trainer.py 35.4 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51 52

from ppdet.utils.logger import setup_logger
53
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
54 55 56

__all__ = ['Trainer']

57
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
58

K
Kaipeng Deng 已提交
59 60 61 62 63 64 65

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
66
        self.optimizer = None
67
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
68

G
George Ni 已提交
69
        # build data loader
W
wangguanzhong 已提交
70
        capital_mode = self.mode.capitalize()
71
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
72 73
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
74
        else:
W
wangguanzhong 已提交
75 76
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
77 78 79 80 81

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

82 83 84 85
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
86
        if self.mode == 'train':
W
wangguanzhong 已提交
87
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
88 89 90 91
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
92 93
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
94

F
FlyingQianMM 已提交
95
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
96 97
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
98
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
99

K
Kaipeng Deng 已提交
100
        # build model
101 102 103 104 105
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
106

F
Feng Ni 已提交
107 108 109
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
110 111
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
112

113
        #normalize params for deploy
C
Chang Xu 已提交
114 115 116
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
117 118 119 120 121 122 123
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
124 125
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
126

127 128
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
129 130
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
F
Feng Ni 已提交
131
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
132
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
133 134
                self.model,
                decay=ema_decay,
F
Feng Ni 已提交
135
                ema_decay_type=ema_decay_type,
G
Guanghua Yu 已提交
136
                cycle_epoch=cycle_epoch)
137

K
Kaipeng Deng 已提交
138 139 140
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
141 142 143 144 145 146 147 148 149 150 151
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
152
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
153 154 155 156 157

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
158
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
159

M
minghaoBD 已提交
160 161 162 163
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
164

W
wangguanzhong 已提交
165 166
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
167

K
Kaipeng Deng 已提交
168 169 170
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
171
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
172 173 174 175 176 177 178 179 180 181 182

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
183
            if self.cfg.get('use_vdl', False):
184
                self._callbacks.append(VisualDLWriter(self))
185 186
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
187 188
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
189 190 191
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
192 193
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
194
            self._compose_callback = ComposeCallback(self._callbacks)
195
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
196 197
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
198 199 200 201
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
202 203
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
204 205
            self._metrics = []
            return
206
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
207
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
208
            # TODO: bias should be unified
W
wangxinxin08 已提交
209
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
210 211
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
212
            save_prediction_only = self.cfg.get('save_prediction_only', False)
213 214 215

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
216 217
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
218 219 220 221 222 223 224

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
225
                dataset = eval_dataset
W
Wenyu 已提交
226 227 228
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
229

230
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
231 232 233 234 235 236 237 238 239 240 241
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
242
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
243 244 245 246 247 248 249 250 251
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
252
                        save_prediction_only=save_prediction_only)
253
                ]
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
283 284 285
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
286
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
287
                    class_num=self.cfg.num_classes,
288 289
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
290
            ]
291 292 293 294 295 296 297 298 299
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
300 301 302 303
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
304
            save_prediction_only = self.cfg.get('save_prediction_only', False)
305
            self._metrics = [
306 307 308 309 310 311
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
312
            ]
Z
zhiboniu 已提交
313 314 315 316
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
317
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
318
            self._metrics = [
319 320 321 322 323 324
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
325
            ]
G
George Ni 已提交
326 327
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
328
        else:
329
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
330
                self.cfg.metric))
K
Kaipeng Deng 已提交
331 332 333 334 335 336 337
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
338
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
352
    def load_weights(self, weights):
353 354
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
355
        self.start_epoch = 0
356
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
357 358
        logger.debug("Load weights {} to start training".format(weights))

359 360 361 362 363 364 365
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
366
    def resume_weights(self, weights):
367 368 369 370 371
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
372 373
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
374
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
375

K
Kaipeng Deng 已提交
376
    def train(self, validate=False):
K
Kaipeng Deng 已提交
377
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
378
        Init_mark = False
W
wangguanzhong 已提交
379
        if validate:
W
wangguanzhong 已提交
380 381
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
382

383
        model = self.model
384
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
385 386
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
387
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
388

389 390 391 392 393 394 395 396 397
        # enabel auto mixed precision mode
        use_amp = self.cfg.get('amp', False)
        amp_level = self.cfg.get('amp_level', 'O1')
        if use_amp:
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
            model = paddle.amp.decorate(models=model, level=amp_level)
        # get distributed model
398
        if self.cfg.get('fleet', False):
399
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
400
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
401
        elif self._nranks > 1:
G
George Ni 已提交
402 403 404
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
405
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
406

