trainer.py 36.5 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
K
Kaipeng Deng 已提交
35
from paddle.static import InputSpec
36
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
37 38 39

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
40
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
41
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
42 43
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
44
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
45
import ppdet.utils.stats as stats
46
from ppdet.utils.fuse_utils import fuse_conv_bn
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51 52

from ppdet.utils.logger import setup_logger
53
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
54 55 56

__all__ = ['Trainer']

57
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
58

K
Kaipeng Deng 已提交
59 60 61 62 63 64 65

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
66
        self.optimizer = None
67
        self.is_loaded_weights = False
S
shangliang Xu 已提交
68 69
        self.use_amp = self.cfg.get('amp', False)
        self.amp_level = self.cfg.get('amp_level', 'O1')
K
Kaipeng Deng 已提交
70

G
George Ni 已提交
71
        # build data loader
W
wangguanzhong 已提交
72
        capital_mode = self.mode.capitalize()
73
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
74 75
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
76
        else:
W
wangguanzhong 已提交
77 78
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
79 80 81 82 83

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

84 85 86 87
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
88
        if self.mode == 'train':
W
wangguanzhong 已提交
89
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
90 91 92 93
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
94 95
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
96

F
FlyingQianMM 已提交
97
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
98 99
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
100
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
101

K
Kaipeng Deng 已提交
102
        # build model
103 104 105 106 107
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
108

F
Feng Ni 已提交
109 110 111
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
112 113
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
114

115
        #normalize params for deploy
C
Chang Xu 已提交
116 117 118
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
119 120 121 122 123 124 125
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
126 127
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
128

K
Kaipeng Deng 已提交
129 130 131
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
132 133 134 135 136 137 138 139 140 141 142
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
143
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
144 145 146 147 148

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
149
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
150

M
minghaoBD 已提交
151 152 153 154
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
155

S
shangliang Xu 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169
        if self.use_amp and self.amp_level == 'O2':
            self.model = paddle.amp.decorate(
                models=self.model, level=self.amp_level)
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
            self.ema = ModelEMA(
                self.model,
                decay=ema_decay,
                ema_decay_type=ema_decay_type,
                cycle_epoch=cycle_epoch)

W
wangguanzhong 已提交
170 171
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
172

K
Kaipeng Deng 已提交
173 174 175
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
176
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
177 178 179 180 181 182 183 184 185 186 187

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
188
            if self.cfg.get('use_vdl', False):
189
                self._callbacks.append(VisualDLWriter(self))
190 191
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
192 193
            if self.cfg.get('use_wandb', False) or 'wandb' in self.cfg:
                self._callbacks.append(WandbCallback(self))
K
Kaipeng Deng 已提交
194 195 196
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
197 198
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
199
            self._compose_callback = ComposeCallback(self._callbacks)
200
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
201 202
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
203 204 205 206
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
207 208
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
209 210
            self._metrics = []
            return
211
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
212
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
213
            # TODO: bias should be unified
W
wangxinxin08 已提交
214
            bias = 1 if self.cfg.get('bias', False) else 0
S
shangliang Xu 已提交
215 216
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
217
            save_prediction_only = self.cfg.get('save_prediction_only', False)
218 219 220

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
221 222
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
223 224 225 226 227 228 229

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
230
                dataset = eval_dataset
W
Wenyu 已提交
231 232 233
            else:
                dataset = self.dataset
                anno_file = dataset.get_anno()
234

