Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
35e66572
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
35e66572
编写于
6月 23, 2021
作者:
Z
zhiboniu
提交者:
GitHub
6月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add hrnet mpii dataset; (#3460)
add dark deploy supported, mpii deploy supported;
上级
e6919efd
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
425 addition
and
44 deletion
+425
-44
configs/keypoint/README.md
configs/keypoint/README.md
+10
-4
configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml
configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml
+0
-3
configs/keypoint/hrnet/dark_hrnet_w48_256x192.yml
configs/keypoint/hrnet/dark_hrnet_w48_256x192.yml
+0
-3
configs/keypoint/hrnet/hrnet_w32_256x192.yml
configs/keypoint/hrnet/hrnet_w32_256x192.yml
+0
-3
configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
+130
-0
configs/keypoint/hrnet/hrnet_w32_384x288.yml
configs/keypoint/hrnet/hrnet_w32_384x288.yml
+0
-3
deploy/python/keypoint_det_unite_infer.py
deploy/python/keypoint_det_unite_infer.py
+2
-1
deploy/python/keypoint_infer.py
deploy/python/keypoint_infer.py
+6
-3
deploy/python/keypoint_postprocess.py
deploy/python/keypoint_postprocess.py
+66
-12
deploy/python/keypoint_visualize.py
deploy/python/keypoint_visualize.py
+12
-5
deploy/python/topdown_unite_utils.py
deploy/python/topdown_unite_utils.py
+5
-0
deploy/python/utils.py
deploy/python/utils.py
+5
-0
ppdet/data/source/keypoint_coco.py
ppdet/data/source/keypoint_coco.py
+13
-5
ppdet/engine/trainer.py
ppdet/engine/trainer.py
+10
-1
ppdet/metrics/keypoint_metrics.py
ppdet/metrics/keypoint_metrics.py
+166
-1
未找到文件。
configs/keypoint/README.md
浏览文件 @
35e66572
...
...
@@ -13,7 +13,7 @@
#### Model Zoo
COCO数据集
| 模型 | 输入尺寸 | 通道数 | AP(coco val) | 模型下载 | 配置文件 |
| :---------------- | -------- | ------ | :----------: | :----------------------------------------------------------: | ----------------------------------------------------------- |
| HigherHRNet | 512 | 32 | 67.1 |
[
higherhrnet_hrnet_w32_512.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams
)
|
[
config
](
./higherhrnet/higherhrnet_hrnet_w32_512.yml
)
|
...
...
@@ -25,6 +25,12 @@
| HRNet+DarkPose | 384x288 | 32 | 78.3 |
[
dark_hrnet_w32_384x288.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/dark_hrnet_w32_384x288.pdparams
)
|
[
config
](
./hrnet/dark_hrnet_w32_384x288.yml
)
|
备注: Top-Down模型测试AP结果基于GroundTruth标注框
MPII数据集
| 模型 | 输入尺寸 | 通道数 | PCKh(Mean) | PCKh(Mean@0.1) | 模型下载 | 配置文件 |
| :---- | -------- | ------ | :--------: | :------------: | :----------------------------------------------------------: | -------------------------------------------- |
| HRNet | 256x256 | 32 | 90.6 | 38.5 |
[
hrnet_w32_256x256_mpii.pdparams
](
https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x256_mpii.pdparams
)
|
[
config
](
./hrnet/hrnet_w32_256x256_mpii.yml
)
|
## 快速开始
### 1、环境安装
...
...
@@ -74,9 +80,9 @@ python tools/export_model.py -c configs/keypoint/higherhrnet/higherhrnet_hrnet_w
#部署推理
#keypoint top-down/bottom-up 单独推理,该模式下top-down模型只支持单人截图预测。
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/higherhrnet_hrnet_w32_512/
--image_file
=
./demo/000000014439_640x640.jpg
--
use_gpu
=
True
--threshold
=
0.5
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/hrnet_w32_384x288/
--image_file
=
./demo/hrnet_demo.jpg
--
use_gpu
=
True
--threshold
=
0.5
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/higherhrnet_hrnet_w32_512/
--image_file
=
./demo/000000014439_640x640.jpg
--
device
=
gpu
--threshold
=
0.5
python deploy/python/keypoint_infer.py
--model_dir
=
output_inference/hrnet_w32_384x288/
--image_file
=
./demo/hrnet_demo.jpg
--
device
=
gpu
--threshold
=
0.5
#keypoint top-down模型 + detector 检测联合部署推理(联合推理只支持top-down方式)
python deploy/python/keypoint_det_unite_infer.py
--det_model_dir
=
output_inference/ppyolo_r50vd_dcn_2x_coco/
--keypoint_model_dir
=
output_inference/hrnet_w32_384x288/
--video_file
=
../video/xxx.mp4
--
use_gpu
=
True
python deploy/python/keypoint_det_unite_infer.py
--det_model_dir
=
output_inference/ppyolo_r50vd_dcn_2x_coco/
--keypoint_model_dir
=
output_inference/hrnet_w32_384x288/
--video_file
=
../video/xxx.mp4
--
device
=
gpu
```
configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml
浏览文件 @
35e66572
...
