nn.py 384.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
26
from ..framework import Variable, OpProtoHolder, _in_imperative_mode
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
90
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
91 92 93 94 95
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
96
    'group_norm',
D
dengkaipeng 已提交
97
    'spectral_norm',
X
Xin Pan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
111
    'roi_align',
X
Xin Pan 已提交
112 113 114 115
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
116
    'resize_nearest',
X
Xin Pan 已提交
117 118 119 120 121 122
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
123
    'selu',
X
Xin Pan 已提交
124 125 126
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
127
    'margin_rank_loss',
X
Xin Pan 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
171
    'space_to_depth',
W
whs 已提交
172
    'affine_grid',
S
sneaxiy 已提交
173
    'sequence_reverse',
174
    'affine_channel',
B
barrierye 已提交
175
    'similarity_focus',
M
minqiyang 已提交
176
    'hash',
D
dengkaipeng 已提交
177
    'grid_sampler',
G
gmcather 已提交
178 179
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
180
    'bilinear_tensor_product',
C
chengduo 已提交
181 182
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
183
    'lstm',
S
shippingwang 已提交
184
    'shuffle_channel',
S
sneaxiy 已提交
185
    'py_func',
186
    'psroi_pool',
H
heqiaozhi 已提交
187
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
188
    'huber_loss',
Z
zhaozhehao 已提交
189
    'tree_conv',
C
ceci3 已提交
190
    'npair_loss',
Y
Yu Yang 已提交
191 192
]

J
jerrywgz 已提交
193 194
kIgnoreIndex = -100

Y
Yu Yang 已提交
195 196 197 198 199 200 201

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
202
       is_test=False,
203
       name=None):
Y
Yu Yang 已提交
204
    """
205
    **Fully Connected Layer**
Y
Yu Yang 已提交
206

207
    This function creates a fully connected layer in the network. It can take
208
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
209
    Args in detail). It creates a variable called weights for each input tensor,
210 211 212 213
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
214
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
215 216
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
217

218 219 220 221 222 223 224
    When the input is single tensor:

    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
225 226 227

    .. math::

228
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
229 230 231

    In the above equation:

232 233 234
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
235
    * :math:`b`: The bias parameter created by this layer (if needed).
236
    * :math:`Act`: The activation function.
C
caoying03 已提交
237
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
257
    Args:
R
ranqiu 已提交
258 259 260 261 262 263 264 265 266 267
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
268
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
269 270 271 272
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
273 274
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
275
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
276
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
277
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
278

279
    Returns:
F
fengjiayi 已提交
280
        Variable: The transformation result.
281 282

    Raises:
C
caoying03 已提交
283
        ValueError: If rank of the input tensor is less than 2.
284 285 286 287

    Examples:
        .. code-block:: python

288
          # when input is single tensor
F
fengjiayi 已提交
289
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
290
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
291 292 293 294 295

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
296
    """
C
caoying03 已提交
297

C
caoying03 已提交
298
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
299 300 301 302

    dtype = helper.input_dtype()

    mul_results = []
303 304
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
305 306 307
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
308

Y
Yu Yang 已提交
309
        w = helper.create_parameter(
310
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
311
        tmp = helper.create_variable_for_type_inference(dtype)
312
        helper.append_op(
313 314 315
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
316
            outputs={"Out": tmp},
M
mozga-intel 已提交
317 318
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
319 320 321 322
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
323
    else:
X
Xin Pan 已提交
324
        pre_bias = helper.create_variable_for_type_inference(dtype)
325
        helper.append_op(
326 327 328
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
329
            attrs={"use_mkldnn": False})
330 331 332 333
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
334 335


336 337 338
def embedding(input,
              size,
              is_sparse=False,
339
              is_distributed=False,
340 341 342
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
343
    """
344 345
    **Embedding Layer**

346
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
347 348
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
349 350 351

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
352 353

    Args:
354 355 356 357 358
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
359
        is_distributed(bool): Whether to run lookup table from remote parameter server.
360 361
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
362
            with zeros whenever lookup encounters it in :attr:`input`. If
363
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
364 365
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
366
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
367

368 369 370
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
371

372 373
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
374

C
chengduoZH 已提交
375
          dict_size = len(dataset.ids)
376
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
377
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
378 379 380
    """

    helper = LayerHelper('embedding', **locals())
381
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
382 383
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
384 385
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
386
    tmp = helper.create_variable_for_type_inference(dtype)
387 388
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
389 390 391 392 393
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
394 395 396
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
397
            'remote_prefetch': remote_prefetch,
398 399
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
400 401 402
    return tmp


W
wopeizl 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
419

W
wopeizl 已提交
420 421 422 423 424 425 426 427 428 429 430
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
431

W
wopeizl 已提交
432 433 434 435
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
436

W
wopeizl 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
523 524


P
phlrain 已提交
525 526 527 528 529 530
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
531
         dropout_prob=0.0,
P
phlrain 已提交
532 533 534 535 536
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
537
    """
P
phlrain 已提交
538
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
539 540

