trainer.py 29.1 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24
import numpy as np
M
Mark Ma 已提交
25
import typing
26
from PIL import Image, ImageOps
K
Kaipeng Deng 已提交
27 28

import paddle
W
wangguanzhong 已提交
29 30
import paddle.distributed as dist
from paddle.distributed import fleet
31
from paddle import amp
K
Kaipeng Deng 已提交
32
from paddle.static import InputSpec
33
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
34 35 36

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
37
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
38
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
39 40
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
41
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
42
import ppdet.utils.stats as stats
43
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
44

45
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
46
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
47 48

from ppdet.utils.logger import setup_logger
49
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
50 51 52

__all__ = ['Trainer']

53 54
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
55 56 57 58 59 60 61

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
62
        self.optimizer = None
63
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
64

G
George Ni 已提交
65
        # build data loader
66 67 68 69 70 71 72 73 74
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
75 76 77 78 79 80
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
81 82
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
83

F
FlyingQianMM 已提交
84
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
85 86
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
87
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
88

K
Kaipeng Deng 已提交
89
        # build model
90 91 92 93 94
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
95

96 97 98
        #normalize params for deploy
        self.model.load_meanstd(cfg['TestReader']['sample_transforms'])

99 100
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
101 102
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
103
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
104 105 106 107
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
108

K
Kaipeng Deng 已提交
109 110 111 112 113 114 115 116
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
117 118 119 120 121

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
122
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
123

M
minghaoBD 已提交
124 125 126 127
        if self.cfg.get('unstructured_prune'):
            self.pruner = create('UnstructuredPruner')(self.model,
                                                       steps_per_epoch)

W
wangguanzhong 已提交
128 129
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
130

K
Kaipeng Deng 已提交
131 132 133
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
134
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
135 136 137 138 139 140 141 142 143 144 145

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
146
            if self.cfg.get('use_vdl', False):
147
                self._callbacks.append(VisualDLWriter(self))
148 149
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
150 151 152
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
153 154
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
155
            self._compose_callback = ComposeCallback(self._callbacks)
156
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
157 158
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
159 160 161 162
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
163 164
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
165 166
            self._metrics = []
            return
167
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
168
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
169
            # TODO: bias should be unified
170
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
171 172
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
173
            save_prediction_only = self.cfg.get('save_prediction_only', False)
174 175 176

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
177 178
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
179 180 181 182

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
183
            dataset = self.dataset
184 185 186 187
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
188
                dataset = eval_dataset
189

190
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
191 192 193 194 195 196 197 198 199 200 201
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
202
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
203 204 205 206 207 208 209 210 211
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
212
                        save_prediction_only=save_prediction_only)
213
                ]
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
243 244 245
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
246
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
247
                    class_num=self.cfg.num_classes,
248 249
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
250
            ]
251 252 253 254 255 256 257 258 259
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
260 261 262 263
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
264
            save_prediction_only = self.cfg.get('save_prediction_only', False)
265
            self._metrics = [
266 267 268 269 270 271
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
272
            ]
Z
zhiboniu 已提交
273 274 275 276
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
277
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
278
            self._metrics = [
279 280 281 282 283 284
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
285
            ]
G
George Ni 已提交
286 287
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
288
        else:
289
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
290
                self.cfg.metric))
K
Kaipeng Deng 已提交
291 292 293 294 295 296 297
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
298
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
312
    def load_weights(self, weights):
313 314
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
315
        self.start_epoch = 0
316
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
317 318
        logger.debug("Load weights {} to start training".format(weights))

319 320 321 322 323 324 325
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
326
    def resume_weights(self, weights):
327 328 329 330 331 332
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
333
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
334

K
Kaipeng Deng 已提交
335
    def train(self, validate=False):
K
Kaipeng Deng 已提交
336
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
337
        Init_mark = False
K
Kaipeng Deng 已提交
338

339
        model = self.model
340
        if self.cfg.get('fleet', False):
341
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
342
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
343
        elif self._nranks > 1:
G
George Ni 已提交
344 345 346 347
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
348 349

