolov3_mobilenet_v1_coco_distill.yml) |
- 具体蒸馏方法请参考[蒸馏策略文档](distill/README.md)
### 蒸馏剪裁联合策略
#### COCO上benchmark
| 模型 | 压缩策略 | 输入尺寸 | GFLOPs | 模型体积(MB) | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| ------------------ | ------------ | -------- | :---------: |:---------: | :---------: |:----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| YOLOv3-MobileNetV1 | baseline | 608 | 24.65 | 94.6 | 28.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 蒸馏+剪裁 | 608 | 7.54(-69.4%) | 32.0(-66.0%) | 28.7(-0.1) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_distill.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/extensions/yolov3_mobilenet_v1_coco_distill_prune.yml) |
# Distillation(蒸馏)
## YOLOv3模型蒸馏
以YOLOv3-MobileNetV1为例,使用YOLOv3-ResNet34作为蒸馏训练的teacher网络, 对YOLOv3-MobileNetV1结构的student网络进行蒸馏。
COCO数据集作为目标检测任务的训练目标难度更大,意味着teacher网络会预测出更多的背景bbox,如果直接用teacher的预测输出作为student学习的`soft label`会有严重的类别不均衡问题。解决这个问题需要引入新的方法,详细背景请参考论文:[Object detection at 200 Frames Per Second](https://arxiv.org/abs/1805.06361)
为了确定蒸馏的对象,我们首先需要找到student和teacher网络得到的`x,y,w,h,cls,objness`等Tensor,用teacher得到的结果指导student训练。具体实现可参考[代码](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/ppdet/slim/distill.py)
## Citations
```
@article{mehta2018object,
title={Object detection at 200 Frames Per Second},
author={Rakesh Mehta and Cemalettin Ozturk},
year={2018},
eprint={1805.06361},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
_BASE_: [
'../../yolov3/yolov3_r34_270e_coco.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams
slim: Distill
distill_loss: DistillYOLOv3Loss
DistillYOLOv3Loss:
weight: 1000
_BASE_: [
'../../yolov3/yolov3_r34_270e_coco.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams
slim: DistillPrune
distill_loss: DistillYOLOv3Loss
DistillYOLOv3Loss:
weight: 1000
pruner: Pruner
Pruner:
criterion: l1_norm
pruned_params: ['conv2d_27.w_0', 'conv2d_28.w_0', 'conv2d_29.w_0',
'conv2d_30.w_0', 'conv2d_31.w_0', 'conv2d_32.w_0',
'conv2d_34.w_0', 'conv2d_35.w_0', 'conv2d_36.w_0',
'conv2d_37.w_0', 'conv2d_38.w_0', 'conv2d_39.w_0',
'conv2d_41.w_0', 'conv2d_42.w_0', 'conv2d_43.w_0',
'conv2d_44.w_0', 'conv2d_45.w_0', 'conv2d_46.w_0']
pruned_ratios: [0.5,0.5,0.5,0.5,0.5,0.5,0.7,0.7,0.7,0.7,0.7,0.7,0.8,0.8,0.8,0.8,0.8,0.8]
......@@ -5,11 +5,11 @@ slim: Pruner
Pruner:
criterion: fpgm
pruned_params: ['yolo_block.0.0.0.conv.weights', 'yolo_block.0.0.1.conv.weights', 'yolo_block.0.1.0.conv.weights',
'yolo_block.0.1.1.conv.weights', 'yolo_block.0.2.conv.weights', 'yolo_block.0.tip.conv.weights',
'yolo_block.1.0.0.conv.weights', 'yolo_block.1.0.1.conv.weights', 'yolo_block.1.1.0.conv.weights',
'yolo_block.1.1.1.conv.weights', 'yolo_block.1.2.conv.weights', 'yolo_block.1.tip.conv.weights',
'yolo_block.2.0.0.conv.weights', 'yolo_block.2.0.1.conv.weights', 'yolo_block.2.1.0.conv.weights',
'yolo_block.2.1.1.conv.weights', 'yolo_block.2.2.conv.weights', 'yolo_block.2.tip.conv.weights']
pruned_params: ['conv2d_27.w_0', 'conv2d_28.w_0', 'conv2d_29.w_0',
'conv2d_30.w_0', 'conv2d_31.w_0', 'conv2d_32.w_0',
'conv2d_34.w_0', 'conv2d_35.w_0', 'conv2d_36.w_0',
'conv2d_37.w_0', 'conv2d_38.w_0', 'conv2d_39.w_0',
'conv2d_41.w_0', 'conv2d_42.w_0', 'conv2d_43.w_0',
'conv2d_44.w_0', 'conv2d_45.w_0', 'conv2d_46.w_0']
pruned_ratios: [0.1,0.2,0.2,0.2,0.2,0.1,0.2,0.3,0.3,0.3,0.2,0.1,0.3,0.4,0.4,0.4,0.4,0.3]
print_params: False
......@@ -5,11 +5,11 @@ slim: Pruner
Pruner:
criterion: l1_norm
pruned_params: ['yolo_block.0.0.0.conv.weights', 'yolo_block.0.0.1.conv.weights', 'yolo_block.0.1.0.conv.weights',
