Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
df55cb9b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
df55cb9b
编写于
1月 13, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
1月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update PicoDet and GFL post_process (#5101)
上级
a3bc6d5b
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
79 addition
and
98 deletion
+79
-98
configs/picodet/_base_/picodet_esnet.yml
configs/picodet/_base_/picodet_esnet.yml
+1
-1
ppdet/engine/trainer.py
ppdet/engine/trainer.py
+5
-2
ppdet/modeling/architectures/picodet.py
ppdet/modeling/architectures/picodet.py
+4
-4
ppdet/modeling/bbox_utils.py
ppdet/modeling/bbox_utils.py
+16
-14
ppdet/modeling/heads/gfl_head.py
ppdet/modeling/heads/gfl_head.py
+35
-75
ppdet/modeling/heads/pico_head.py
ppdet/modeling/heads/pico_head.py
+18
-2
未找到文件。
configs/picodet/_base_/picodet_esnet.yml
浏览文件 @
df55cb9b
architecture
:
PicoDet
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x1_0_pretrained.pdparams
export_post_process
:
False
# Whether post-processing is included in the network
export_post_process
:
False
# Whether post-processing is included in the network
when export model.
PicoDet
:
backbone
:
ESNet
...
...
ppdet/engine/trainer.py
浏览文件 @
df55cb9b
...
...
@@ -631,9 +631,12 @@ class Trainer(object):
im_shape
=
[
image_shape
[
0
],
2
]
scale_factor
=
[
image_shape
[
0
],
2
]
export_post_process
=
self
.
cfg
.
get
(
'export_post_process'
,
False
)
if
hasattr
(
self
.
model
,
'deploy'
)
and
not
export_post_process
:
if
hasattr
(
self
.
model
,
'deploy'
):
self
.
model
.
deploy
=
True
export_post_process
=
self
.
cfg
.
get
(
'export_post_process'
,
False
)
if
hasattr
(
self
.
model
,
'export_post_process'
):
self
.
model
.
export_post_process
=
export_post_process
image_shape
=
[
None
]
+
image_shape
[
1
:]
if
hasattr
(
self
.
model
,
'fuse_norm'
):
self
.
model
.
fuse_norm
=
self
.
cfg
[
'TestReader'
].
get
(
'fuse_normalize'
,
False
)
...
...
ppdet/modeling/architectures/picodet.py
浏览文件 @
df55cb9b
...
...
@@ -41,7 +41,7 @@ class PicoDet(BaseArch):
self
.
backbone
=
backbone
self
.
neck
=
neck
self
.
head
=
head
self
.
deploy
=
Fals
e
self
.
export_post_process
=
Tru
e
@
classmethod
def
from_config
(
cls
,
cfg
,
*
args
,
**
kwargs
):
...
...
@@ -62,8 +62,8 @@ class PicoDet(BaseArch):
def
_forward
(
self
):
body_feats
=
self
.
backbone
(
self
.
inputs
)
fpn_feats
=
self
.
neck
(
body_feats
)
head_outs
=
self
.
head
(
fpn_feats
,
self
.
deploy
)
if
self
.
training
or
self
.
deploy
:
head_outs
=
self
.
head
(
fpn_feats
,
self
.
export_post_process
)
if
self
.
training
or
not
self
.
export_post_process
:
return
head_outs
,
None
else
:
im_shape
=
self
.
inputs
[
'im_shape'
]
...
...
@@ -83,7 +83,7 @@ class PicoDet(BaseArch):
return
loss
def
get_pred
(
self
):
if
self
.
deploy
:
if
not
self
.
export_post_process
:
return
{
'picodet'
:
self
.
_forward
()[
0
]}
else
:
bbox_pred
,
bbox_num
=
self
.
_forward
()
...
...
ppdet/modeling/bbox_utils.py
浏览文件 @
df55cb9b
...
...
@@ -756,20 +756,22 @@ def bbox_center(boxes):
def
batch_distance2bbox
(
points
,
distance
,
max_shapes
=
None
):
"""Decode distance prediction to bounding box for batch.
Args:
points (Tensor): [B, ..., 2]
distance (Tensor): [B, ..., 4]
max_shapes (
tuple
): [B, 2], "h,w" format, Shape of the image.
points (Tensor): [B, ..., 2]
, "xy" format
distance (Tensor): [B, ..., 4]
, "ltrb" format
max_shapes (
Tensor
): [B, 2], "h,w" format, Shape of the image.
