trainer.py 30.6 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
M
Manuel Garcia 已提交
23

K
Kaipeng Deng 已提交
24
import numpy as np
M
Mark Ma 已提交
25
import typing
F
Feng Ni 已提交
26 27
from PIL import Image, ImageOps, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
28 29

import paddle
W
wangguanzhong 已提交
30 31
import paddle.distributed as dist
from paddle.distributed import fleet
32
from paddle import amp
K
Kaipeng Deng 已提交
33
from paddle.static import InputSpec
34
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
35 36 37

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
38
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
39
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
40 41
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
42
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
43
import ppdet.utils.stats as stats
44
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
45

46
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
47
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
48 49

from ppdet.utils.logger import setup_logger
50
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
51 52 53

__all__ = ['Trainer']

54 55
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
56 57 58 59 60 61 62

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
63
        self.optimizer = None
64
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
65

G
George Ni 已提交
66
        # build data loader
67 68 69 70 71 72 73 74 75
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
76 77 78 79 80 81
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
82 83
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
84

F
FlyingQianMM 已提交
85
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
86 87
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
88
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
89

K
Kaipeng Deng 已提交
90
        # build model
91 92 93 94 95
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
96

97
        #normalize params for deploy
C
Chang Xu 已提交
98 99 100 101 102
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
103

104 105
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
106 107
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
108
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
109 110 111 112
                self.model,
                decay=ema_decay,
                use_thres_step=True,
                cycle_epoch=cycle_epoch)
113

K
Kaipeng Deng 已提交
114 115 116 117 118
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
119 120 121 122 123 124
            reader_name = '{}Reader'.format(self.mode.capitalize())
            # If metric is VOC, need to be set collate_batch=False.
            if cfg.metric == 'VOC':
                cfg[reader_name]['collate_batch'] = False
            self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                              self._eval_batch_sampler)
K
Kaipeng Deng 已提交
125
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
126 127 128 129 130

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
131
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
132

M
minghaoBD 已提交
133 134 135 136
        if self.cfg.get('unstructured_prune'):
            self.pruner = create('UnstructuredPruner')(self.model,
                                                       steps_per_epoch)

W
wangguanzhong 已提交
137 138
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
139

K
Kaipeng Deng 已提交
140 141 142
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
143
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
144 145 146 147 148 149 150 151 152 153 154

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
155
            if self.cfg.get('use_vdl', False):
156
                self._callbacks.append(VisualDLWriter(self))
157 158
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
159 160 161
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
162 163
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
164
            self._compose_callback = ComposeCallback(self._callbacks)
165
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
166 167
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
168 169 170 171
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
172 173
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
174 175
            self._metrics = []
            return
176
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
177
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
178
            # TODO: bias should be unified
179
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
180 181
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
182
            save_prediction_only = self.cfg.get('save_prediction_only', False)
183 184 185

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
186 187
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
188 189 190 191

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
192
            dataset = self.dataset
193 194 195 196
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
197
                dataset = eval_dataset
198

199
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
200 201 202 203 204 205 206 207 208 209 210
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
211
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
212 213 214 215 216 217 218 219 220
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
221
                        save_prediction_only=save_prediction_only)
222
                ]
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
252 253 254
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
255
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
256
                    class_num=self.cfg.num_classes,
257 258
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
259
            ]
260 261 262 263 264 265 266 267 268
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
269 270 271 272
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
273
            save_prediction_only = self.cfg.get('save_prediction_only', False)
274
            self._metrics = [
275 276 277 278 279 280
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
281
            ]
Z
zhiboniu 已提交
282 283 284 285
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
286
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
287
            self._metrics = [
288 289 290 291 292 293
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
294
            ]
G
George Ni 已提交
295 296
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
297
        else:
298
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
299
                self.cfg.metric))
K
Kaipeng Deng 已提交
300 301 302 303 304 305 306
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
307
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
321
    def load_weights(self, weights):
322 323
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
324
        self.start_epoch = 0
325
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
326 327
        logger.debug("Load weights {} to start training".format(weights))

328 329 330 331 332 333 334
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
335
    def resume_weights(self, weights):
336 337 338 339 340 341
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
342
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
343

K
Kaipeng Deng 已提交
344
    def train(self, validate=False):
K
Kaipeng Deng 已提交
345
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
346
        Init_mark = False
K
Kaipeng Deng 已提交
347