        # initial fp16
350
        if self.cfg.get('fp16', False):
351 352
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
353

K
Kaipeng Deng 已提交
354 355 356 357 358 359 360 361 362 363 364 365
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
366 367
        if self.cfg.get('print_flops', False):
            self._flops(self.loader)
368
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
369

370 371
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
372
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
373
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
374 375 376
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
377
            model.train()
K
Kaipeng Deng 已提交
378 379 380 381
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
382
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
383
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
384
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
385

386
                if self.cfg.get('fp16', False):
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
404 405
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
406 407
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
408 409 410
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
411
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
412 413 414 415
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
416 417
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
418
                iter_tic = time.time()
K
Kaipeng Deng 已提交
419

420 421
            # apply ema weight on model
            if self.use_ema:
422
                weight = copy.deepcopy(self.model.state_dict())
423
                self.model.set_dict(self.ema.apply())
M
minghaoBD 已提交
424 425
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
426

K
Kaipeng Deng 已提交
427 428
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
429
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
430
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
431 432 433 434 435 436 437 438 439 440 441 442
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
443 444 445 446 447 448
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
449
                with paddle.no_grad():
450
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
451 452
                    self._eval_with_loader(self._eval_loader)

453 454 455 456
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

457 458
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
459
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
460 461 462
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
463 464
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
465 466
        if self.cfg.get('print_flops', False):
            self._flops(loader)
K
Kaipeng Deng 已提交
467
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
468 469 470 471 472 473 474 475 476
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
477 478 479 480 481
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
482 483 484 485 486 487 488 489 490
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
491
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
492 493 494
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
495
    def evaluate(self):
496 497
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
498

C
cnn 已提交
499 500 501 502 503
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
504 505 506 507 508 509
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
510 511
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
512

K
Kaipeng Deng 已提交
513 514 515
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
516 517
        if self.cfg.get('print_flops', False):
            self._flops(loader)
518
        results = []
K
Kaipeng Deng 已提交
519 520 521 522
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
523

K
Kaipeng Deng 已提交
524
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
525 526 527 528
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
529
            for key, value in outs.items():
530 531
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
532 533 534
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
535 536
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
537

538
        for outs in results:
K
Kaipeng Deng 已提交
539 540
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
541

K
Kaipeng Deng 已提交
542 543 544 545
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
546
                image = ImageOps.exif_transpose(image)
547
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
548

549
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
550 551 552 553
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
554 555
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
556 557 558 559
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
560
                    int(im_id), catid2name, draw_threshold)
561
                self.status['result_image'] = np.array(image.copy())
562 563
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
564 565 566 567 568
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
569 570
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
571 572 573 574 575 576 577
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
578 579 580 581 582 583 584 585 586 587 588 589
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
590
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
591
        image_shape = None
592 593
        im_shape = [None, 2]
        scale_factor = [None, 2]
594 595 596 597 598 599
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
600
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
601
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
602
        if image_shape is None:
G
Guanghua Yu 已提交
603
            image_shape = [None, 3, -1, -1]
604

G
Guanghua Yu 已提交
605 606
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
607 608 609
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
610

611 612 613 614 615
        if hasattr(self.model, 'deploy'):
            self.model.deploy = True
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
K
Kaipeng Deng 已提交
616

K
Kaipeng Deng 已提交
617 618 619 620 621 622 623
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
624
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
625
            "im_shape": InputSpec(
626
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
627
            "scale_factor": InputSpec(
628
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
629
        }]
G
George Ni 已提交
630 631 632 633 634
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
635 636 637 638 639 640 641 642 643 644 645 646
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
647 648 649 650 651 652 653
        # TODO: Hard code, delete it when support prune input_spec.
        if self.cfg.architecture == 'PicoDet':
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
654 655 656 657 658 659 660 661
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
662

G
Guanghua Yu 已提交
663 664
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
665 666 667

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
668 669 670 671 672
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
673
            self.cfg.slim.save_quantized_model(
674 675
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
676 677
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
678

G
Guanghua Yu 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))