trainer.py 35.0 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
35
from paddle import amp
K
Kaipeng Deng 已提交
36
from paddle.static import InputSpec
37
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
38 39 40

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
41
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
42
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
43 44
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
45
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
46
import ppdet.utils.stats as stats
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51 52

from ppdet.utils.logger import setup_logger
53
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
54 55 56

__all__ = ['Trainer']

57
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
58

K
Kaipeng Deng 已提交
59 60 61 62 63 64 65

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
66
        self.optimizer = None
67
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
68

G
George Ni 已提交
69
        # build data loader
W
wangguanzhong 已提交
70
        capital_mode = self.mode.capitalize()
71
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
72 73
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
74
        else:
W
wangguanzhong 已提交
75 76
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
77 78 79 80 81

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

82 83 84 85
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
86
        if self.mode == 'train':
W
wangguanzhong 已提交
87
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
88 89 90 91
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
92 93
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
94

F
FlyingQianMM 已提交
95
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
96 97
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
98
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
99

K
Kaipeng Deng 已提交
100
        # build model
101 102 103 104 105
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
106

F
Feng Ni 已提交
107 108 109
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
110 111
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
112

113
        #normalize params for deploy
C
Chang Xu 已提交
114 115 116
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
117 118 119 120 121 122 123
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
124 125
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
126

127 128
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
129 130
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
F
Feng Ni 已提交
131
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
132
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
133 134
                self.model,
                decay=ema_decay,
F
Feng Ni 已提交
135
                ema_decay_type=ema_decay_type,
G
Guanghua Yu 已提交
136
                cycle_epoch=cycle_epoch)
137

K
Kaipeng Deng 已提交
138 139 140
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
141 142 143 144 145 146 147 148 149 150 151
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
152
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
153 154 155 156 157

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
158
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
159

M
minghaoBD 已提交
160 161 162 163
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
164

W
wangguanzhong 已提交
165 166
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
167

K
Kaipeng Deng 已提交
168 169 170
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
171
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
172 173 174 175 176 177 178 179 180 181 182

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
183
            if self.cfg.get('use_vdl', False):
184
                self._callbacks.append(VisualDLWriter(self))
185 186
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
187 188
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
189 190 191
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
192 193
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
194
            self._compose_callback = ComposeCallback(self._callbacks)
195
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
196 197
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
198 199 200 201
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
202 203
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
204 205
            self._metrics = []
            return
206
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
207
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
208
            # TODO: bias should be unified
W
wangxinxin08 已提交
209
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
210 211
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
212
            save_prediction_only = self.cfg.get('save_prediction_only', False)
213 214 215

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
216 217
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
218 219 220 221

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
222
            dataset = self.dataset
223 224 225 226
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
227
                dataset = eval_dataset
228

229
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
230 231 232 233 234 235 236 237 238 239 240
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
241
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
242 243 244 245 246 247 248 249 250
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
251
                        save_prediction_only=save_prediction_only)
252
                ]
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
282 283 284
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
285
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
286
                    class_num=self.cfg.num_classes,
287 288
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
289
            ]
290 291 292 293 294 295 296 297 298
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
299 300 301 302
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
303
            save_prediction_only = self.cfg.get('save_prediction_only', False)
304
            self._metrics = [
305 306 307 308 309 310
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
311
            ]
Z
zhiboniu 已提交
312 313 314 315
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
316
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
317
            self._metrics = [
318 319 320 321 322 323
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
324
            ]
G
George Ni 已提交
325 326
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
327
        else:
328
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
329
                self.cfg.metric))
K
Kaipeng Deng 已提交
330 331 332 333 334 335 336
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
337
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
351
    def load_weights(self, weights):
352 353
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
354
        self.start_epoch = 0
355
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
356 357
        logger.debug("Load weights {} to start training".format(weights))

358 359 360 361 362 363 364
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
365
    def resume_weights(self, weights):
366 367 368 369 370
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
371 372
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
373
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
374

K
Kaipeng Deng 已提交
375
    def train(self, validate=False):
K
Kaipeng Deng 已提交
376
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
377
        Init_mark = False
W
wangguanzhong 已提交
378
        if validate:
W
wangguanzhong 已提交
379 380
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
381

382
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
383 384
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
385 386
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
387

388
        model = self.model
389
        if self.cfg.get('fleet', False):
390
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
391
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
392
        elif self._nranks > 1:
G
George Ni 已提交
393 394 395 396
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
397