'yolo_block.0.1.1.conv.weights', 'yolo_block.0.2.conv.weights', 'yolo_block.0.tip.conv.weights',
'yolo_block.1.0.0.conv.weights', 'yolo_block.1.0.1.conv.weights', 'yolo_block.1.1.0.conv.weights',
'yolo_block.1.1.1.conv.weights', 'yolo_block.1.2.conv.weights', 'yolo_block.1.tip.conv.weights',
'yolo_block.2.0.0.conv.weights', 'yolo_block.2.0.1.conv.weights', 'yolo_block.2.1.0.conv.weights',
'yolo_block.2.1.1.conv.weights', 'yolo_block.2.2.conv.weights', 'yolo_block.2.tip.conv.weights']
pruned_params: ['conv2d_27.w_0', 'conv2d_28.w_0', 'conv2d_29.w_0',
'conv2d_30.w_0', 'conv2d_31.w_0', 'conv2d_32.w_0',
'conv2d_34.w_0', 'conv2d_35.w_0', 'conv2d_36.w_0',
'conv2d_37.w_0', 'conv2d_38.w_0', 'conv2d_39.w_0',
'conv2d_41.w_0', 'conv2d_42.w_0', 'conv2d_43.w_0',
'conv2d_44.w_0', 'conv2d_45.w_0', 'conv2d_46.w_0']
pruned_ratios: [0.1,0.2,0.2,0.2,0.2,0.1,0.2,0.3,0.3,0.3,0.2,0.1,0.3,0.4,0.4,0.4,0.4,0.3]
print_params: False
......@@ -9,27 +9,30 @@
| DarkNet53(paper) | 608 | 8 | 270e | ---- | 33.0 | - | - |
| DarkNet53(paper) | 416 | 8 | 270e | ---- | 31.0 | - | - |
| DarkNet53(paper) | 320 | 8 | 270e | ---- | 28.2 | - | - |
| DarkNet53 | 608 | 8 | 270e | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_darknet53_270e_coco.yml) |
| DarkNet53 | 416 | 8 | 270e | ---- | 37.5 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_darknet53_270e_coco.yml) |
| DarkNet53 | 320 | 8 | 270e | ---- | 34.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_darknet53_270e_coco.yml) |
| ResNet50_vd | 608 | 8 | 270e | ---- | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_r50vd_dcn_270e_coco.yml) |
| MobileNet-V1 | 608 | 8 | 270e | ---- | 28.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V1 | 416 | 8 | 270e | ---- | 28.7 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V1 | 320 | 8 | 270e | ---- | 26.5 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V3 | 608 | 8 | 270e | ---- | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) |
| MobileNet-V3 | 416 | 8 | 270e | ---- | 29.7 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) |
| MobileNet-V3 | 320 | 8 | 270e | ---- | 26.9 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) |
| DarkNet53 | 608 | 8 | 270e | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) |
| DarkNet53 | 416 | 8 | 270e | ---- | 37.5 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) |
| DarkNet53 | 320 | 8 | 270e | ---- | 34.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) |
| ResNet50_vd | 608 | 8 | 270e | ---- | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r50vd_dcn_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_r50vd_dcn_270e_coco.yml) |
| ResNet34 | 608 | 8 | 270e | ---- | 36.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_r34_270e_coco.yml) |
| ResNet34 | 416 | 8 | 270e | ---- | 34.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_r34_270e_coco.yml) |
| ResNet34 | 320 | 8 | 270e | ---- | 31.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_r34_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_r34_270e_coco.yml) |
| MobileNet-V1 | 608 | 8 | 270e | ---- | 28.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V1 | 416 | 8 | 270e | ---- | 28.7 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V1 | 320 | 8 | 270e | ---- | 26.5 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) |
| MobileNet-V3 | 608 | 8 | 270e | ---- | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) |
| MobileNet-V3 | 416 | 8 | 270e | ---- | 29.7 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) |