Returns:
Tensor: Decoded bboxes.
Tensor: Decoded bboxes
, "x1y1x2y2" format
.
"""
x1
=
points
[...,
0
]
-
distance
[...,
0
]
y1
=
points
[...,
1
]
-
distance
[...,
1
]
x2
=
points
[...,
0
]
+
distance
[...,
2
]
y2
=
points
[...,
1
]
+
distance
[...,
3
]
lt
,
rb
=
paddle
.
split
(
distance
,
2
,
-
1
)
x1y1
=
points
-
lt
x2
y2
=
points
+
rb
out_bbox
=
paddle
.
concat
([
x1y1
,
x2y2
],
-
1
)
if
max_shapes
is
not
None
:
for
i
,
max_shape
in
enumerate
(
max_shapes
):
x1
[
i
]
=
x1
[
i
].
clip
(
min
=
0
,
max
=
max_shape
[
1
])
y1
[
i
]
=
y1
[
i
].
clip
(
min
=
0
,
max
=
max_shape
[
0
])
x2
[
i
]
=
x2
[
i
].
clip
(
min
=
0
,
max
=
max_shape
[
1
])
y2
[
i
]
=
y2
[
i
].
clip
(
min
=
0
,
max
=
max_shape
[
0
])
return
paddle
.
stack
([
x1
,
y1
,
x2
,
y2
],
-
1
)
max_shapes
=
max_shapes
.
flip
(
-
1
).
tile
([
1
,
2
])
delta_dim
=
out_bbox
.
ndim
-
max_shapes
.
ndim
for
_
in
range
(
delta_dim
):
max_shapes
.
unsqueeze_
(
1
)
out_bbox
=
paddle
.
where
(
out_bbox
<
max_shapes
,
out_bbox
,
max_shapes
)
out_bbox
=
paddle
.
where
(
out_bbox
>
0
,
out_bbox
,
paddle
.
zeros_like
(
out_bbox
))
return
out_bbox
ppdet/modeling/heads/gfl_head.py
浏览文件 @
df55cb9b
...
...
@@ -29,7 +29,7 @@ from paddle.nn.initializer import Normal, Constant
from
ppdet.core.workspace
import
register
from
ppdet.modeling.layers
import
ConvNormLayer
from
ppdet.modeling.bbox_utils
import
distance2bbox
,
bbox2distance
from
ppdet.modeling.bbox_utils
import
distance2bbox
,
bbox2distance
,
batch_distance2bbox
from
ppdet.data.transform.atss_assigner
import
bbox_overlaps
...
...
@@ -241,18 +241,34 @@ class GFLHead(nn.Layer):
),
"The size of fpn_feats is not equal to size of fpn_stride"
cls_logits_list
=
[]
bboxes_reg_list
=
[]
for
scale_reg
,
fpn_feat
in
zip
(
self
.
scales_regs
,
fpn_feats
):
for
stride
,
scale_reg
,
fpn_feat
in
zip
(
self
.
fpn_stride
,
self
.
scales_regs
,
fpn_feats
):
conv_cls_feat
,
conv_reg_feat
=
self
.
conv_feat
(
fpn_feat
)
cls_
logits
=
self
.
gfl_head_cls
(
conv_cls_feat
)
bbox_
reg
=
scale_reg
(
self
.
gfl_head_reg
(
conv_reg_feat
))
cls_
score
=
self
.
gfl_head_cls
(
conv_cls_feat
)
bbox_
pred
=
scale_reg
(
self
.
gfl_head_reg
(
conv_reg_feat
))
if
self
.
dgqp_module
:
quality_score
=
self
.
dgqp_module
(
bbox_
reg
)
cls_
logits
=
F
.
sigmoid
(
cls_logits
)
*
quality_score
quality_score
=
self
.
dgqp_module
(
bbox_
pred
)
cls_
score
=
F
.
sigmoid
(
cls_score
)
*
quality_score
if
not
self
.
training
:
cls_logits
=
F
.
sigmoid
(
cls_logits
.
transpose
([
0
,
2
,
3
,
1
]))
bbox_reg
=
bbox_reg
.
transpose
([
0
,
2
,
3
,
1
])
cls_logits_list
.
append
(
cls_logits
)
bboxes_reg_list
.
append
(
bbox_reg
)
cls_score
=
F
.
sigmoid
(
cls_score
.
transpose
([
0
,
2
,
3
,
1
]))
bbox_pred
=
bbox_pred
.