W
Wenyu 已提交
398 399
        # enabel auto mixed precision mode
        if self.cfg.get('amp', False):
400
            scaler = amp.GradScaler(
401 402
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=1024)
K
Kaipeng Deng 已提交
403

K
Kaipeng Deng 已提交
404 405 406 407 408 409 410 411 412 413 414 415
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
416
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
417 418 419
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
420
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
421

422 423
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
424
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
425
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
426 427 428
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
429
            model.train()
K
Kaipeng Deng 已提交
430 431 432 433
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
434
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
435
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
436
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
437

W
Wenyu 已提交
438
                if self.cfg.get('amp', False):
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
456 457
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
458 459
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
460 461 462
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
463
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
464 465 466 467
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
468
                if self.use_ema:
S
shangliang Xu 已提交
469
                    self.ema.update()
F
Feng Ni 已提交
470
                iter_tic = time.time()
K
Kaipeng Deng 已提交
471

M
minghaoBD 已提交
472 473
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
474

S
shangliang Xu 已提交
475 476 477 478 479 480 481 482
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
483 484
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
485
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
486 487 488 489 490 491 492
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
493 494 495
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
496 497 498 499
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
500 501 502 503 504 505
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
506

K
Kaipeng Deng 已提交
507
                with paddle.no_grad():
508
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
509 510
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
511 512
            if is_snapshot and self.use_ema:
                # reset original weight
513
                self.model.set_dict(weight)
S
shangliang Xu 已提交
514
                self.status.pop('weight')
515

516 517
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
518
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
519 520 521
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
522 523
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
524
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
525 526 527
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
528
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
529 530 531 532 533 534 535 536 537
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
538 539 540 541 542
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
543 544 545 546 547 548 549 550 551
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
552
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
553 554 555
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
556
    def evaluate(self):
557 558
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
559

C
cnn 已提交
560 561 562 563
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
564
                save_results=False):
K
Kaipeng Deng 已提交
565 566 567
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
603 604 605
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
606 607
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
608

K
Kaipeng Deng 已提交
609 610 611
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
612
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
613 614
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
615
        results = []
F
Feng Ni 已提交
616
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
617 618 619
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
620

W
Wenyu 已提交
621 622 623
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
624
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
625 626 627 628
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
629
            for key, value in outs.items():
630 631
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
632
            results.append(outs)
W
Wenyu 已提交
633

634 635
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
636 637
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
638

W
Wenyu 已提交
639 640 641 642
        for _m in metrics:
            _m.accumulate()
            _m.reset()

643
        for outs in results:
K
Kaipeng Deng 已提交
644 645
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
646

K
Kaipeng Deng 已提交
647 648 649 650
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
651
                image = ImageOps.exif_transpose(image)
652
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
653

654
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
655 656 657 658
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
659 660
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
661 662 663 664
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
665
                    int(im_id), catid2name, draw_threshold)
666
                self.status['result_image'] = np.array(image.copy())
667 668
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
669 670 671 672 673
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
674

K
Kaipeng Deng 已提交
675 676 677 678 679 680 681 682 683 684 685 686
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
687
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
688
        image_shape = None
689 690
        im_shape = [None, 2]
        scale_factor = [None, 2]
691 692 693 694 695 696
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
697
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
698
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
699
        if image_shape is None:
G
Guanghua Yu 已提交
700
            image_shape = [None, 3, -1, -1]
701

G
Guanghua Yu 已提交
702 703
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
704 705 706
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
707

708
        if hasattr(self.model, 'deploy'):
709
            self.model.deploy = True
S
shangliang Xu 已提交
710

711 712 713 714
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
715

716 717 718 719 720 721
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
722 723 724
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
725 726 727 728 729 730
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
731

K
Kaipeng Deng 已提交
732 733 734 735 736 737 738
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
739
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
740
            "im_shape": InputSpec(
741
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
742
            "scale_factor": InputSpec(
743
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
744
        }]
G
George Ni 已提交
745 746 747 748 749
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
750 751 752 753 754 755 756 757 758 759 760 761
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
762
        # TODO: Hard code, delete it when support prune input_spec.
763
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
764 765 766 767 768
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
769 770 771 772 773 774 775 776
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
777

G
Guanghua Yu 已提交
778 779
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
780 781 782

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
783 784 785 786 787
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
788
            self.cfg.slim.save_quantized_model(
789 790
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
791 792
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
793

G
Guanghua Yu 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
862 863 864
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images