235
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
236 237 238 239 240 241 242 243 244 245 246
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
247
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
248 249 250 251 252 253 254 255 256
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
257
                        save_prediction_only=save_prediction_only)
258
                ]
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
288 289 290
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
291
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
292
                    class_num=self.cfg.num_classes,
293 294
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
295
            ]
296 297 298 299 300 301 302 303 304
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
305 306 307 308
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
309
            save_prediction_only = self.cfg.get('save_prediction_only', False)
310
            self._metrics = [
311 312 313 314 315 316
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
317
            ]
Z
zhiboniu 已提交
318 319 320 321
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
322
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
323
            self._metrics = [
324 325 326 327 328 329
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
330
            ]
G
George Ni 已提交
331 332
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
333
        else:
334
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
335
                self.cfg.metric))
K
Kaipeng Deng 已提交
336 337 338 339 340 341 342
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
343
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
357
    def load_weights(self, weights):
358 359
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
360
        self.start_epoch = 0
361
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
362 363
        logger.debug("Load weights {} to start training".format(weights))

364 365 366 367 368 369 370
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
371
    def resume_weights(self, weights):
372 373 374 375 376
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
377 378
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
379
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
380

K
Kaipeng Deng 已提交
381
    def train(self, validate=False):
K
Kaipeng Deng 已提交
382
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
383
        Init_mark = False
W
wangguanzhong 已提交
384
        if validate:
W
wangguanzhong 已提交
385 386
            self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
                "EvalDataset")()
K
Kaipeng Deng 已提交
387

388
        model = self.model
389
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
390 391
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
392
            model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model)
W
wangxinxin08 已提交
393

394
        # enabel auto mixed precision mode
S
shangliang Xu 已提交
395
        if self.use_amp:
396 397 398 399
            scaler = paddle.amp.GradScaler(
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=self.cfg.get('init_loss_scaling', 1024))
        # get distributed model
400
        if self.cfg.get('fleet', False):
401
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
402
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
403
        elif self._nranks > 1:
G
George Ni 已提交
404 405 406
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
407
                model, find_unused_parameters=find_unused_parameters)
K
Kaipeng Deng 已提交
408

K
Kaipeng Deng 已提交
409 410 411 412 413 414 415 416 417 418 419 420
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
421
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
422 423 424
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
425
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
426

427 428
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
429
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
430
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
431 432 433
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
434
            model.train()
K
Kaipeng Deng 已提交
435 436 437 438
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
439
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
440
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
441
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
442

S
shangliang Xu 已提交
443
                if self.use_amp:
444
                    with paddle.amp.auto_cast(
S
shangliang Xu 已提交
445
                            enable=self.cfg.use_gpu, level=self.amp_level):
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']
                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
461 462
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
463 464
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
465 466 467
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
468
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
469 470 471 472
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
473
                if self.use_ema:
S
shangliang Xu 已提交
474
                    self.ema.update()
F
Feng Ni 已提交
475
                iter_tic = time.time()
K
Kaipeng Deng 已提交
476

M
minghaoBD 已提交
477 478
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
479

S
shangliang Xu 已提交
480 481 482 483 484 485 486 487
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
488 489
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
490
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
491 492 493 494 495 496 497
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
498 499 500
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
501 502 503 504
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
505 506 507 508 509 510
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
511

K
Kaipeng Deng 已提交
512
                with paddle.no_grad():
513
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
514 515
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
516 517
            if is_snapshot and self.use_ema:
                # reset original weight
518
                self.model.set_dict(weight)
S
shangliang Xu 已提交
519
                self.status.pop('weight')
520

521 522
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
523
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
524 525 526
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
527 528
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
529
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
530 531 532
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
533
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
534 535 536
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
S
shangliang Xu 已提交
537 538 539 540 541 542
            if self.use_amp:
                with paddle.amp.auto_cast(
                        enable=self.cfg.use_gpu, level=self.amp_level):
                    outs = self.model(data)
            else:
                outs = self.model(data)
K
Kaipeng Deng 已提交
543 544 545 546 547

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
548 549 550 551 552
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
553 554 555 556 557 558 559 560 561
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
562
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
563 564 565
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
566
    def evaluate(self):
567 568
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
569

C
cnn 已提交
570 571 572 573
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
574
                save_results=False):
K
Kaipeng Deng 已提交
575 576 577
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
613 614 615
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
616 617
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
618