...
@@ -118,9 +118,6 @@ EvalReader:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown_DARK
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
...
...
configs/keypoint/hrnet/dark_hrnet_w48_256x192.yml
浏览文件 @
35e66572
...
...
@@ -118,9 +118,6 @@ EvalReader:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown_DARK
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
...
...
configs/keypoint/hrnet/hrnet_w32_256x192.yml
浏览文件 @
35e66572
...
...
@@ -118,9 +118,6 @@ EvalReader:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
...
...
configs/keypoint/hrnet/hrnet_w32_256x256_mpii.yml
0 → 100644
浏览文件 @
35e66572
use_gpu
:
true
log_iter
:
5
save_dir
:
output
snapshot_epoch
:
10
weights
:
output/hrnet_w32_256x256_mpii/model_final
epoch
:
210
num_joints
:
&num_joints
16
pixel_std
:
&pixel_std
200
metric
:
KeyPointTopDownMPIIEval
num_classes
:
1
train_height
:
&train_height
256
train_width
:
&train_width
256
trainsize
:
&trainsize
[
*train_width
,
*train_height
]
hmsize
:
&hmsize
[
64
,
64
]
flip_perm
:
&flip_perm
[[
0
,
5
],
[
1
,
4
],
[
2
,
3
],
[
10
,
15
],
[
11
,
14
],
[
12
,
13
]]
#####model
architecture
:
TopDownHRNet
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/Trunc_HRNet_W32_C_pretrained.pdparams
TopDownHRNet
:
backbone
:
HRNet
post_process
:
HRNetPostProcess
flip_perm
:
*flip_perm
num_joints
:
*num_joints
width
:
&width
32
loss
:
KeyPointMSELoss
HRNet
:
width
:
*width
freeze_at
:
-1
freeze_norm
:
false
return_idx
:
[
0
]
KeyPointMSELoss
:
use_target_weight
:
true
#####optimizer
LearningRate
:
base_lr
:
0.0005
schedulers
:
-
!PiecewiseDecay
milestones
:
[
170
,
200
]
gamma
:
0.1
-
!LinearWarmup
start_factor
:
0.001
steps
:
1000
OptimizerBuilder
:
optimizer
:
type
:
Adam
regularizer
:
factor
:
0.0
type
:
L2
#####data
TrainDataset
:
!KeypointTopDownMPIIDataset
image_dir
:
images
anno_path
:
annotations/mpii_train.json
dataset_dir
:
dataset/mpii
num_joints
:
*num_joints
EvalDataset
:
!KeypointTopDownMPIIDataset
image_dir
:
images
anno_path
:
annotations/mpii_val.json
dataset_dir
:
dataset/mpii
num_joints
:
*num_joints
TestDataset
:
!ImageFolder
anno_path
:
dataset/coco/keypoint_imagelist.txt
worker_num
:
4
global_mean
:
&global_mean
[
0.485
,
0.456
,
0.406
]
global_std
:
&global_std
[
0.229
,
0.224
,
0.225
]
TrainReader
:
sample_transforms
:
-
RandomFlipHalfBodyTransform
:
scale
:
0.5
rot
:
40
num_joints_half_body
:
8
prob_half_body
:
0.3
pixel_std
:
*pixel_std
trainsize
:
*trainsize
upper_body_ids
:
[
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
]
flip_pairs
:
*flip_perm
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
64
shuffle
:
true
drop_last
:
false
EvalReader
:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
16
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
TopDownEvalAffine
:
trainsize
:
*trainsize
-
NormalizeImage
:
mean
:
*global_mean
std
:
*global_std
is_scale
:
true
-
Permute
:
{}
batch_size
:
1
configs/keypoint/hrnet/hrnet_w32_384x288.yml
浏览文件 @
35e66572
...
