trainer.py 23.5 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22 23 24 25 26 27 28
import time
import random
import datetime
import numpy as np
from PIL import Image

import paddle
W
wangguanzhong 已提交
29 30
import paddle.distributed as dist
from paddle.distributed import fleet
31
from paddle import amp
K
Kaipeng Deng 已提交
32
from paddle.static import InputSpec
33
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
34 35 36

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
37
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
38
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
39
from ppdet.metrics import RBoxMetric
K
Kaipeng Deng 已提交
40
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
41 42
import ppdet.utils.stats as stats

43
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
K
Kaipeng Deng 已提交
44 45 46
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
47
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
48 49 50

__all__ = ['Trainer']

51 52
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
53 54 55 56 57 58 59

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
60
        self.optimizer = None
61
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
62

G
George Ni 已提交
63
        # build data loader
64 65 66 67 68 69 70 71 72
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
73 74 75 76 77 78 79 80
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

F
FlyingQianMM 已提交
81 82 83 84
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
            cfg['FairMOTEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

K
Kaipeng Deng 已提交
85
        # build model
86 87 88 89 90
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
91

92 93 94 95 96
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            self.ema = ModelEMA(
                cfg['ema_decay'], self.model, use_thres_step=True)

K
Kaipeng Deng 已提交
97 98 99 100 101 102 103 104
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
105 106 107 108 109 110 111 112

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

W
wangguanzhong 已提交
113 114
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
115

K
Kaipeng Deng 已提交
116 117 118
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
119
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
120 121 122 123 124 125 126 127 128 129 130

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
131
            if self.cfg.get('use_vdl', False):
132
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
133 134 135
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
136 137
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
138
            self._compose_callback = ComposeCallback(self._callbacks)
139
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
140 141
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
142 143 144 145
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
146 147
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
148 149
            self._metrics = []
            return
150
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
151
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
152
            # TODO: bias should be unified
153
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
154 155
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
156
            save_prediction_only = self.cfg.get('save_prediction_only', False)
157 158 159

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
160 161
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
162 163 164 165 166 167 168 169 170

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

171
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
W
wangxinxin08 已提交
172 173
            self._metrics = [
                COCOMetric(
174
                    anno_file=anno_file,
K
Kaipeng Deng 已提交
175
                    clsid2catid=clsid2catid,
176
                    classwise=classwise,
S
shangliang Xu 已提交
177
                    output_eval=output_eval,
178
                    bias=bias,
179
                    IouType=IouType,
180
                    save_prediction_only=save_prediction_only)
W
wangxinxin08 已提交
181
            ]
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
211 212 213
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
214
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
215
                    class_num=self.cfg.num_classes,
216 217
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
218
            ]
219 220 221 222 223 224 225 226 227
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
228 229 230 231 232 233 234 235 236
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownCOCOEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
Z
zhiboniu 已提交
237 238 239 240 241 242 243 244 245
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownMPIIEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
K
Kaipeng Deng 已提交
246
        else:
K
Kaipeng Deng 已提交
247 248
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
K
Kaipeng Deng 已提交
249 250 251 252 253 254 255
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
256
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
270
    def load_weights(self, weights):
271 272
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
273
        self.start_epoch = 0
274
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
275 276
        logger.debug("Load weights {} to start training".format(weights))

277 278 279 280 281 282 283
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
284
    def resume_weights(self, weights):
285 286 287 288 289 290
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
291
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
292

K
Kaipeng Deng 已提交
293
    def train(self, validate=False):
K
Kaipeng Deng 已提交
294 295
        assert self.mode == 'train', "Model not in 'train' mode"

K
Kaipeng Deng 已提交
296 297 298 299 300
        # if validation in training is enabled, metrics should be re-init
        if validate:
            self._init_metrics(validate=validate)
            self._reset_metrics()

301
        model = self.model
302
        if self.cfg.get('fleet', False):
303
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
304
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
305
        elif self._nranks > 1:
G
George Ni 已提交
306 307 308 309
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
310 311

        # initial fp16
312
        if self.cfg.get('fp16', False):
313 314
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
315

K
Kaipeng Deng 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
329
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
330 331 332
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
333
            model.train()
K
Kaipeng Deng 已提交
334 335 336 337 338 339
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

340
                if self.cfg.get('fp16', False):
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
358 359 360 361 362 363

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
364
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
365 366 367 368
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
369 370
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
371
                iter_tic = time.time()
K
Kaipeng Deng 已提交
372

373 374
            # apply ema weight on model
            if self.use_ema:
375
                weight = copy.deepcopy(self.model.state_dict())
376 377
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
378 379
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
380
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
381
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
395
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
396 397
                    self._eval_with_loader(self._eval_loader)

398 399 400 401
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

K
Kaipeng Deng 已提交
402
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
403 404 405
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
406 407 408
        self.status['mode'] = 'eval'
        self.model.eval()
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
428
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
429 430 431
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
432
    def evaluate(self):
433 434
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
435

C
cnn 已提交
436 437 438 439 440
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
441 442 443 444 445 446
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
447 448
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
449

K
Kaipeng Deng 已提交
450 451 452
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
K
Kaipeng Deng 已提交
453 454 455 456
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
457

K
Kaipeng Deng 已提交
458 459
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
460
            for key, value in outs.items():
461 462
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
K
Kaipeng Deng 已提交
463 464 465

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
466

K
Kaipeng Deng 已提交
467 468 469 470
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
471
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
472

473
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
474 475 476 477
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
478 479
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
480 481 482 483
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
484
                    int(im_id), catid2name, draw_threshold)
485
                self.status['result_image'] = np.array(image.copy())
486 487
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
488 489 490 491 492
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
493 494
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
495 496 497 498 499 500 501
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
515
        self.model.eval()
K
Kaipeng Deng 已提交
516 517 518 519 520
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
521 522 523 524 525 526
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
527
            image_shape = inputs_def.get('image_shape', None)
528
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
529
        if image_shape is None:
530
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
531

K
Kaipeng Deng 已提交
532
        self.model.eval()
533
        if hasattr(self.model, 'deploy'): self.model.deploy = True
K
Kaipeng Deng 已提交
534

K
Kaipeng Deng 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]

        # dy2st and save model
550
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
551 552 553 554 555 556 557 558 559 560 561 562 563
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = self._prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
            logger.info("Export model and saved in {}".format(save_dir))
        else:
564
            self.cfg.slim.save_quantized_model(
565 566 567
                self.model,
                os.path.join(save_dir, 'model'),
                input_spec=input_spec)
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec