trainer.py 35.4 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51 52

from ppdet.utils.logger import setup_logger
53
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
54 55 56

__all__ = ['Trainer']

57
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
58

K
Kaipeng Deng 已提交
59 60 61 62 63 64 65

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
66
        self.optimizer = None
67
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
68

G
George Ni 已提交
69
        # build data loader
W
wangguanzhong 已提交
70
        capital_mode = self.mode.capitalize()
71
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
72 73
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
74
        else:
W
wangguanzhong 已提交
75 76
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
77 78 79 80 81

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

82 83 84 85
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
86
        if self.mode == 'train':
W
wangguanzhong 已提交
87
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
88 89 90 91
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
92 93
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
94

F
FlyingQianMM 已提交
95
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
96 97
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
98
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
99

K
Kaipeng Deng 已提交
100
        # build model
101 102 103 104 105
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
106

F
Feng Ni 已提交
107 108 109
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
110 111
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
112

113
        #normalize params for deploy
C
Chang Xu 已提交
114 115 116
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
117 118 119 120 121 122 123
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
124 125
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
126

127 128
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
129 130
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
F
Feng Ni 已提交
131
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
132
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
133 134
                self.model,
                decay=ema_decay,
F
Feng Ni 已提交
135
                ema_decay_type=ema_decay_type,
G
Guanghua Yu 已提交
136
                cycle_epoch=cycle_epoch)
137

K
Kaipeng Deng 已提交
138 139 140
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
141 142 143 144 145 146 147 148 149 150 151
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
152
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
153 154 155 156 157

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
158
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
159

M
minghaoBD 已提交
160 161 162 163
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
164

W
wangguanzhong 已提交
165 166
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
167

K
Kaipeng Deng 已提交
168 169 170
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
171
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
172 173 174 175 176 177 178 179 180 181 182

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
183
            if self.cfg.get('use_vdl', False):
184
                self._callbacks.append(VisualDLWriter(self))
185 186
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
187 188
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
189 190 191
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
192 193
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
194
            self._compose_callback = ComposeCallback(self._callbacks)
195
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
196 197
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
198 199 200 201
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
202 203
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
204 205
            self._metrics = []
            return
206
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
207
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
208
            # TODO: bias should be unified
W
wangxinxin08 已提交
209
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
210 211
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
212
            save_prediction_only = self.cfg.get('save_prediction_only', False)
213 214 215

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
216 217
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
218 219 220 221

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
222
            dataset = self.dataset
223 224 225 226
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
227
                dataset = eval_dataset
228

229
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
230 231 232 233 234 235 236 237 238 239 240
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
241
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
242 243 244 245 246 247 248 249 250
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
251
                        save_prediction_only=save_prediction_only)
252
                ]
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
282 283 284
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
285
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
286
                    class_num=self.cfg.num_classes,
287 288
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
289
            ]
290 291 292 293 294 295 296 297 298
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
299 300 301 302
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
303
            save_prediction_only = self.cfg.get('save_prediction_only', False)
304
            self._metrics = [
305 306 307 308 309 310
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
311
            ]
Z
zhiboniu 已提交
312 313 314 315
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
316
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
317
            self._metrics = [
318 319 320 321 322 323
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
324
            ]
G
George Ni 已提交
325 326
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
327
        else:
328
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
329
                self.cfg.metric))
K
Kaipeng Deng 已提交
330 331 332 333 334 335 336
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
337
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
351
    def load_weights(self, weights):
352 353
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
354
        self.start_epoch = 0
355
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
356 357
        logger.debug("Load weights {} to start training".format(weights))

358 359 360 361 362 363 364
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
365
    def resume_weights(self, weights):
366 367 368 369 370
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
371 372
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
373
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
374

K
Kaipeng Deng 已提交
375
    def train(self, validate=False):
K
Kaipeng Deng 已提交
376
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
377
        Init_mark = False
W
wangguanzhong 已提交
378
        if validate:
W
wangguanzhong 已提交
379 380
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
381

382
        model = self.model
383
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
384 385
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
386
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
387

388 389 390 391 392 393 394 395 396
        # enabel auto mixed precision mode
        use_amp = self.cfg.get('amp', False)
        amp_level = self.cfg.get('amp_level', 'O1')
        if use_amp:
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
            model = paddle.amp.decorate(models=model, level=amp_level)
        # get distributed model
397
        if self.cfg.get('fleet', False):
398
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
399
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
400
        elif self._nranks > 1:
G
George Ni 已提交
401 402 403
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
404
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
405

