Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
83364301
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
83364301
编写于
5月 10, 2021
作者:
Z
zhiboniu
提交者:
GitHub
5月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
hrnet fix (#2920)
上级
03326eea
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
75 addition
and
30 deletion
+75
-30
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
.../keypoint/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
+1
-1
configs/keypoint/hrnet/hrnet_coco_256x192.yml
configs/keypoint/hrnet/hrnet_coco_256x192.yml
+1
-1
ppdet/data/source/category.py
ppdet/data/source/category.py
+4
-1
ppdet/data/transform/keypoint_operators.py
ppdet/data/transform/keypoint_operators.py
+33
-1
ppdet/engine/export_utils.py
ppdet/engine/export_utils.py
+1
-1
ppdet/engine/trainer.py
ppdet/engine/trainer.py
+1
-0
ppdet/metrics/keypoint_metrics.py
ppdet/metrics/keypoint_metrics.py
+4
-6
ppdet/modeling/architectures/keypoint_hrnet.py
ppdet/modeling/architectures/keypoint_hrnet.py
+30
-18
ppdet/utils/visualizer.py
ppdet/utils/visualizer.py
+0
-1
未找到文件。
configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512_swahr.yml
浏览文件 @
83364301
...
...
@@ -2,7 +2,7 @@ use_gpu: true
log_iter
:
10
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/higherhrnet_hrnet_
v1_512
/model_final
weights
:
output/higherhrnet_hrnet_
w32_512_swahr
/model_final
epoch
:
300
num_joints
:
&num_joints
17
flip_perm
:
&flip_perm
[
0
,
2
,
1
,
4
,
3
,
6
,
5
,
8
,
7
,
10
,
9
,
12
,
11
,
14
,
13
,
16
,
15
]
...
...
configs/keypoint/hrnet/hrnet_coco_256x192.yml
浏览文件 @
83364301
...
...
@@ -2,7 +2,7 @@ use_gpu: true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/hrnet_coco_256x192/
50
weights
:
output/hrnet_coco_256x192/
model_final
epoch
:
210
num_joints
:
&num_joints
17
pixel_std
:
&pixel_std
200
...
...
ppdet/data/source/category.py
浏览文件 @
83364301
...
...
@@ -26,7 +26,7 @@ logger = setup_logger(__name__)
__all__
=
[
'get_categories'
]
def
get_categories
(
metric_type
,
a
rch
,
anno_file
=
None
):
def
get_categories
(
metric_type
,
a
nno_file
=
None
,
arch
=
None
):
"""
Get class id to category id map and category id
to category name map from annotation file.
...
...
@@ -83,6 +83,9 @@ def get_categories(metric_type, arch, anno_file=None):
elif
metric_type
.
lower
()
==
'widerface'
:
return
_widerface_category
()
elif
metric_type
.
lower
()
==
'keypointtopdowncocoeval'
:
return
(
None
,
{
'id'
:
'keypoint'
})
else
:
raise
ValueError
(
"unknown metric type {}"
.
format
(
metric_type
))
...
...
ppdet/data/transform/keypoint_operators.py
浏览文件 @
83364301
...
...
@@ -39,7 +39,7 @@ registered_ops = []
__all__
=
[
'RandomAffine'
,
'KeyPointFlip'
,
'TagGenerate'
,
'ToHeatmaps'
,
'NormalizePermute'
,
'EvalAffine'
,
'RandomFlipHalfBodyTransform'
,
'TopDownAffine'
,
'ToHeatmapsTopDown'
'TopDownAffine'
,
'ToHeatmapsTopDown'
,
'TopDownEvalAffine'
]
...
...
@@ -564,6 +564,38 @@ class TopDownAffine(object):
return
records
@
register_keypointop
class
TopDownEvalAffine
(
object
):
"""apply affine transform to image and coords
Args:
trainsize (list): [w, h], the standard size used to train
records(dict): the dict contained the image and coords
Returns:
records (dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
trainsize
):
self
.
trainsize
=
trainsize
def
__call__
(
self
,
records
):
image
=
records
[
'image'
]
rot
=
0
imshape
=
records
[
'im_shape'
][::
-
1
]
center
=
imshape
/
2.
scale
=
imshape
trans
=
get_affine_transform
(
center
,
scale
,
rot
,
self
.
trainsize
)
image
=
cv2
.
warpAffine
(
image
,
trans
,
(
int
(
self
.
trainsize
[
0
]),
int
(
self
.
trainsize
[
1
])),
flags
=
cv2
.