transpose
([
0
,
2
,
3
,
1
])
b
,
cell_h
,
cell_w
,
_
=
paddle
.
shape
(
cls_score
)
y
,
x
=
self
.
get_single_level_center_point
(
[
cell_h
,
cell_w
],
stride
,
cell_offset
=
self
.
cell_offset
)
center_points
=
paddle
.
stack
([
x
,
y
],
axis
=-
1
)
cls_score
=
cls_score
.
reshape
([
b
,
-
1
,
self
.
cls_out_channels
])
bbox_pred
=
self
.
distribution_project
(
bbox_pred
)
*
stride
bbox_pred
=
bbox_pred
.
reshape
([
b
,
cell_h
*
cell_w
,
4
])
# NOTE: If keep_ratio=False and image shape value that
# multiples of 32, distance2bbox not set max_shapes parameter
# to speed up model prediction. If need to set max_shapes,
# please use inputs['im_shape'].
bbox_pred
=
batch_distance2bbox
(
center_points
,
bbox_pred
,
max_shapes
=
None
)
cls_logits_list
.
append
(
cls_score
)
bboxes_reg_list
.
append
(
bbox_pred
)
return
(
cls_logits_list
,
bboxes_reg_list
)
...
...
@@ -410,71 +426,15 @@ class GFLHead(nn.Layer):
x
=
x
.
flatten
()
return
y
,
x
def
get_bboxes_single
(
self
,
cls_scores
,
bbox_preds
,
img_shape
,
scale_factor
,
rescale
=
True
,
cell_offset
=
0
):
assert
len
(
cls_scores
)
==
len
(
bbox_preds
)
mlvl_bboxes
=
[]
mlvl_scores
=
[]
for
stride
,
cls_score
,
bbox_pred
in
zip
(
self
.
fpn_stride
,
cls_scores
,
bbox_preds
):
featmap_size
=
[
paddle
.
shape
(
cls_score
)[
0
],
paddle
.
shape
(
cls_score
)[
1
]
]
y
,
x
=
self
.
get_single_level_center_point
(
featmap_size
,
stride
,
cell_offset
=
cell_offset
)
center_points
=
paddle
.
stack
([
x
,
y
],
axis
=-
1
)
scores
=
cls_score
.
reshape
([
-
1
,
self
.
cls_out_channels
])
bbox_pred
=
self
.
distribution_project
(
bbox_pred
)
*
stride
if
scores
.
shape
[
0
]
>
self
.
nms_pre
:
max_scores
=
scores
.
max
(
axis
=
1
)
_
,
topk_inds
=
max_scores
.
topk
(
self
.
nms_pre
)
center_points
=
center_points
.
gather
(
topk_inds
)
bbox_pred
=
bbox_pred
.
gather
(
topk_inds
)
scores
=
scores
.
gather
(
topk_inds
)
bboxes
=
distance2bbox
(
center_points
,
bbox_pred
,
max_shape
=
img_shape
)
mlvl_bboxes
.
append
(
bboxes
)
mlvl_scores
.
append
(
scores
)
mlvl_bboxes
=
paddle
.
concat
(
mlvl_bboxes
)
if
rescale
:
# [h_scale, w_scale] to [w_scale, h_scale, w_scale, h_scale]
im_scale
=
paddle
.
concat
([
scale_factor
[::
-
1
],
scale_factor
[::
-
1
]])
mlvl_bboxes
/=
im_scale
mlvl_scores
=
paddle
.
concat
(
mlvl_scores
)
mlvl_scores
=
mlvl_scores
.
transpose
([
1
,
0
])
return
mlvl_bboxes
,
mlvl_scores
def
decode
(
self
,
cls_scores
,
bbox_preds
,
im_shape
,
scale_factor
,
cell_offset
):
batch_bboxes
=
[]
batch_scores
=
[]
for
img_id
in
range
(
cls_scores
[
0
].
shape
[
0
]):
num_levels
=
len
(
cls_scores
)
cls_score_list
=
[
cls_scores
[
i
][
img_id
]
for
i
in
range
(
num_levels
)]
bbox_pred_list
=
[
bbox_preds
[
i
][
img_id
]
for
i
in
range
(
num_levels
)]
bboxes
,
scores
=
self
.
get_bboxes_single
(
cls_score_list
,
bbox_pred_list
,
im_shape
[
img_id
],
scale_factor
[
img_id
],
cell_offset
=
cell_offset
)
batch_bboxes
.
append
(
bboxes
)
batch_scores
.