...
@@ -119,9 +119,6 @@ EvalReader:
sample_transforms
:
-
TopDownAffine
:
trainsize
:
*trainsize
-
ToHeatmapsTopDown
:
hmsize
:
*hmsize
sigma
:
2
batch_transforms
:
-
NormalizeImage
:
mean
:
*global_mean
...
...
deploy/python/keypoint_det_unite_infer.py
浏览文件 @
35e66572
...
...
@@ -178,7 +178,8 @@ def main():
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
enable_mkldnn
=
FLAGS
.
enable_mkldnn
,
use_dark
=
FLAGS
.
use_dark
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
...
...
deploy/python/keypoint_infer.py
浏览文件 @
35e66572
...
...
@@ -63,7 +63,8 @@ class KeyPoint_Detector(object):
trt_opt_shape
=
640
,
trt_calib_mode
=
False
,
cpu_threads
=
1
,
enable_mkldnn
=
False
):
enable_mkldnn
=
False
,
use_dark
=
True
):
self
.
pred_config
=
pred_config
self
.
predictor
,
self
.
config
=
load_predictor
(
model_dir
,
...
...
@@ -79,6 +80,7 @@ class KeyPoint_Detector(object):
enable_mkldnn
=
enable_mkldnn
)
self
.
det_times
=
Timer
()
self
.
cpu_mem
,
self
.
gpu_mem
,
self
.
gpu_util
=
0
,
0
,
0
self
.
use_dark
=
use_dark
def
preprocess
(
self
,
im
):
preprocess_ops
=
[]
...
...
@@ -109,7 +111,7 @@ class KeyPoint_Detector(object):
imshape
=
inputs
[
'im_shape'
][:,
::
-
1
]
center
=
np
.
round
(
imshape
/
2.
)
scale
=
imshape
/
200.
keypoint_postprocess
=
HRNetPostProcess
()
keypoint_postprocess
=
HRNetPostProcess
(
use_dark
=
self
.
use_dark
)
results
[
'keypoint'
]
=
keypoint_postprocess
(
np_boxes
,
center
,
scale
)
return
results
else
:
...
...
@@ -390,7 +392,8 @@ def main():
trt_opt_shape
=
FLAGS
.
trt_opt_shape
,
trt_calib_mode
=
FLAGS
.
trt_calib_mode
,
cpu_threads
=
FLAGS
.
cpu_threads
,
enable_mkldnn
=
FLAGS
.
enable_mkldnn
)
enable_mkldnn
=
FLAGS
.
enable_mkldnn
,
use_dark
=
FLAGS
.
use_dark
)
# predict from video file or camera video stream
if
FLAGS
.
video_file
is
not
None
or
FLAGS
.
camera_id
!=
-
1
:
...
...
deploy/python/keypoint_postprocess.py
浏览文件 @
35e66572
...
...
@@ -14,6 +14,7 @@
from
scipy.optimize
import
linear_sum_assignment
from
collections
import
abc
,
defaultdict
import
cv2
import
numpy
as
np
import
math
import
paddle
...
...
@@ -193,6 +194,9 @@ def warp_affine_joints(joints, mat):
class
HRNetPostProcess
(
object
):
def
__init__
(
self
,
use_dark
=
True
):
self
.
use_dark
=
use_dark
def
flip_back
(
self
,
output_flipped
,
matched_parts
):
assert
output_flipped
.
ndim
==
4
,
\
'output_flipped should be [batch_size, num_joints, height, width]'
...
...
@@ -242,7 +246,54 @@ class HRNetPostProcess(object):
return
preds
,
maxvals
def
get_final_preds
(
self
,
heatmaps
,
center
,
scale
):
def
gaussian_blur
(
self
,
heatmap
,
kernel
):
border
=
(
kernel
-
1
)
//
2
batch_size
=
heatmap
.
shape
[
0
]
num_joints
=
heatmap
.
shape
[
1
]
height
=
heatmap
.
shape
[
2
]
width
=
heatmap
.
shape
[
3
]
for
i
in
range
(
batch_size
):
for
j
in
range
(
num_joints
):
origin_max
=
np
.
max
(
heatmap
[
i
,
j
])
dr
=
np
.
zeros
((
height
+
2
*
border
,
width
+
2
*
border
))
dr
[
border
:
-
border
,
border
:
-
border
]
=
heatmap
[
i
,
j
].
copy
()
dr
=
cv2
.
