未验证 提交 a972c39e 编写于 作者: G Guanghua Yu 提交者: GitHub

support fuse conv bn when export model (#5977)

上级 67742521
......@@ -10,3 +10,4 @@ export:
post_process: True # Whether post-processing is included in the network when export model.
nms: True # Whether NMS is included in the network when export model.
benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported.
fuse_conv_bn: False
......@@ -44,6 +44,7 @@ from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
from ppdet.data.source.category import get_categories
import ppdet.utils.stats as stats
from ppdet.utils.fuse_utils import fuse_conv_bn
from ppdet.utils import profiler
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
......@@ -770,6 +771,11 @@ class Trainer(object):
def export(self, output_dir='output_inference'):
self.model.eval()
if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
'export'] and self.cfg['export']['fuse_conv_bn']:
self.model = fuse_conv_bn(self.model)
model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
save_dir = os.path.join(output_dir, model_name)
if not os.path.exists(save_dir):
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import paddle
import paddle.nn as nn
__all__ = ['fuse_conv_bn']
def fuse_conv_bn(model):
is_train = False
if model.training:
model.eval()
is_train = True
fuse_list = []
tmp_pair = [None, None]
for name, layer in model.named_sublayers():
if isinstance(layer, nn.Conv2D):
tmp_pair[0] = name
if isinstance(layer, nn.BatchNorm2D):
tmp_pair[1] = name
if tmp_pair[0] and tmp_pair[1] and len(tmp_pair) == 2:
fuse_list.append(tmp_pair)
tmp_pair = [None, None]
model = fuse_layers(model, fuse_list)
if is_train:
model.train()
return model
def find_parent_layer_and_sub_name(model, name):
"""
Given the model and the name of a layer, find the parent layer and
the sub_name of the layer.
For example, if name is 'block_1/convbn_1/conv_1', the parent layer is
'block_1/convbn_1' and the sub_name is `conv_1`.
Args:
model(paddle.nn.Layer): the model to be quantized.
name(string): the name of a layer
Returns:
parent_layer, subname
"""
assert isinstance(model, nn.Layer), \
"The model must be the instance of paddle.nn.Layer."
assert len(name) > 0, "The input (name) should not be empty."
last_idx = 0
idx = 0
parent_layer = model
while idx < len(name):
if name[idx] == '.':
sub_name = name[last_idx:idx]
if hasattr(parent_layer, sub_name):
parent_layer = getattr(parent_layer, sub_name)
last_idx = idx + 1
idx += 1
sub_name = name[last_idx:idx]
return parent_layer, sub_name
class Identity(nn.Layer):
'''a layer to replace bn or relu layers'''
def __init__(self, *args, **kwargs):
super(Identity, self).__init__()
def forward(self, input):
return input
def fuse_layers(model, layers_to_fuse, inplace=False):
'''
fuse layers in layers_to_fuse
Args:
model(nn.Layer): The model to be fused.
layers_to_fuse(list): The layers' names to be fused. For
example,"fuse_list = [["conv1", "bn1"], ["conv2", "bn2"]]".
A TypeError would be raised if "fuse" was set as
True but "fuse_list" was None.
Default: None.
inplace(bool): Whether apply fusing to the input model.
Default: False.
Return
fused_model(paddle.nn.Layer): The fused model.
'''
if not inplace:
model = copy.deepcopy(model)
for layers_list in layers_to_fuse:
layer_list = []
for layer_name in layers_list:
parent_layer, sub_name = find_parent_layer_and_sub_name(model,
layer_name)
layer_list.append(getattr(parent_layer, sub_name))
new_layers = _fuse_func(layer_list)
for i, item in enumerate(layers_list):
parent_layer, sub_name = find_parent_layer_and_sub_name(model, item)
setattr(parent_layer, sub_name, new_layers[i])
return model
def _fuse_func(layer_list):
'''choose the fuser method and fuse layers'''
types = tuple(type(m) for m in layer_list)
fusion_method = types_to_fusion_method.get(types, None)
new_layers = [None] * len(layer_list)
fused_layer = fusion_method(*layer_list)
for handle_id, pre_hook_fn in layer_list[0]._forward_pre_hooks.items():
fused_layer.register_forward_pre_hook(pre_hook_fn)
del layer_list[0]._forward_pre_hooks[handle_id]
for handle_id, hook_fn in layer_list[-1]._forward_post_hooks.items():
fused_layer.register_forward_post_hook(hook_fn)
del layer_list[-1]._forward_post_hooks[handle_id]
new_layers[0] = fused_layer
for i in range(1, len(layer_list)):
identity = Identity()
identity.training = layer_list[0].training
new_layers[i] = identity
return new_layers
def _fuse_conv_bn(conv, bn):
'''fuse conv and bn for train or eval'''
assert(conv.training == bn.training),\
"Conv and BN both must be in the same mode (train or eval)."
if conv.training:
assert bn._num_features == conv._out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
raise NotImplementedError
else:
return _fuse_conv_bn_eval(conv, bn)
def _fuse_conv_bn_eval(conv, bn):
'''fuse conv and bn for eval'''
assert (not (conv.training or bn.training)), "Fusion only for eval!"
fused_conv = copy.deepcopy(conv)
fused_weight, fused_bias = _fuse_conv_bn_weights(
fused_conv.weight, fused_conv.bias, bn._mean, bn._variance, bn._epsilon,
bn.weight, bn.bias)
fused_conv.weight.set_value(fused_weight)
if fused_conv.bias is None:
fused_conv.bias = paddle.create_parameter(
shape=[fused_conv._out_channels], is_bias=True, dtype=bn.bias.dtype)
fused_conv.bias.set_value(fused_bias)
return fused_conv
def _fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
'''fuse weights and bias of conv and bn'''
if conv_b is None:
conv_b = paddle.zeros_like(bn_rm)
if bn_w is None:
bn_w = paddle.ones_like(bn_rm)
if bn_b is None:
bn_b = paddle.zeros_like(bn_rm)
bn_var_rsqrt = paddle.rsqrt(bn_rv + bn_eps)
conv_w = conv_w * \
(bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1))
conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b
return conv_w, conv_b
types_to_fusion_method = {(nn.Conv2D, nn.BatchNorm2D): _fuse_conv_bn, }
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册