| MobileNet-V3 | 320 | 8 | 270e | ---- | 26.9 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) |
### YOLOv3 on Pasacl VOC
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | 下载 | 配置文件 |
| :----------- | :--: | :-----: | :-----: |:------------: |:----: | :-------: | :----: |
| MobileNet-V1 | 608 | 8 | 270e | - | 75.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V1 | 416 | 8 | 270e | - | 76.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V1 | 320 | 8 | 270e | - | 73.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V3 | 608 | 8 | 270e | - | 79.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v3_large_270e_voc.yml) |
| MobileNet-V3 | 416 | 8 | 270e | - | 78.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v3_large_270e_voc.yml) |
| MobileNet-V3 | 320 | 8 | 270e | - | 76.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/yolov3_mobilenet_v3_large_270e_voc.yml) |
| MobileNet-V1 | 608 | 8 | 270e | - | 75.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V1 | 416 | 8 | 270e | - | 76.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V1 | 320 | 8 | 270e | - | 73.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) |
| MobileNet-V3 | 608 | 8 | 270e | - | 79.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_voc.yml) |
| MobileNet-V3 | 416 | 8 | 270e | - | 78.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_voc.yml) |
| MobileNet-V3 | 320 | 8 | 270e | - | 76.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_voc.yml) |
**注意:** YOLOv3均使用8GPU训练,训练270个epoch
......
architecture: YOLOv3
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet34_pretrained.pdparams
norm_type: sync_bn
YOLOv3:
backbone: ResNet
neck: YOLOv3FPN
yolo_head: YOLOv3Head
post_process: BBoxPostProcess
ResNet:
depth: 34
return_idx: [1, 2, 3]
freeze_at: -1
freeze_norm: false
norm_decay: 0.
YOLOv3Head:
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
loss: YOLOv3Loss
YOLOv3Loss:
ignore_thresh: 0.7
downsample: [32, 16, 8]
label_smooth: false
BBoxPostProcess:
decode:
name: YOLOBox
conf_thresh: 0.005
downsample_ratio: 32
clip_bbox: true
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.01
nms_threshold: 0.45
nms_top_k: 1000
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_270e.yml',
'_base_/yolov3_r34.yml',
'_base_/yolov3_reader.yml',
]
snapshot_epoch: 5
weights: output/yolov3_r34_270e_coco/model_final
......@@ -146,13 +146,17 @@ class Checkpointer(Callback):
self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
self.save_dir = os.path.join(self.model.cfg.save_dir,
self.model.cfg.filename)
if hasattr(self.model.model, 'student_model'):
self.weight = self.model.model.student_model
else:
self.weight = self.model.model
if self.use_ema:
self.ema = ModelEMA(
cfg['ema_decay'], self.model.model, use_thres_step=True)
cfg['ema_decay'], self.weight, use_thres_step=True)
def on_step_end(self, status):
if self.use_ema:
self.ema.update(self.model.model)
self.ema.update(self.weight)
def on_epoch_end(self, status):
# Checkpointer only performed during training
......@@ -169,7 +173,7 @@ class Checkpointer(Callback):
if self.use_ema:
weight = self.ema.apply()
else:
weight = self.model.model
weight = self.weight
elif mode == 'eval':
if 'save_best_model' in status and status['save_best_model']:
for metric in self.model._metrics:
......@@ -181,7 +185,7 @@ class Checkpointer(Callback):
if self.use_ema:
weight = self.ema.apply()
else:
weight = self.model.model
weight = self.weight
logger.info("Best test {} ap is {:0.3f}.".format(
key, self.best_ap))
if weight:
......