GaussianBlur
(
dr
,
(
kernel
,
kernel
),
0
)
heatmap
[
i
,
j
]
=
dr
[
border
:
-
border
,
border
:
-
border
].
copy
()
heatmap
[
i
,
j
]
*=
origin_max
/
np
.
max
(
heatmap
[
i
,
j
])
return
heatmap
def
dark_parse
(
self
,
hm
,
coord
):
heatmap_height
=
hm
.
shape
[
0
]
heatmap_width
=
hm
.
shape
[
1
]
px
=
int
(
coord
[
0
])
py
=
int
(
coord
[
1
])
if
1
<
px
<
heatmap_width
-
2
and
1
<
py
<
heatmap_height
-
2
:
dx
=
0.5
*
(
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
])
dy
=
0.5
*
(
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
])
dxx
=
0.25
*
(
hm
[
py
][
px
+
2
]
-
2
*
hm
[
py
][
px
]
+
hm
[
py
][
px
-
2
])
dxy
=
0.25
*
(
hm
[
py
+
1
][
px
+
1
]
-
hm
[
py
-
1
][
px
+
1
]
-
hm
[
py
+
1
][
px
-
1
]
\
+
hm
[
py
-
1
][
px
-
1
])
dyy
=
0.25
*
(
hm
[
py
+
2
*
1
][
px
]
-
2
*
hm
[
py
][
px
]
+
hm
[
py
-
2
*
1
][
px
])
derivative
=
np
.
matrix
([[
dx
],
[
dy
]])
hessian
=
np
.
matrix
([[
dxx
,
dxy
],
[
dxy
,
dyy
]])
if
dxx
*
dyy
-
dxy
**
2
!=
0
:
hessianinv
=
hessian
.
I
offset
=
-
hessianinv
*
derivative
offset
=
np
.
squeeze
(
np
.
array
(
offset
.
T
),
axis
=
0
)
coord
+=
offset
return
coord
def
dark_postprocess
(
self
,
hm
,
coords
,
kernelsize
):
hm
=
self
.
gaussian_blur
(
hm
,
kernelsize
)
hm
=
np
.
maximum
(
hm
,
1e-10
)
hm
=
np
.
log
(
hm
)
for
n
in
range
(
coords
.
shape
[
0
]):
for
p
in
range
(
coords
.
shape
[
1
]):
coords
[
n
,
p
]
=
self
.
dark_parse
(
hm
[
n
][
p
],
coords
[
n
][
p
])
return
coords
def
get_final_preds
(
self
,
heatmaps
,
center
,
scale
,
kernelsize
=
3
):
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
...
...
@@ -261,17 +312,20 @@ class HRNetPostProcess(object):
heatmap_height
=
heatmaps
.
shape
[
2
]
heatmap_width
=
heatmaps
.
shape
[
3
]
for
n
in
range
(
coords
.
shape
[
0
]):
for
p
in
range
(
coords
.
shape
[
1
]):
hm
=
heatmaps
[
n
][
p
]
px
=
int
(
math
.
floor
(
coords
[
n
][
p
][
0
]
+
0.5
))
py
=
int
(
math
.
floor
(
coords
[
n
][
p
][
1
]
+
0.5
))
if
1
<
px
<
heatmap_width
-
1
and
1
<
py
<
heatmap_height
-
1
:
diff
=
np
.
array
([
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
],
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
]
])
coords
[
n
][
p
]
+=
np
.
sign
(
diff
)
*
.
25
if
self
.
use_dark
:
coords
=
self
.
dark_postprocess
(
heatmaps
,
coords
,
kernelsize
)
else
:
for
n
in
range
(
coords
.
shape
[
0
]):
for
p
in
range
(
coords
.
shape
[
1
]):
hm
=
heatmaps
[
n
][
p
]
px
=
int
(
math
.
floor
(
coords
[
n
][
p
][
0
]
+
0.5
))
py
=
int
(
math
.
floor
(
coords
[
n
][
p
][
1
]
+
0.5
))
if
1
<
px
<
heatmap_width
-
1
and
1
<
py
<
heatmap_height
-
1
:
diff
=
np
.
array
([
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
],
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
]
])
coords
[
n
][
p
]
+=
np
.
sign
(
diff
)
*
.