K
Kaipeng Deng 已提交
406 407 408 409 410 411 412 413 414 415 416 417
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
418
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
419 420 421
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
422
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
423

424 425
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
426
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
427
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
428 429 430
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
431
            model.train()
K
Kaipeng Deng 已提交
432 433 434 435
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
436
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
437
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
438
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
439

440 441 442
                if use_amp:
                    with paddle.amp.auto_cast(
                            enable=self.cfg.use_gpu, level=amp_level):
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
458 459
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
460 461
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
462 463 464
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
465
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
466 467 468 469
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
470
                if self.use_ema:
S
shangliang Xu 已提交
471
                    self.ema.update()
F
Feng Ni 已提交
472
                iter_tic = time.time()
K
Kaipeng Deng 已提交
473

M
minghaoBD 已提交
474 475
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
476

S
shangliang Xu 已提交
477 478 479 480 481 482 483 484
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
485 486
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
487
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
488 489 490 491 492 493 494
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
495 496 497
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
498 499 500 501
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
502 503 504 505 506 507
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
508

K
Kaipeng Deng 已提交
509
                with paddle.no_grad():
510
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
511 512
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
513 514
            if is_snapshot and self.use_ema:
                # reset original weight
515
                self.model.set_dict(weight)
S
shangliang Xu 已提交
516
                self.status.pop('weight')
517

518 519
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
520
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
521 522 523
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
524 525
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
526
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
527 528 529
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
530
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
531 532 533 534 535 536 537 538 539
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
540 541 542 543 544
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
545 546 547 548 549 550 551 552 553
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
554
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
555 556 557
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
558
    def evaluate(self):
559 560
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
561

C
cnn 已提交
562 563 564 565
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
566
                save_results=False):
K
Kaipeng Deng 已提交
567 568 569
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
605 606 607
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
608 609
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
610

K
Kaipeng Deng 已提交
611 612 613
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
614
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
615 616
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
617
        results = []
F
Feng Ni 已提交
618
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
619 620 621
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
622

W
Wenyu 已提交
623 624 625
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
626
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
627 628 629 630
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
631
            for key, value in outs.items():
632 633
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
634
            results.append(outs)
W
Wenyu 已提交
635

636 637
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
638 639
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
640

W
Wenyu 已提交
641 642 643 644
        for _m in metrics:
            _m.accumulate()
            _m.reset()

645
        for outs in results:
K
Kaipeng Deng 已提交
646 647
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
648

K
Kaipeng Deng 已提交
649 650 651 652
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
653
                image = ImageOps.exif_transpose(image)
654
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
655

656
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
657 658 659 660
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
661 662
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
663 664 665 666
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
667
                    int(im_id), catid2name, draw_threshold)
668
                self.status['result_image'] = np.array(image.copy())
669 670
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
671 672 673 674 675
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
676

K
Kaipeng Deng 已提交
677 678 679 680 681 682 683 684 685 686 687 688
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
689
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
690
        image_shape = None
691 692
        im_shape = [None, 2]
        scale_factor = [None, 2]
693 694 695 696 697 698
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
699
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
700
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
701
        if image_shape is None:
G
Guanghua Yu 已提交
702
            image_shape = [None, 3, -1, -1]
703

G
Guanghua Yu 已提交
704 705
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
706 707 708
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
709

710
        if hasattr(self.model, 'deploy'):
711
            self.model.deploy = True
S
shangliang Xu 已提交
712

713 714 715 716
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
717

718 719 720 721 722 723
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
724 725 726
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
727 728 729 730 731 732
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
733

K
Kaipeng Deng 已提交
734 735 736 737 738 739 740
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
741
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
742
            "im_shape": InputSpec(
743
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
744
            "scale_factor": InputSpec(
745
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
746
        }]
G
George Ni 已提交
747 748 749 750 751
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
752 753 754 755 756 757 758 759 760 761 762 763
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
764
        # TODO: Hard code, delete it when support prune input_spec.
765
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
766 767 768 769 770
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
771 772 773 774
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
775 776 777 778 779

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
780 781 782 783
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
784

G
Guanghua Yu 已提交
785 786
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
787 788

        # dy2st and save model
789
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
790 791 792 793 794
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
795
            self.cfg.slim.save_quantized_model(
796 797
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
798 799
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
800

G
Guanghua Yu 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
869 870 871
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images