......@@ -52,17 +52,14 @@ class Trainer(object):
"mode should be 'train', 'eval' or 'test'"
self.mode = mode.lower()
self.optimizer = None
self.slim = None
self.is_loaded_weights = False
# build model
self.model = create(cfg.architecture)
# model slim build
if 'slim' in cfg and cfg.slim:
if self.mode == 'train':
self.load_weights(cfg.pretrain_weights)
self.slim = create(cfg.slim)
self.slim(self.model)
if 'model' not in self.cfg:
self.model = create(cfg.architecture)
else:
self.model = self.cfg.model
self.is_loaded_weights = True
# build data loader
self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]
......@@ -192,12 +189,19 @@ class Trainer(object):
self._metrics.extend(metrics)
def load_weights(self, weights):
if self.is_loaded_weights:
return
self.start_epoch = 0
load_pretrain_weight(self.model, weights)
logger.debug("Load weights {} to start training".format(weights))
def resume_weights(self, weights):
self.start_epoch = load_weight(self.model, weights, self.optimizer)
# support Distill resume weights
if hasattr(self.model, 'student_model'):
self.start_epoch = load_weight(self.model.student_model, weights,
self.optimizer)
else:
self.start_epoch = load_weight(self.model, weights, self.optimizer)
logger.debug("Resume weights of epoch {}".format(self.start_epoch))
def train(self, validate=False):
......@@ -419,7 +423,7 @@ class Trainer(object):
}]
# dy2st and save model
if self.slim is None or self.cfg['slim'] != 'QAT':
if 'slim' not in self.cfg or self.cfg['slim'] != 'QAT':
static_model = paddle.jit.to_static(
self.model, input_spec=input_spec)
# NOTE: dy2st do not pruned program, but jit.save will prune program
......@@ -433,7 +437,7 @@ class Trainer(object):
input_spec=pruned_input_spec)
logger.info("Export model and saved in {}".format(save_dir))
else:
self.slim.save_quantized_model(
self.cfg.slim.save_quantized_model(
self.model,
os.path.join(save_dir, 'model'),
input_spec=input_spec)
......
......@@ -46,7 +46,6 @@ class ConvBNLayer(nn.Layer):
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(name=name + '.conv.weights'),
data_format=data_format,
bias_attr=False)
self.batch_norm = batch_norm(
......
......@@ -55,14 +55,11 @@ class ConvBNLayer(nn.Layer):
weight_attr=ParamAttr(
learning_rate=conv_lr,
initializer=KaimingNormal(),
regularizer=L2Decay(conv_decay),
name=name + "_weights"),
regularizer=L2Decay(conv_decay)),
bias_attr=False)
param_attr = ParamAttr(
name=name + "_bn_scale", regularizer=L2Decay(norm_decay))
bias_attr = ParamAttr(
name=name + "_bn_offset", regularizer=L2Decay(norm_decay))
param_attr = ParamAttr(regularizer=L2Decay(norm_decay))
bias_attr = ParamAttr(regularizer=L2Decay(norm_decay))
if norm_type == 'sync_bn':
self._batch_norm = nn.SyncBatchNorm(
out_channels, weight_attr=param_attr, bias_attr=bias_attr)
......@@ -72,9 +69,7 @@ class ConvBNLayer(nn.Layer):
act=None,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=False,
moving_mean_name=name + '_bn_mean',
moving_variance_name=name + '_bn_variance')
use_global_stats=False)
def forward(self, x):
x = self._conv(x)
......
......@@ -64,7 +64,7 @@ class ConvNormLayer(nn.Layer):
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=paddle.ParamAttr(
learning_rate=lr, name=name + "_weights"),
learning_rate=lr, ),
bias_attr=False)
else:
self.conv = DeformableConvV2(
......@@ -75,7 +75,7 @@ class ConvNormLayer(nn.Layer):
padding=(filter_size - 1) // 2,
groups=groups,
weight_attr=paddle.ParamAttr(
learning_rate=lr, name=name + '_weights'),
learning_rate=lr, ),
bias_attr=False,
name=name)
......@@ -84,12 +84,10 @@ class ConvNormLayer(nn.Layer):
param_attr = paddle.ParamAttr(
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay),
name=bn_name + "_scale",
trainable=False if freeze_norm else True)
bias_attr = paddle.ParamAttr(
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay),
name=bn_name + "_offset",
trainable=False if freeze_norm else True)
global_stats = True if freeze_norm else False
......@@ -102,9 +100,7 @@ class ConvNormLayer(nn.Layer):
act=None,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats,
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
use_global_stats=global_stats)
norm_params = self.norm.parameters()
if freeze_norm:
......