K
Kaipeng Deng 已提交
619 620 621
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
622
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
623 624
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
625
        results = []
F
Feng Ni 已提交
626
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
627 628 629
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
630

W
Wenyu 已提交
631 632 633
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
634
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
635 636 637 638
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
639
            for key, value in outs.items():
640 641
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
642
            results.append(outs)
W
Wenyu 已提交
643

644 645
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
646 647
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
648

W
Wenyu 已提交
649 650 651 652
        for _m in metrics:
            _m.accumulate()
            _m.reset()

653
        for outs in results:
K
Kaipeng Deng 已提交
654 655
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
656

K
Kaipeng Deng 已提交
657 658 659 660
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
661
                image = ImageOps.exif_transpose(image)
662
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
663

664
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
665 666 667 668
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
669 670
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
671 672 673 674
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
675
                    int(im_id), catid2name, draw_threshold)
676
                self.status['result_image'] = np.array(image.copy())
677 678
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
679 680 681 682 683
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
684

K
Kaipeng Deng 已提交
685 686 687 688 689 690 691 692 693 694 695 696
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

S
shangliang Xu 已提交
697 698 699 700
    def _get_infer_cfg_and_input_spec(self,
                                      save_dir,
                                      prune_input=True,
                                      kl_quant=False):
K
Kaipeng Deng 已提交
701
        image_shape = None
702 703
        im_shape = [None, 2]
        scale_factor = [None, 2]
704 705 706 707 708 709
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
710
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
711
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
712
        if image_shape is None:
G
Guanghua Yu 已提交
713
            image_shape = [None, 3, -1, -1]
714

G
Guanghua Yu 已提交
715 716
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
717 718 719
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
720

721
        if hasattr(self.model, 'deploy'):
722
            self.model.deploy = True
S
shangliang Xu 已提交
723

724 725 726 727
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
728

729 730 731 732 733 734
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
735 736 737
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
738 739 740 741 742 743
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
744

K
Kaipeng Deng 已提交
745 746 747 748 749 750 751
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
752
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
753
            "im_shape": InputSpec(
754
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
755
            "scale_factor": InputSpec(
756
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
757
        }]
G
George Ni 已提交
758 759 760 761 762
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
763 764 765 766 767 768 769 770 771 772 773 774
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
775
        # TODO: Hard code, delete it when support prune input_spec.
776
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
777 778 779 780
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]
S
shangliang Xu 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793
        if kl_quant:
            if self.cfg.architecture == 'PicoDet' or 'ppyoloe' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image'),
                    "scale_factor": InputSpec(
                        shape=scale_factor, name='scale_factor')
                }]
            elif 'tinypose' in self.cfg.weights:
                pruned_input_spec = [{
                    "image": InputSpec(
                        shape=image_shape, name='image')
                }]
G
Guanghua Yu 已提交
794

G
Guanghua Yu 已提交
795 796 797 798
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
799 800 801 802 803

        if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
                'export'] and self.cfg['export']['fuse_conv_bn']:
            self.model = fuse_conv_bn(self.model)

G
Guanghua Yu 已提交
804 805 806 807
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
808

G
Guanghua Yu 已提交
809 810
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
811 812

        # dy2st and save model
813
        if 'slim' not in self.cfg or 'QAT' not in self.cfg['slim_type']:
814 815 816 817 818
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
819
            self.cfg.slim.save_quantized_model(
820 821
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
822 823
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
824

G
Guanghua Yu 已提交
825 826 827 828 829 830 831 832 833 834 835 836
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
S
shangliang Xu 已提交
837
        kl_quant = True if hasattr(self.cfg.slim, 'ptq') else False
G
Guanghua Yu 已提交
838
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
S
shangliang Xu 已提交
839
            save_dir, prune_input=False, kl_quant=kl_quant)
G
Guanghua Yu 已提交
840 841 842 843 844 845

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
894 895 896
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images