25
preds
=
coords
.
copy
()
# Transform back
...
...
deploy/python/keypoint_visualize.py
浏览文件 @
35e66572
...
...
@@ -34,9 +34,16 @@ def draw_pose(imgfile,
'for example: `pip install matplotlib`.'
)
raise
e
EDGES
=
[(
0
,
1
),
(
0
,
2
),
(
1
,
3
),
(
2
,
4
),
(
3
,
5
),
(
4
,
6
),
(
5
,
7
),
(
6
,
8
),
(
7
,
9
),
(
8
,
10
),
(
5
,
11
),
(
6
,
12
),
(
11
,
13
),
(
12
,
14
),
(
13
,
15
),
(
14
,
16
),
(
11
,
12
)]
skeletons
,
scores
=
results
[
'keypoint'
]
kpt_nums
=
len
(
skeletons
[
0
])
if
kpt_nums
==
17
:
#plot coco keypoint
EDGES
=
[(
0
,
1
),
(
0
,
2
),
(
1
,
3
),
(
2
,
4
),
(
3
,
5
),
(
4
,
6
),
(
5
,
7
),
(
6
,
8
),
(
7
,
9
),
(
8
,
10
),
(
5
,
11
),
(
6
,
12
),
(
11
,
13
),
(
12
,
14
),
(
13
,
15
),
(
14
,
16
),
(
11
,
12
)]
else
:
#plot mpii keypoint
EDGES
=
[(
0
,
1
),
(
1
,
2
),
(
3
,
4
),
(
4
,
5
),
(
2
,
6
),
(
3
,
6
),
(
6
,
7
),
(
7
,
8
),
(
8
,
9
),
(
10
,
11
),
(
11
,
12
),
(
13
,
14
),
(
14
,
15
),
(
8
,
12
),
(
8
,
13
)]
NUM_EDGES
=
len
(
EDGES
)
colors
=
[[
255
,
0
,
0
],
[
255
,
85
,
0
],
[
255
,
170
,
0
],
[
255
,
255
,
0
],
[
170
,
255
,
0
],
[
85
,
255
,
0
],
[
0
,
255
,
0
],
\
...
...
@@ -46,7 +53,7 @@ def draw_pose(imgfile,
plt
.
figure
()
img
=
cv2
.
imread
(
imgfile
)
if
type
(
imgfile
)
==
str
else
imgfile
skeletons
,
scores
=
results
[
'keypoint'
]
color_set
=
results
[
'colors'
]
if
'colors'
in
results
else
None
if
'bbox'
in
results
:
...
...
@@ -58,7 +65,7 @@ def draw_pose(imgfile,
cv2
.
rectangle
(
img
,
(
xmin
,
ymin
),
(
xmax
,
ymax
),
color
,
1
)
canvas
=
img
.
copy
()
for
i
in
range
(
17
):
for
i
in
range
(
kpt_nums
):
for
j
in
range
(
len
(
skeletons
)):
if
skeletons
[
j
][
i
,
2
]
<
visual_thread
:
continue
...
...
deploy/python/topdown_unite_utils.py
浏览文件 @
35e66572
...
...
@@ -103,5 +103,10 @@ def argsparser():
default
=
False
,
help
=
"If the model is produced by TRT offline quantitative "
"calibration, trt_calib_mode need to set True."
)
parser
.
add_argument
(
'--use_dark'
,
type
=
bool
,
default
=
True
,
help
=
'whether to use darkpose to get better keypoint position predict '
)
return
parser
deploy/python/utils.py
浏览文件 @
35e66572
...
...
@@ -108,6 +108,11 @@ def argsparser():
'--save_results'
,
action
=
'store_true'
,
help
=
'Save tracking results (txt).'
)
parser
.
add_argument
(
'--use_dark'
,
type
=
bool
,
default
=
True
,
help
=
'whether to use darkpose to get better keypoint position predict '
)
return
parser
...
...
ppdet/data/source/keypoint_coco.py
浏览文件 @
35e66572
...
...
@@ -25,7 +25,8 @@ from ppdet.core.workspace import register, serializable
@
serializable
class
KeypointBottomUpBaseDataset
(
DetDataset
):
"""Base class for bottom-up datasets.
"""Base class for bottom-up datasets. Adapted from
https://github.com/open-mmlab/mmpose
All datasets should subclass it.