......@@ -56,9 +56,7 @@ class YOLOv3Head(nn.Layer):
stride=1,
padding=0,
data_format=data_format,
weight_attr=ParamAttr(name=name + '.conv.weights'),
bias_attr=ParamAttr(
name=name + '.conv.bias', regularizer=L2Decay(0.))))
bias_attr=ParamAttr(regularizer=L2Decay(0.))))
self.yolo_outputs.append(yolo_output)
def parse_anchor(self, anchors, anchor_masks):
......
......@@ -54,6 +54,7 @@ class YOLOv3Loss(nn.Layer):
self.scale_x_y = scale_x_y
self.iou_loss = iou_loss
self.iou_aware_loss = iou_aware_loss
self.distill_pairs = []
def obj_loss(self, pbox, gbox, pobj, tobj, anchor, downsample):
# pbox
......@@ -108,6 +109,7 @@ class YOLOv3Loss(nn.Layer):
x, y = p[:, :, :, :, 0:1], p[:, :, :, :, 1:2]
w, h = p[:, :, :, :, 2:3], p[:, :, :, :, 3:4]
obj, pcls = p[:, :, :, :, 4:5], p[:, :, :, :, 5:]
self.distill_pairs.append([x, y, w, h, obj, pcls])
t = t.transpose((0, 1, 3, 4, 2))
tx, ty = t[:, :, :, :, 0:1], t[:, :, :, :, 1:2]
......@@ -173,6 +175,7 @@ class YOLOv3Loss(nn.Layer):
gt_targets = [targets['target{}'.format(i)] for i in range(np)]
gt_box = targets['gt_bbox']
yolo_losses = dict()
self.distill_pairs.clear()
for x, t, anchor, downsample in zip(inputs, gt_targets, anchors,
self.downsample):
yolo_loss = self.yolov3_loss(x, t, gt_box, anchor, downsample,
......
......@@ -59,11 +59,8 @@ def batch_norm(ch,
return batch_norm(
ch,
weight_attr=ParamAttr(
name=bn_name + '.scale',
initializer=initializer,
regularizer=L2Decay(norm_decay)),
bias_attr=ParamAttr(
name=bn_name + '.offset', regularizer=L2Decay(norm_decay)),
initializer=initializer, regularizer=L2Decay(norm_decay)),
bias_attr=ParamAttr(regularizer=L2Decay(norm_decay)),
data_format=data_format)
......
......@@ -14,6 +14,47 @@
from . import prune
from . import quant
from . import distill
from .prune import *
from .quant import *
from .distill import *
import yaml
from ppdet.core.workspace import load_config
from ppdet.utils.checkpoint import load_pretrain_weight
def build_slim_model(cfg, slim_cfg, mode='train'):
with open(slim_cfg) as f:
slim_load_cfg = yaml.load(f, Loader=yaml.Loader)
if mode != 'train' and slim_load_cfg['slim'] == 'Distill':
return cfg
if slim_load_cfg['slim'] == 'Distill':
model = DistillModel(cfg, slim_cfg)
cfg['model'] = model
elif slim_load_cfg['slim'] == 'DistillPrune':
if mode == 'train':
model = DistillModel(cfg, slim_cfg)
pruner = create(cfg.pruner)
pruner(model.student_model)
else:
model = create(cfg.architecture)
weights = cfg.weights
load_config(slim_cfg)
pruner = create(cfg.pruner)
model = pruner(model)
load_pretrain_weight(model, weights)
cfg['model'] = model
else:
load_config(slim_cfg)
model = create(cfg.architecture)
if mode == 'train':
load_pretrain_weight(model, cfg.pretrain_weights)
slim = create(cfg.slim)
cfg['model'] = slim(model)
if mode != 'train':
load_pretrain_weight(cfg['model'], cfg.weights)
return cfg
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable, load_config
from ppdet.core.workspace import create
from ppdet.utils.logger import setup_logger
from ppdet.modeling import ops
from ppdet.utils.checkpoint import load_pretrain_weight
from ppdet.modeling.losses import YOLOv3Loss
logger = setup_logger(__name__)
class DistillModel(nn.Layer):
def __init__(self, cfg, slim_cfg):
super(DistillModel, self).__init__()
self.student_model = create(cfg.architecture)
logger.debug('Load student model pretrain_weights:{}'.format(
cfg.pretrain_weights))
load_pretrain_weight(self.student_model, cfg.pretrain_weights)
slim_cfg = load_config(slim_cfg)
self.teacher_model = create(slim_cfg.architecture)
self.distill_loss = create(slim_cfg.distill_loss)
logger.debug('Load teacher model pretrain_weights:{}'.format(