INTER_LINEAR
)
records
[
'image'
]
=
image
return
records
@
register_keypointop
class
ToHeatmapsTopDown
(
object
):
"""to generate the gaussin heatmaps of keypoint for heatmap loss
...
...
ppdet/engine/export_utils.py
浏览文件 @
83364301
...
...
@@ -49,7 +49,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
anno_file
=
dataset_cfg
.
get_anno
()
clsid2catid
,
catid2name
=
get_categories
(
metric
,
a
rch
,
anno_file
)
clsid2catid
,
catid2name
=
get_categories
(
metric
,
a
nno_file
,
arch
)
label_list
=
[
str
(
cat
)
for
cat
in
catid2name
.
values
()]
...
...
ppdet/engine/trainer.py
浏览文件 @
83364301
...
...
@@ -392,6 +392,7 @@ class Trainer(object):
batch_res
=
get_infer_results
(
outs
,
clsid2catid
)
bbox_num
=
outs
[
'bbox_num'
]
start
=
0
for
i
,
im_id
in
enumerate
(
outs
[
'im_id'
]):
image_path
=
imid2path
[
int
(
im_id
)]
...
...
ppdet/metrics/keypoint_metrics.py
浏览文件 @
83364301
...
...
@@ -56,13 +56,11 @@ class KeyPointTopDownCOCOEval(object):
self
.
idx
=
0
def
update
(
self
,
inputs
,
outputs
):
kpt
_coord
=
outputs
[
'kpt_coord'
]
kpt_score
=
outputs
[
'kpt_score'
]
kpt
s
,
_
=
outputs
[
'keypoint'
][
0
]
num_images
=
inputs
[
'image'
].
shape
[
0
]
self
.
results
[
'all_preds'
][
self
.
idx
:
self
.
idx
+
num_images
,
:,
0
:
2
]
=
kpt_coord
[:,
:,
0
:
2
]
self
.
results
[
'all_preds'
][
self
.
idx
:
self
.
idx
+
num_images
,
:,
2
:
3
]
=
kpt_score
3
]
=
kpts
[:,
:,
0
:
3
]
self
.
results
[
'all_boxes'
][
self
.
idx
:
self
.
idx
+
num_images
,
0
:
2
]
=
inputs
[
'center'
].
numpy
()[:,
0
:
2
]
self
.
results
[
'all_boxes'
][
self
.
idx
:
self
.
idx
+
num_images
,
2
:
4
]
=
inputs
[
...
...
@@ -115,7 +113,7 @@ class KeyPointTopDownCOCOEval(object):
result
=
[{
'image_id'
:
img_kpts
[
k
][
'image'
],
'category_id'
:
cat_id
,
'keypoints'
:
list
(
_key_points
[
k
]
),
'keypoints'
:
_key_points
[
k
].
tolist
(
),
'score'
:
img_kpts
[
k
][
'score'
],
'center'
:
list
(
img_kpts
[
k
][
'center'
]),
'scale'
:
list
(
img_kpts
[
k
][
'scale'
])
...
...
ppdet/modeling/architectures/keypoint_hrnet.py
浏览文件 @
83364301
...
...
@@ -39,7 +39,7 @@ class TopDownHRNet(BaseArch):
loss
=
'KeyPointMSELoss'
,
post_process
=
'HRNetPostProcess'
,
flip_perm
=
None
,
flip
=
Fals
e
,
flip
=
Tru
e
,
shift_heatmap
=
True
):
"""
HRNnet network, see https://arxiv.org/abs/1902.09212
...
...
@@ -57,6 +57,7 @@ class TopDownHRNet(BaseArch):
self
.
flip
=
flip
self
.
final_conv
=
L
.
Conv2d
(
width
,
num_joints
,
1
,
1
,
0
,
bias
=
True
)
self
.
shift_heatmap
=
shift_heatmap
self
.
deploy
=
False
@
classmethod
def
from_config
(
cls
,
cfg
,
*
args
,
**
kwargs
):
...
...