All subclasses should overwrite:
...
...
@@ -86,7 +87,8 @@ class KeypointBottomUpBaseDataset(DetDataset):
@
register
@
serializable
class
KeypointBottomUpCocoDataset
(
KeypointBottomUpBaseDataset
):
"""COCO dataset for bottom-up pose estimation.
"""COCO dataset for bottom-up pose estimation. Adapted from
https://github.com/open-mmlab/mmpose
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
...
...
@@ -253,7 +255,8 @@ class KeypointBottomUpCocoDataset(KeypointBottomUpBaseDataset):
@
register
@
serializable
class
KeypointBottomUpCrowdPoseDataset
(
KeypointBottomUpCocoDataset
):
"""CrowdPose dataset for bottom-up pose estimation.
"""CrowdPose dataset for bottom-up pose estimation. Adapted from
https://github.com/open-mmlab/mmpose
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
...
...
@@ -374,7 +377,9 @@ class KeypointTopDownBaseDataset(DetDataset):
@
register
@
serializable
class
KeypointTopDownCocoDataset
(
KeypointTopDownBaseDataset
):
"""COCO dataset for top-down pose estimation.
"""COCO dataset for top-down pose estimation. Adapted from
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
Copyright (c) Microsoft, under the MIT License.
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
...
...
@@ -567,7 +572,9 @@ class KeypointTopDownCocoDataset(KeypointTopDownBaseDataset):
@
register
@
serializable
class
KeypointTopDownMPIIDataset
(
KeypointTopDownBaseDataset
):
"""MPII dataset for topdown pose estimation.
"""MPII dataset for topdown pose estimation. Adapted from
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
Copyright (c) Microsoft, under the MIT License.
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
...
...
@@ -653,4 +660,5 @@ class KeypointTopDownMPIIDataset(KeypointTopDownBaseDataset):
'joints'
:
joints
,
'joints_vis'
:
joints_vis
})
print
(
"number length: {}"
.
format
(
len
(
gt_db
)))
self
.
db
=
gt_db
ppdet/engine/trainer.py
浏览文件 @
35e66572
...
...
@@ -35,7 +35,7 @@ from ppdet.optimizer import ModelEMA
from
ppdet.core.workspace
import
create
from
ppdet.utils.checkpoint
import
load_weight
,
load_pretrain_weight
from
ppdet.utils.visualizer
import
visualize_results
,
save_result
from
ppdet.metrics
import
Metric
,
COCOMetric
,
VOCMetric
,
WiderFaceMetric
,
get_infer_results
,
KeyPointTopDownCOCOEval
from
ppdet.metrics
import
Metric
,
COCOMetric
,
VOCMetric
,
WiderFaceMetric
,
get_infer_results
,
KeyPointTopDownCOCOEval
,
KeyPointTopDownMPIIEval
from
ppdet.metrics
import
RBoxMetric
from
ppdet.data.source.category
import
get_categories
import
ppdet.utils.stats
as
stats
...
...
@@ -234,6 +234,15 @@ class Trainer(object):
len
(
eval_dataset
),
self
.
cfg
.
num_joints
,
self
.
cfg
.
save_dir
)
]
elif
self
.
cfg
.
metric
==
'KeyPointTopDownMPIIEval'
:
eval_dataset
=
self
.
cfg
[
'EvalDataset'
]
eval_dataset
.
check_or_download_dataset
()
anno_file
=
eval_dataset
.
get_anno
()
self
.
_metrics
=
[
KeyPointTopDownMPIIEval
(
anno_file
,
len
(
eval_dataset
),
self
.
cfg
.
num_joints
,
self
.
cfg
.
save_dir
)
]
else
:
logger
.
warn
(
"Metric not support for metric type {}"
.
format
(
self
.
cfg
.
metric
))
...
...
ppdet/metrics/keypoint_metrics.py
浏览文件 @
35e66572
...
...
@@ -21,11 +21,18 @@ import numpy as np
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
from
..modeling.keypoint_utils
import
oks_nms
from
scipy.io
import
loadmat
,
savemat
__all__
=
[
'KeyPointTopDownCOCOEval'
]
__all__
=
[
'KeyPointTopDownCOCOEval'
,
'KeyPointTopDownMPIIEval'
]
class
KeyPointTopDownCOCOEval
(
object
):
'''
Adapted from
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
Copyright (c) Microsoft, under the MIT License.