slim_cfg.pretrain_weights))
load_pretrain_weight(self.teacher_model, slim_cfg.pretrain_weights)
for param in self.teacher_model.parameters():
param.trainable = False
def parameters(self):
return self.student_model.parameters()
def forward(self, inputs):
if self.training:
teacher_loss = self.teacher_model(inputs)
student_loss = self.student_model(inputs)
loss = self.distill_loss(self.teacher_model, self.student_model)
student_loss['distill_loss'] = loss
student_loss['teacher_loss'] = teacher_loss['loss']
student_loss['loss'] += student_loss['distill_loss']
return student_loss
else:
return self.student_model(inputs)
@register
class DistillYOLOv3Loss(nn.Layer):
def __init__(self, weight=1000):
super(DistillYOLOv3Loss, self).__init__()
self.weight = weight
def obj_weighted_reg(self, sx, sy, sw, sh, tx, ty, tw, th, tobj):
loss_x = ops.sigmoid_cross_entropy_with_logits(sx, F.sigmoid(tx))
loss_y = ops.sigmoid_cross_entropy_with_logits(sy, F.sigmoid(ty))
loss_w = paddle.abs(sw - tw)
loss_h = paddle.abs(sh - th)
loss = paddle.add_n([loss_x, loss_y, loss_w, loss_h])
weighted_loss = paddle.mean(loss * F.sigmoid(tobj))
return weighted_loss
def obj_weighted_cls(self, scls, tcls, tobj):
loss = ops.sigmoid_cross_entropy_with_logits(scls, F.sigmoid(tcls))
weighted_loss = paddle.mean(paddle.multiply(loss, F.sigmoid(tobj)))
return weighted_loss
def obj_loss(self, sobj, tobj):
obj_mask = paddle.cast(tobj > 0., dtype="float32")
obj_mask.stop_gradient = True
loss = paddle.mean(
ops.sigmoid_cross_entropy_with_logits(sobj, obj_mask))
return loss
def forward(self, teacher_model, student_model):
teacher_distill_pairs = teacher_model.yolo_head.loss.distill_pairs
student_distill_pairs = student_model.yolo_head.loss.distill_pairs
distill_reg_loss, distill_cls_loss, distill_obj_loss = [], [], []
for s_pair, t_pair in zip(student_distill_pairs, teacher_distill_pairs):
distill_reg_loss.append(
self.obj_weighted_reg(s_pair[0], s_pair[1], s_pair[2], s_pair[
3], t_pair[0], t_pair[1], t_pair[2], t_pair[3], t_pair[4]))
distill_cls_loss.append(
self.obj_weighted_cls(s_pair[5], t_pair[5], t_pair[4]))
distill_obj_loss.append(self.obj_loss(s_pair[4], t_pair[4]))
distill_reg_loss = paddle.add_n(distill_reg_loss)
distill_cls_loss = paddle.add_n(distill_cls_loss)
distill_obj_loss = paddle.add_n(distill_obj_loss)
loss = (distill_reg_loss + distill_cls_loss + distill_obj_loss
) * self.weight
return loss
......@@ -178,6 +178,38 @@ def load_pretrain_weight(model, pretrain_weight):
logger.info('Finish loading model weights: {}'.format(weights_path))
def load_static_pretrain_weight(model, pretrain_weight):
if is_url(pretrain_weight):
pretrain_weight = get_weights_path_dist(pretrain_weight)
path = _strip_postfix(pretrain_weight)
if not (os.path.isdir(path) or os.path.isfile(path) or
os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path `{}` does not exists. "
"If you don't want to load pretrain model, "
"please delete `pretrain_weights` field in "
"config file.".format(path))
model_dict = model.state_dict()
pre_state_dict = paddle.static.load_program_state(path)
param_state_dict = {}
for key in model_dict.keys():
weight_name = model_dict[key].name
if weight_name in pre_state_dict.keys():
logger.info('Load weight: {}, shape: {}'.format(
weight_name, pre_state_dict[weight_name].shape))
param_state_dict[key] = pre_state_dict[weight_name]
else:
if 'backbone' in key:
logger.info('Lack weight: {}, structure name: {}'.format(
weight_name, key))
param_state_dict[key] = model_dict[key]
model.set_dict(param_state_dict)
return
def save_model(model, optimizer, save_dir, save_name, last_epoch):
"""
save model into disk.
