trainer.py 23.5 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22 23 24 25 26 27 28
import time
import random
import datetime
import numpy as np
from PIL import Image

import paddle
W
wangguanzhong 已提交
29 30
import paddle.distributed as dist
from paddle.distributed import fleet
31
from paddle import amp
K
Kaipeng Deng 已提交
32
from paddle.static import InputSpec
33
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
34 35 36

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
37
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
38
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
39
from ppdet.metrics import RBoxMetric
K
Kaipeng Deng 已提交
40
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
41 42
import ppdet.utils.stats as stats

43
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter
K
Kaipeng Deng 已提交
44 45 46
from .export_utils import _dump_infer_config

from ppdet.utils.logger import setup_logger
47
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
48 49 50

__all__ = ['Trainer']

51 52
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT']

K
Kaipeng Deng 已提交
53 54 55 56 57 58 59

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
60
        self.optimizer = None
61
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
62

G
George Ni 已提交
63
        # build data loader
64 65 66 67 68 69 70 71 72
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
            self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())]
        else:
            self.dataset = cfg['{}Dataset'.format(self.mode.capitalize())]

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

G
George Ni 已提交
73 74 75 76 77 78 79 80
        if self.mode == 'train':
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

F
FlyingQianMM 已提交
81 82 83 84
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
            cfg['FairMOTEmbeddingHead'][
                'num_identifiers'] = self.dataset.total_identities

K
Kaipeng Deng 已提交
85
        # build model
86 87 88 89 90
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
91

92 93 94 95 96
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
            self.ema = ModelEMA(
                cfg['ema_decay'], self.model, use_thres_step=True)

K
Kaipeng Deng 已提交
97 98 99 100 101 102 103 104
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
            self._eval_batch_sampler = paddle.io.BatchSampler(
                self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
            self.loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, cfg.worker_num, self._eval_batch_sampler)
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
105 106 107 108 109 110 111 112

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
            self.optimizer = create('OptimizerBuilder')(self.lr,
                                                        self.model.parameters())

W
wangguanzhong 已提交
113 114
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
115

K
Kaipeng Deng 已提交
116 117 118
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
119
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
120 121 122 123 124 125 126 127 128 129 130

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
131
            if self.cfg.get('use_vdl', False):
132
                self._callbacks.append(VisualDLWriter(self))
K
Kaipeng Deng 已提交
133 134 135
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
136 137
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
138
            self._compose_callback = ComposeCallback(self._callbacks)
139
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
140 141
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
142 143 144 145
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
146 147
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
148 149
            self._metrics = []
            return
150
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
K
Kaipeng Deng 已提交
151
        if self.cfg.metric == 'COCO':
W
wangxinxin08 已提交
152
            # TODO: bias should be unified
153
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
154 155
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
156
            save_prediction_only = self.cfg.get('save_prediction_only', False)
157 158 159

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
160 161
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
162 163 164 165 166 167 168 169 170

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

171
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
W
wangxinxin08 已提交
172 173
            self._metrics = [
                COCOMetric(
174
                    anno_file=anno_file,
K
Kaipeng Deng 已提交
175
                    clsid2catid=clsid2catid,
176
                    classwise=classwise,
S
shangliang Xu 已提交
177
                    output_eval=output_eval,
178
                    bias=bias,
179
                    IouType=IouType,
180
                    save_prediction_only=save_prediction_only)
W
wangxinxin08 已提交
181
            ]
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
211 212 213
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
214
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
215
                    class_num=self.cfg.num_classes,
216 217
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
218
            ]
219 220 221 222 223 224 225 226 227
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
228 229 230 231 232 233 234 235 236
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownCOCOEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
Z
zhiboniu 已提交
237 238 239 240 241 242 243 244 245
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
            self._metrics = [
                KeyPointTopDownMPIIEval(anno_file,
                                        len(eval_dataset), self.cfg.num_joints,
                                        self.cfg.save_dir)
            ]
K
Kaipeng Deng 已提交
246
        else:
K
Kaipeng Deng 已提交
247 248
            logger.warn("Metric not support for metric type {}".format(
                self.cfg.metric))
K
Kaipeng Deng 已提交
249 250 251 252 253 254 255
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
256
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
270
    def load_weights(self, weights):
271 272
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
273
        self.start_epoch = 0
274
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
275 276
        logger.debug("Load weights {} to start training".format(weights))

277 278 279 280 281 282 283
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
284
    def resume_weights(self, weights):
285 286 287 288 289 290
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
            self.start_epoch = load_weight(self.model, weights, self.optimizer)
K
Kaipeng Deng 已提交
291
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
292

K
Kaipeng Deng 已提交
293
    def train(self, validate=False):
K
Kaipeng Deng 已提交
294 295
        assert self.mode == 'train', "Model not in 'train' mode"

K
Kaipeng Deng 已提交
296 297 298 299 300
        # if validation in training is enabled, metrics should be re-init
        if validate:
            self._init_metrics(validate=validate)
            self._reset_metrics()