'''
def
__init__
(
self
,
anno_file
,
num_samples
,
...
...
@@ -200,3 +207,161 @@ class KeyPointTopDownCOCOEval(object):
def
get_results
(
self
):
return
self
.
eval_results
class
KeyPointTopDownMPIIEval
(
object
):
def
__init__
(
self
,
anno_file
,
num_samples
,
num_joints
,
output_eval
,
oks_thre
=
0.9
):
super
(
KeyPointTopDownMPIIEval
,
self
).
__init__
()
self
.
ann_file
=
anno_file
self
.
reset
()
def
reset
(
self
):
self
.
results
=
[]
self
.
eval_results
=
{}
self
.
idx
=
0
def
update
(
self
,
inputs
,
outputs
):
kpts
,
_
=
outputs
[
'keypoint'
][
0
]
num_images
=
inputs
[
'image'
].
shape
[
0
]
results
=
{}
results
[
'preds'
]
=
kpts
[:,
:,
0
:
3
]
results
[
'boxes'
]
=
np
.
zeros
((
num_images
,
6
))
results
[
'boxes'
][:,
0
:
2
]
=
inputs
[
'center'
].
numpy
()[:,
0
:
2
]
results
[
'boxes'
][:,
2
:
4
]
=
inputs
[
'scale'
].
numpy
()[:,
0
:
2
]
results
[
'boxes'
][:,
4
]
=
np
.
prod
(
inputs
[
'scale'
].
numpy
()
*
200
,
1
)
results
[
'boxes'
][:,
5
]
=
np
.
squeeze
(
inputs
[
'score'
].
numpy
())
results
[
'image_path'
]
=
inputs
[
'image_file'
]
self
.
results
.
append
(
results
)
def
accumulate
(
self
):
self
.
eval_results
=
self
.
evaluate
(
self
.
results
)
def
log
(
self
):
for
item
,
value
in
self
.
eval_results
.
items
():
print
(
"{} : {}"
.
format
(
item
,
value
))
def
get_results
(
self
):
return
self
.
eval_results
def
evaluate
(
self
,
outputs
,
savepath
=
None
):
"""Evaluate PCKh for MPII dataset. Adapted from
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
Copyright (c) Microsoft, under the MIT License.
Args:
outputs(list(preds, boxes)):
* preds (np.ndarray[N,K,3]): The first two dimensions are
coordinates, score is the third dimension of the array.
* boxes (np.ndarray[N,6]): [center[0], center[1], scale[0]
, scale[1],area, score]
Returns:
dict: PCKh for each joint
"""
kpts
=
[]
for
output
in
outputs
:
preds
=
output
[
'preds'
]
batch_size
=
preds
.
shape
[
0
]
for
i
in
range
(
batch_size
):
kpts
.
append
({
'keypoints'
:
preds
[
i
]})
preds
=
np
.
stack
([
kpt
[
'keypoints'
]
for
kpt
in
kpts
])
# convert 0-based index to 1-based index,
# and get the first two dimensions.
preds
=
preds
[...,
:
2
]
+
1.0
if
savepath
is
not
None
:
pred_file
=
os
.
path
.
join
(
savepath
,
'pred.mat'
)
savemat
(
pred_file
,
mdict
=
{
'preds'
:
preds
})
SC_BIAS
=
0.6
threshold
=
0.5
gt_file
=
os
.
path
.
join
(
os
.
path
.
dirname
(
self
.
ann_file
),
'mpii_gt_val.mat'
)
gt_dict
=
loadmat
(
gt_file
)
dataset_joints
=
gt_dict
[
'dataset_joints'
]
jnt_missing
=
gt_dict
[
'jnt_missing'
]
pos_gt_src
=
gt_dict
[
'pos_gt_src'
]
headboxes_src
=
gt_dict
[
'headboxes_src'
]
pos_pred_src
=
np
.
transpose
(
preds
,
[
1
,
2
,
0
])
head
=
np
.
where
(
dataset_joints
==
'head'
)[
1
][
0
]
lsho
=
np
.
where
(
dataset_joints
==
'lsho'
)[
1
][
0
]
lelb
=
np
.
where
(
dataset_joints
==
'lelb'
)[
1
][
0
]
lwri
=
np
.
where
(
dataset_joints
==
'lwri'
)[
1
][
0
]
lhip
=
np
.
where
(
dataset_joints
==
'lhip'
)[
1
][
0
]
lkne
=
np
.