@@ -71,31 +72,37 @@ class TopDownHRNet(BaseArch):
if
self
.
training
:
return
self
.
loss
(
hrnet_outputs
,
self
.
inputs
)
elif
self
.
deploy
:
return
hrnet_outputs
else
:
if
self
.
flip
:
self
.
inputs
[
'image'
]
=
self
.
inputs
[
'image'
].
flip
([
3
])
feats
=
backbone
(
inputs
)
output_flipped
=
self
.
final_conv
(
feats
)
feats
=
self
.
backbone
(
self
.
inputs
)
output_flipped
=
self
.
final_conv
(
feats
[
0
]
)
output_flipped
=
self
.
flip_back
(
output_flipped
.
numpy
(),
flip_perm
)
self
.
flip_perm
)
output_flipped
=
paddle
.
to_tensor
(
output_flipped
.
copy
())
if
self
.
shift_heatmap
:
output_flipped
[:,
:,
:,
1
:]
=
output_flipped
.
clone
(
)[:,
:,
:,
0
:
-
1
]
output
=
(
output
+
output_flipped
)
*
0.5
preds
,
maxvals
=
self
.
post_process
(
hrnet_outputs
,
self
.
inputs
)
return
preds
,
maxvals
hrnet_outputs
=
(
hrnet_outputs
+
output_flipped
)
*
0.5
imshape
=
(
self
.
inputs
[
'im_shape'
].
numpy
()
)[:,
::
-
1
]
if
'im_shape'
in
self
.
inputs
else
None
center
=
self
.
inputs
[
'center'
].
numpy
(
)
if
'center'
in
self
.
inputs
else
np
.
round
(
imshape
/
2.
)
scale
=
self
.
inputs
[
'scale'
].
numpy
(
)
if
'scale'
in
self
.
inputs
else
imshape
/
200.
outputs
=
self
.
post_process
(
hrnet_outputs
,
center
,
scale
)
return
outputs
def
get_loss
(
self
):
return
self
.
_forward
()
def
get_pred
(
self
):
preds
,
maxvals
=
self
.
_forward
()
output
=
{
'kpt_coord'
:
preds
,
'kpt_score'
:
maxvals
}
return
output
res_lst
=
self
.
_forward
()
output
s
=
{
'keypoint'
:
res_lst
}
return
output
s
class
HRNetPostProcess
(
object
):
def
flip_back
(
self
,
output_flipped
,
matched_parts
):
assert
output_flipped
.
ndim
==
4
,
\
'output_flipped should be [batch_size, num_joints, height, width]'
...
...
@@ -109,6 +116,8 @@ class HRNetPostProcess(object):
return
output_flipped
class
HRNetPostProcess
(
object
):
def
get_max_preds
(
self
,
heatmaps
):
'''get predictions from score maps
...
...
@@ -156,7 +165,7 @@ class HRNetPostProcess(object):
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints,
2
]), the maximum confidence of the keypoints
maxvals: numpy.ndarray([batch_size, num_joints,
1
]), the maximum confidence of the keypoints
"""
coords
,
maxvals
=
self
.
get_max_preds
(
heatmaps
)
...
...
@@ -184,8 +193,11 @@ class HRNetPostProcess(object):
return
preds
,
maxvals
def
__call__
(
self
,
output
,
inputs
):
preds
,
maxvals
=
self
.
get_final_preds
(
output
.
numpy
(),
inputs
[
'center'
].
numpy
(),
inputs
[
'scale'
].
numpy
())
return
preds
,
maxvals
def
__call__
(
self
,
output
,
center
,
scale
):
preds
,
maxvals
=
self
.
get_final_preds
(
output
.
numpy
(),
center
,
scale
)
outputs
=
[[
np
.
concatenate
(
(
preds
,
maxvals
),
axis
=-
1
),
np
.
mean
(
maxvals
,
axis
=
1
)
]]
return
outputs
ppdet/utils/visualizer.py
浏览文件 @
83364301
...
...
@@ -246,7 +246,6 @@ def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'):
skeletons
=
np
.
array
([
item
[
'keypoints'
]
for
item
in
results
]).
reshape
(
-
1
,
17
,
3
)
scores
=
[
item
[
'score'
]
for
item
in
results
]
img
=
np
.
array
(
image
).
astype
(
'float32'
)
canvas
=
img
.
copy
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录