348
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
349 350
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
351 352
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
353

354
        model = self.model
355
        if self.cfg.get('fleet', False):
356
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
357
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
358
        elif self._nranks > 1:
G
George Ni 已提交
359 360 361 362
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
363 364

        # initial fp16
365
        if self.cfg.get('fp16', False):
366 367
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
368

K
Kaipeng Deng 已提交
369 370 371 372 373 374 375 376 377 378 379 380
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
381
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
382 383 384
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
385
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
386

387 388
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
389
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
390
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
391 392 393
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
394
            model.train()
K
Kaipeng Deng 已提交
395 396 397 398
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
399
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
400
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
401
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
402

403
                if self.cfg.get('fp16', False):
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
421 422
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
423 424
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
425 426 427
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
428
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
429 430 431 432
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
433 434
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
435
                iter_tic = time.time()
K
Kaipeng Deng 已提交
436

437 438
            # apply ema weight on model
            if self.use_ema:
439
                weight = copy.deepcopy(self.model.state_dict())
440
                self.model.set_dict(self.ema.apply())
M
minghaoBD 已提交
441 442
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
443

K
Kaipeng Deng 已提交
444 445
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
446
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
447
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
448 449 450 451 452 453 454 455
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
456 457 458
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
459 460 461 462
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
463 464 465 466 467 468
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
K
Kaipeng Deng 已提交
469
                with paddle.no_grad():
470
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
471 472
                    self._eval_with_loader(self._eval_loader)

473 474 475 476
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

477 478
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
479
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
480 481 482
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
483 484
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
485
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
486 487 488
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
K
Kaipeng Deng 已提交
489
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
490 491 492 493 494 495 496 497 498
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
499 500 501 502 503
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
504 505 506 507 508 509 510 511 512
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
513
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
514 515 516
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
517
    def evaluate(self):
518 519
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
520

C
cnn 已提交
521 522 523 524 525
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
526 527 528 529 530 531
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
532 533
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
534

K
Kaipeng Deng 已提交
535 536 537
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
538
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
539 540
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
541
        results = []
K
Kaipeng Deng 已提交
542 543 544 545
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
546

K
Kaipeng Deng 已提交
547
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
548 549 550 551
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
552
            for key, value in outs.items():
553 554
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
555 556 557
            results.append(outs)
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
558 559
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
560

561
        for outs in results:
K
Kaipeng Deng 已提交
562 563
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
564

K
Kaipeng Deng 已提交
565 566 567 568
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
569
                image = ImageOps.exif_transpose(image)
570
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
571

572
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
573 574 575 576
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
577 578
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
579 580 581 582
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
583
                    int(im_id), catid2name, draw_threshold)
584
                self.status['result_image'] = np.array(image.copy())
585 586
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
587 588 589 590 591
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
592 593
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
594 595 596 597 598 599 600
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
601 602 603 604 605 606 607 608 609 610 611 612
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
613
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
614
        image_shape = None
615 616
        im_shape = [None, 2]
        scale_factor = [None, 2]
617 618 619 620 621 622
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
623
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
624
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
625
        if image_shape is None:
G
Guanghua Yu 已提交
626
            image_shape = [None, 3, -1, -1]
627

G
Guanghua Yu 已提交
628 629
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
630 631 632
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
633

634
        if hasattr(self.model, 'deploy'):
635
            self.model.deploy = True
636 637 638 639
        export_post_process = self.cfg.get('export_post_process', False)
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process
            image_shape = [None] + image_shape[1:]
640 641 642
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
K
Kaipeng Deng 已提交
643

K
Kaipeng Deng 已提交
644 645 646 647 648 649 650
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
651
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
652
            "im_shape": InputSpec(
653
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
654
            "scale_factor": InputSpec(
655
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
656
        }]
G
George Ni 已提交
657 658 659 660 661
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
662 663 664 665 666 667 668 669 670 671 672 673
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
674
        # TODO: Hard code, delete it when support prune input_spec.
675
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
676 677 678 679 680
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
681 682 683 684 685 686 687 688
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
689

G
Guanghua Yu 已提交
690 691
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
692 693 694

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
695 696 697 698 699
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
700
            self.cfg.slim.save_quantized_model(
701 702
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
703 704
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
705

G
Guanghua Yu 已提交
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))