......
......@@ -33,6 +33,7 @@ from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.engine import Trainer, init_parallel_env
from ppdet.metrics.coco_utils import json_eval_results
from ppdet.slim import build_slim_model
from ppdet.utils.logger import setup_logger
logger = setup_logger('eval')
......@@ -100,22 +101,22 @@ def run(FLAGS, cfg):
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
# TODO: bias should be unified
cfg['bias'] = 1 if FLAGS.bias else 0
cfg['classwise'] = True if FLAGS.classwise else False
cfg['output_eval'] = FLAGS.output_eval
merge_config(FLAGS.opt)
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
if FLAGS.slim_config:
slim_cfg = load_config(FLAGS.slim_config)
merge_config(slim_cfg)
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='eval')
check_config(cfg)
check_gpu(cfg.use_gpu)
check_version()
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
run(FLAGS, cfg)
......
......@@ -31,6 +31,7 @@ from ppdet.core.workspace import load_config, merge_config
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.engine import Trainer
from ppdet.slim import build_slim_model
from ppdet.utils.logger import setup_logger
logger = setup_logger('export_model')
......@@ -84,15 +85,15 @@ def run(FLAGS, cfg):
def main():
paddle.set_device("cpu")
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
# TODO: to be refined in the future
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn':
FLAGS.opt['norm_type'] = 'bn'
merge_config(FLAGS.opt)
if FLAGS.slim_config:
slim_cfg = load_config(FLAGS.slim_config)
merge_config(slim_cfg)
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
check_config(cfg)
check_gpu(cfg.use_gpu)
check_version()
......
......@@ -31,6 +31,7 @@ from ppdet.core.workspace import load_config, merge_config
from ppdet.engine import Trainer
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.slim import build_slim_model
from ppdet.utils.logger import setup_logger
logger = setup_logger('train')
......@@ -127,19 +128,20 @@ def run(FLAGS, cfg):
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
cfg['use_vdl'] = FLAGS.use_vdl
cfg['vdl_log_dir'] = FLAGS.vdl_log_dir
merge_config(FLAGS.opt)
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
if FLAGS.slim_config:
slim_cfg = load_config(FLAGS.slim_config)
merge_config(slim_cfg)
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
check_config(cfg)
check_gpu(cfg.use_gpu)
check_version()
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
run(FLAGS, cfg)
......
......@@ -33,6 +33,7 @@ import paddle
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
from ppdet.engine import Trainer, init_parallel_env, set_random_seed, init_fleet_env
from ppdet.slim import build_slim_model
import ppdet.utils.cli as cli
import ppdet.utils.check as check
......@@ -98,7 +99,7 @@ def run(FLAGS, cfg):
# load weights
if FLAGS.resume is not None:
trainer.resume_weights(FLAGS.resume)
elif not FLAGS.slim_config and 'pretrain_weights' in cfg and cfg.pretrain_weights:
elif 'pretrain_weights' in cfg and cfg.pretrain_weights:
trainer.load_weights(cfg.pretrain_weights)
# training
......@@ -107,22 +108,22 @@ def run(FLAGS, cfg):
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
cfg['fp16'] = FLAGS.fp16
cfg['fleet'] = FLAGS.fleet
cfg['use_vdl'] = FLAGS.use_vdl
cfg['vdl_log_dir'] = FLAGS.vdl_log_dir
merge_config(FLAGS.opt)
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
if FLAGS.slim_config:
slim_cfg = load_config(FLAGS.slim_config)
merge_config(slim_cfg)
cfg = build_slim_model(cfg, FLAGS.slim_config)
check.check_config(cfg)
check.check_gpu(cfg.use_gpu)
check.check_version()
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
run(FLAGS, cfg)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册