append
(
scores
)
batch_bboxes
=
paddle
.
stack
(
batch_bboxes
,
axis
=
0
)
batch_scores
=
paddle
.
stack
(
batch_scores
,
axis
=
0
)
return
batch_bboxes
,
batch_scores
def
post_process
(
self
,
gfl_head_outs
,
im_shape
,
scale_factor
):
cls_scores
,
bboxes_reg
=
gfl_head_outs
bboxes
,
score
=
self
.
decode
(
cls_scores
,
bboxes_reg
,
im_shape
,
scale_factor
,
self
.
cell_offset
)
bbox_pred
,
bbox_num
,
_
=
self
.
nms
(
bboxes
,
score
)
bboxes
=
paddle
.
concat
(
bboxes_reg
,
axis
=
1
)
# rescale: [h_scale, w_scale] -> [w_scale, h_scale, w_scale, h_scale]
im_scale
=
paddle
.
concat
(
[
scale_factor
[:,
::
-
1
],
scale_factor
[:,
::
-
1
]],
axis
=-
1
).
unsqueeze
(
1
)
bboxes
/=
im_scale
mlvl_scores
=
paddle
.
concat
(
cls_scores
,
axis
=
1
)
mlvl_scores
=
mlvl_scores
.
transpose
([
0
,
2
,
1
])
bbox_pred
,
bbox_num
,
_
=
self
.
nms
(
bboxes
,
mlvl_scores
)
return
bbox_pred
,
bbox_num
ppdet/modeling/heads/pico_head.py
浏览文件 @
df55cb9b
...
...
@@ -26,6 +26,7 @@ from paddle.nn.initializer import Normal, Constant
from
ppdet.core.workspace
import
register
from
ppdet.modeling.layers
import
ConvNormLayer
from
ppdet.modeling.bbox_utils
import
batch_distance2bbox
from
.simota_head
import
OTAVFLHead
...
...
@@ -238,7 +239,7 @@ class PicoHead(OTAVFLHead):
bias_attr
=
ParamAttr
(
initializer
=
Constant
(
value
=
0
))))
self
.
head_reg_list
.
append
(
head_reg
)
def
forward
(
self
,
fpn_feats
,
deploy
=
Fals
e
):
def
forward
(
self
,
fpn_feats
,
export_post_process
=
Tru
e
):
assert
len
(
fpn_feats
)
==
len
(
self
.
fpn_stride
),
"The size of fpn_feats is not equal to size of fpn_stride"
...
...
@@ -260,7 +261,7 @@ class PicoHead(OTAVFLHead):
quality_score
=
self
.
dgqp_module
(
bbox_pred
)
cls_score
=
F
.
sigmoid
(
cls_score
)
*
quality_score
if
deploy
:
if
not
export_post_process
:
# Now only supports batch size = 1 in deploy
# TODO(ygh): support batch size > 1
cls_score
=
F
.
sigmoid
(
cls_score
).
reshape
(
...
...
@@ -270,6 +271,21 @@ class PicoHead(OTAVFLHead):
elif
not
self
.
training
:
cls_score
=
F
.
sigmoid
(
cls_score
.
transpose
([
0
,
2
,
3
,
1
]))
bbox_pred
=
bbox_pred
.
transpose
([
0
,
2
,
3
,
1
])
stride
=
self
.
fpn_stride
[
i
]
b
,
cell_h
,
cell_w
,
_
=
paddle
.
shape
(
cls_score
)
y
,
x
=
self
.
get_single_level_center_point
(
[
cell_h
,
cell_w
],
stride
,
cell_offset
=
self
.
cell_offset
)
center_points
=
paddle
.
stack
([
x
,
y
],
axis
=-
1
)
cls_score
=
cls_score
.
reshape
([
b
,
-
1
,
self
.
cls_out_channels
])
bbox_pred
=
self
.
distribution_project
(
bbox_pred
)
*
stride
bbox_pred
=
bbox_pred
.
reshape
([
b
,
cell_h
*
cell_w
,
4
])
# NOTE: If keep_ratio=False and image shape value that
# multiples of 32, distance2bbox not set max_shapes parameter
# to speed up model prediction. If need to set max_shapes,
# please use inputs['im_shape'].
bbox_pred
=
batch_distance2bbox
(
center_points
,
bbox_pred
,
max_shapes
=
None
)
cls_logits_list
.
append
(
cls_score
)
bboxes_reg_list
.
append
(
bbox_pred
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录