where
(
dataset_joints
==
'lkne'
)[
1
][
0
]
lank
=
np
.
where
(
dataset_joints
==
'lank'
)[
1
][
0
]
rsho
=
np
.
where
(
dataset_joints
==
'rsho'
)[
1
][
0
]
relb
=
np
.
where
(
dataset_joints
==
'relb'
)[
1
][
0
]
rwri
=
np
.
where
(
dataset_joints
==
'rwri'
)[
1
][
0
]
rkne
=
np
.
where
(
dataset_joints
==
'rkne'
)[
1
][
0
]
rank
=
np
.
where
(
dataset_joints
==
'rank'
)[
1
][
0
]
rhip
=
np
.
where
(
dataset_joints
==
'rhip'
)[
1
][
0
]
jnt_visible
=
1
-
jnt_missing
uv_error
=
pos_pred_src
-
pos_gt_src
uv_err
=
np
.
linalg
.
norm
(
uv_error
,
axis
=
1
)
headsizes
=
headboxes_src
[
1
,
:,
:]
-
headboxes_src
[
0
,
:,
:]
headsizes
=
np
.
linalg
.
norm
(
headsizes
,
axis
=
0
)
headsizes
*=
SC_BIAS
scale
=
headsizes
*
np
.
ones
((
len
(
uv_err
),
1
),
dtype
=
np
.
float32
)
scaled_uv_err
=
uv_err
/
scale
scaled_uv_err
=
scaled_uv_err
*
jnt_visible
jnt_count
=
np
.
sum
(
jnt_visible
,
axis
=
1
)
less_than_threshold
=
(
scaled_uv_err
<=
threshold
)
*
jnt_visible
PCKh
=
100.
*
np
.
sum
(
less_than_threshold
,
axis
=
1
)
/
jnt_count
# save
rng
=
np
.
arange
(
0
,
0.5
+
0.01
,
0.01
)
pckAll
=
np
.
zeros
((
len
(
rng
),
16
),
dtype
=
np
.
float32
)
for
r
,
threshold
in
enumerate
(
rng
):
less_than_threshold
=
(
scaled_uv_err
<=
threshold
)
*
jnt_visible
pckAll
[
r
,
:]
=
100.
*
np
.
sum
(
less_than_threshold
,
axis
=
1
)
/
jnt_count
PCKh
=
np
.
ma
.
array
(
PCKh
,
mask
=
False
)
PCKh
.
mask
[
6
:
8
]
=
True
jnt_count
=
np
.
ma
.
array
(
jnt_count
,
mask
=
False
)
jnt_count
.
mask
[
6
:
8
]
=
True
jnt_ratio
=
jnt_count
/
np
.
sum
(
jnt_count
).
astype
(
np
.
float64
)
name_value
=
[
#noqa
(
'Head'
,
PCKh
[
head
]),
(
'Shoulder'
,
0.5
*
(
PCKh
[
lsho
]
+
PCKh
[
rsho
])),
(
'Elbow'
,
0.5
*
(
PCKh
[
lelb
]
+
PCKh
[
relb
])),
(
'Wrist'
,
0.5
*
(
PCKh
[
lwri
]
+
PCKh
[
rwri
])),
(
'Hip'
,
0.5
*
(
PCKh
[
lhip
]
+
PCKh
[
rhip
])),
(
'Knee'
,
0.5
*
(
PCKh
[
lkne
]
+
PCKh
[
rkne
])),
(
'Ankle'
,
0.5
*
(
PCKh
[
lank
]
+
PCKh
[
rank
])),
(
'PCKh'
,
np
.
sum
(
PCKh
*
jnt_ratio
)),
(
'PCKh@0.1'
,
np
.
sum
(
pckAll
[
11
,
:]
*
jnt_ratio
))
]
name_value
=
OrderedDict
(
name_value
)
return
name_value
def
_sort_and_unique_bboxes
(
self
,
kpts
,
key
=
'bbox_id'
):
"""sort kpts and remove the repeated ones."""
kpts
=
sorted
(
kpts
,
key
=
lambda
x
:
x
[
key
])
num
=
len
(
kpts
)
for
i
in
range
(
num
-
1
,
0
,
-
1
):
if
kpts
[
i
][
key
]
==
kpts
[
i
-
1
][
key
]:
del
kpts
[
i
]
return
kpts
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录