K
Kaipeng Deng 已提交
407 408 409 410 411 412 413 414 415 416 417 418
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
419
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
420 421 422
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
423
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
424

425 426
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
427
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
428
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
429 430 431
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
432
            model.train()
K
Kaipeng Deng 已提交
433 434 435 436
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
437
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
438
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
439
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
440

441 442 443
                if use_amp:
                    with paddle.amp.auto_cast(
                            enable=self.cfg.use_gpu, level=amp_level):
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
459 460
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
461 462
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
463 464 465
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
466
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
467 468 469 470
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
471
                if self.use_ema:
S
shangliang Xu 已提交
472
                    self.ema.update()
F
Feng Ni 已提交
473
                iter_tic = time.time()
K
Kaipeng Deng 已提交
474

M
minghaoBD 已提交
475 476
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
477

S
shangliang Xu 已提交
478 479 480 481 482 483 484 485
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
486 487
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
488
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
489 490 491 492 493 494 495
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
496 497 498
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
499 500 501 502
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
503 504 505 506 507 508
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
509

K
Kaipeng Deng 已提交
510
                with paddle.no_grad():
511
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
512 513
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
514 515
            if is_snapshot and self.use_ema:
                # reset original weight
516
                self.model.set_dict(weight)
S
shangliang Xu 已提交
517
                self.status.pop('weight')
518

519 520
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
521
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
522 523 524
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
525 526
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
527
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
528 529 530
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
531
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
532 533 534 535 536 537 538 539 540
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
541 542 543 544 545
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
546 547 548 549 550 551 552 553 554
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
555
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
556 557 558
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
559
    def evaluate(self):
560 561
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
562

C
cnn 已提交
563 564 565 566
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
567
                save_results=False):
K
Kaipeng Deng 已提交
568 569 570
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
606 607 608
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
609 610
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
611

K
Kaipeng Deng 已提交
612 613 614
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
615
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
616 617
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
618
        results = []
F
Feng Ni 已提交
619
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
620 621 622
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
623

W
Wenyu 已提交
624 625 626
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
627
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
628 629 630 631
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
632
            for key, value in outs.items():
633 634
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
635
            results.append(outs)
W
Wenyu 已提交
636

637 638
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
639 640
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
641

W
Wenyu 已提交
642 643 644 645
        for _m in metrics:
            _m.accumulate()
            _m.reset()

646
        for outs in results:
K
Kaipeng Deng 已提交
647 648
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
649

K
Kaipeng Deng 已提交
650 651 652 653
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
654
                image = ImageOps.exif_transpose(image)
655
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
656

657
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
658 659 660 661
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
662 663
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
664 665 666 667
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
668
                    int(im_id), catid2name, draw_threshold)
669
                self.status['result_image'] = np.array(image.copy())
670 671
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
672 673 674 675 676
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
677

K
Kaipeng Deng 已提交
678 679 680 681 682 683 684 685 686 687 688 689
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
690
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
691
        image_shape = None
692 693
        im_shape = [None, 2]
        scale_factor = [None, 2]
694 695 696 697 698 699
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
700
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
701
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
702
        if image_shape is None:
G
Guanghua Yu 已提交
703
            image_shape = [None, 3, -1, -1]
704

G
Guanghua Yu 已提交
705 706
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
707 708 709
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
710

711
        if hasattr(self.model, 'deploy'):
712
            self.model.deploy = True
S
shangliang Xu 已提交
713

714 715 716 717
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
718

719 720 721 722 723 724
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
725 726 727
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
728 729 730 731 732 733
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
734

K
Kaipeng Deng 已提交
735 736 737 738 739 740 741
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
742
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
743
            "im_shape": InputSpec(
744
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
745
            "scale_factor": InputSpec(
746
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
747
        }]
G
George Ni 已提交
748 749 750 751 752
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
753 754 755 756 757 758 759 760 761 762 763 764
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
765
        # TODO: Hard code, delete it when support prune input_spec.
766
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
767 768 769 770 771
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
772 773 774 775
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
776 777 778 779 780

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
781 782 783 784
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
785

G
Guanghua Yu 已提交
786 787
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
788 789

        # dy2st and save model
790
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
791 792 793 794 795
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
796
            self.cfg.slim.save_quantized_model(
797 798
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
799 800
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
801

G
Guanghua Yu 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
870 871 872
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images