301
        model = self.model
302
        if self.cfg.get('fleet', False):
303 304 305 306
            model = fleet.distributed_model(model)
            self.optimizer = fleet.distributed_optimizer(
                self.optimizer).user_defined_optimizer
        elif self._nranks > 1:
G
George Ni 已提交
307 308 309 310
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
311 312

        # initial fp16
313
        if self.cfg.get('fp16', False):
314 315
            scaler = amp.GradScaler(
                enable=self.cfg.use_gpu, init_loss_scaling=1024)
K
Kaipeng Deng 已提交
316

K
Kaipeng Deng 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
330
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
331 332 333
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
334
            model.train()
K
Kaipeng Deng 已提交
335 336 337 338 339 340
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

341
                if self.cfg.get('fp16', False):
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
359 360 361 362 363 364

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
365
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
366 367 368 369
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
370 371
                if self.use_ema:
                    self.ema.update(self.model)
F
Feng Ni 已提交
372
                iter_tic = time.time()
K
Kaipeng Deng 已提交
373

374 375
            # apply ema weight on model
            if self.use_ema:
376
                weight = copy.deepcopy(self.model.state_dict())
377 378
                self.model.set_dict(self.ema.apply())

K
Kaipeng Deng 已提交
379 380
            self._compose_callback.on_epoch_end(self.status)

K
Kaipeng Deng 已提交
381
            if validate and (self._nranks < 2 or self._local_rank == 0) \
G
Guanghua Yu 已提交
382
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
K
Kaipeng Deng 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
396
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
397 398
                    self._eval_with_loader(self._eval_loader)

399 400 401 402
            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

K
Kaipeng Deng 已提交
403
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
404 405 406
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
407 408 409
        self.status['mode'] = 'eval'
        self.model.eval()
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

            sample_num += data['im_id'].numpy().shape[0]
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
429
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
430 431 432
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
433
    def evaluate(self):
434 435
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
436

C
cnn 已提交
437 438 439 440 441
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
                save_txt=False):
K
Kaipeng Deng 已提交
442 443 444 445 446 447
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
448 449
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
450

K
Kaipeng Deng 已提交
451 452 453
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
K
Kaipeng Deng 已提交
454 455 456 457
        for step_id, data in enumerate(loader):
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
458

K
Kaipeng Deng 已提交
459 460
            for key in ['im_shape', 'scale_factor', 'im_id']:
                outs[key] = data[key]
G
Guanghua Yu 已提交
461
            for key, value in outs.items():
462 463
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
K
Kaipeng Deng 已提交
464 465 466

            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
467

K
Kaipeng Deng 已提交
468 469 470 471
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
472
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
473

474
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
475 476 477 478
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
479 480
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
481 482 483 484
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
485
                    int(im_id), catid2name, draw_threshold)
486
                self.status['result_image'] = np.array(image.copy())
487 488
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
489 490 491 492 493
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
C
cnn 已提交
494 495
                if save_txt:
                    save_path = os.path.splitext(save_name)[0] + '.txt'
496 497 498 499 500 501 502
                    results = {}
                    results["im_id"] = im_id
                    if bbox_res:
                        results["bbox_res"] = bbox_res
                    if keypoint_res:
                        results["keypoint_res"] = keypoint_res
                    save_result(save_path, results, catid2name, draw_threshold)
K
Kaipeng Deng 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

    def export(self, output_dir='output_inference'):
516
        self.model.eval()
K
Kaipeng Deng 已提交
517 518 519 520 521
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_shape = None
522 523 524 525 526 527
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
528
            image_shape = inputs_def.get('image_shape', None)
529
        # set image_shape=[3, -1, -1] as default
K
Kaipeng Deng 已提交
530
        if image_shape is None:
531
            image_shape = [3, -1, -1]
K
Kaipeng Deng 已提交
532

K
Kaipeng Deng 已提交
533
        self.model.eval()
534
        if hasattr(self.model, 'deploy'): self.model.deploy = True
K
Kaipeng Deng 已提交
535

K
Kaipeng Deng 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
                shape=[None] + image_shape, name='image'),
            "im_shape": InputSpec(
                shape=[None, 2], name='im_shape'),
            "scale_factor": InputSpec(
                shape=[None, 2], name='scale_factor')
        }]

        # dy2st and save model
551
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
552 553 554 555 556 557 558 559 560 561 562 563 564
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = self._prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
            logger.info("Export model and saved in {}".format(save_dir))
        else:
565
            self.cfg.slim.save_quantized_model(
566 567 568
                self.model,
                os.path.join(save_dir, 'model'),
                input_spec=input_spec)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585

    def _prune_input_spec(self, input_spec, program, targets):
        # try to prune static program to figure out pruned input spec
        # so we perform following operations in static mode
        paddle.enable_static()
        pruned_input_spec = [{}]
        program = program.clone()
        program = program._prune(targets=targets)
        global_block = program.global_block()
        for name, spec in input_spec[0].items():
            try:
                v = global_block.var(name)
                pruned_input_spec[0][name] = spec
            except Exception:
                pass
        paddle.disable_static()
        return pruned_input_spec