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
541
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
542 543
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
544
    .. math::
M
minqiyang 已提交
545 546 547 548 549 550 551

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
552
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
553 554 555 556

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
557 558

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
559 560 561 562 563 564
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
565 566 567
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
568
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
569

M
minqiyang 已提交
570
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
571 572 573 574 575
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
576
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
577 578 579 580 581
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
582
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
583 584
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
585 586
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
587 588 589 590 591 592
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
593
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
594

L
liuhongyu 已提交
595 596

    Returns:
M
minqiyang 已提交
597 598
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
599
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
600

H
haowang101779990 已提交
601 602 603 604
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
605
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
606 607
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
608
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
624
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
625 626 627 628 629 630
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
631 632 633
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
693 694 695 696 697 698 699 700 701 702
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
703
                  proj_activation='tanh',
704
                  dtype='float32',
X
xuezhong 已提交
705 706 707 708 709
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
710 711 712
    """
    **Dynamic LSTMP Layer**

713 714 715 716 717 718
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
719 720 721 722 723

    The formula is as follows:

    .. math::

724
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
725

726
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
727

728
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
729

730
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
731

732
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
733

734
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
735

736
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
737

Y
Yibing Liu 已提交
738 739 740 741 742 743
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
744
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
745
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
746
          bias vector).
Y
Yibing Liu 已提交
747 748 749
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
750
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
751
    * :math:`h`: The hidden state.
752
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
753 754
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
755
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
756
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
757
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
758 759
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
760 761 762 763

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
764

Y
Yibing Liu 已提交
765 766 767 768 769 770 771 772 773 774 775 776
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
777
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
778 779
                               hidden-hidden weight and projection weight.

780 781
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
782 783
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
784 785
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
786
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
787 788 789 790 791

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
792
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
793 794 795 796 797 798
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
799
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
800 801 802
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
803
                                - The shape is (1 x 7D).
C
chengduo 已提交
804 805 806 807 808

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
809 810 811 812 813 814 815 816 817
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
818
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
819 820
                              default "tanh".
        proj_activation(str): The activation for projection output.
821
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
822
                              default "tanh".
Y
Yibing Liu 已提交
823
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
824 825
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
826 827 828 829 830 831 832 833 834 835 836
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
837 838

    Returns:
839 840 841 842
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
843 844

    Examples:
845

Y
Yibing Liu 已提交
846 847
        .. code-block:: python

848 849 850 851
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
852
            hidden_dim, proj_dim = 512, 256
853
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
854
                                     act=None, bias_attr=None)
855 856 857
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
858 859 860 861
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
862
    """
863

C
chengduo 已提交
864
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
865
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
866
    size = size // 4
Y
Yibing Liu 已提交
867 868 869 870 871 872 873 874 875 876
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
877 878 879 880 881 882
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
898

X
xuezhong 已提交
899 900 901 902 903
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
904 905
    helper.append_op(
        type='lstmp',
906
        inputs=inputs,
Y
Yibing Liu 已提交
907 908 909 910 911 912 913 914 915
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
916 917
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
918 919 920 921 922 923 924 925 926
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
927 928 929 930 931 932 933
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
934 935
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
936
    """
937
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
938

939 940 941
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
942

G
guosheng 已提交
943 944 945 946 947 948 949 950 951
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
952

G
guosheng 已提交
953
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
954

Q
Qiao Longfei 已提交
955 956 957

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
958 959 960 961 962 963 964 965 966 967 968 969
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
970
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
971 972
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
973 974 975 976
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
977
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
978 979

    Args:
980 981
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
982
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
983
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
984 985
            is the hidden size.
        size(int): The dimension of the gru cell.
986
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
987 988
            hidden-hidden weight matrix. Note:

989
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
990
              :math:`D` is the hidden size.
991
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
992
              The first part are weights of the update gate and reset gate with
993
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
994
              candidate hidden state with shape :math:`(D \\times D)`.
995 996 997 998 999

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1000
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1001
            the bias in the update gate, reset gate and candidate calculations.
1002 1003 1004
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1005 1006
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1007
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1008 1009 1010
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1011
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1012
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1013 1014 1015 1016
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1017 1018

    Returns:
G
guosheng 已提交
1019
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1020
            and sequence length is the same with the input.
1021

G
guosheng 已提交
1022
    Examples:
1023

G
guosheng 已提交
1024 1025
        .. code-block:: python

1026 1027 1028 1029
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1030
            hidden_dim = 512
1031
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1032
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1042
    batch_size = input.shape[0]
G
guosheng 已提交
1043
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1044
    if h_0:
G
guosheng 已提交
1045
        assert h_0.shape == (
Y
Yancey 已提交
1046 1047 1048
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1049

X
Xin Pan 已提交
1050 1051 1052 1053
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1067 1068
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1069 1070 1071 1072
        })
    return hidden


Y
Yu Yang 已提交
1073 1074 1075
def gru_unit(input,
             hidden,
             size,
1076 1077
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1078
             activation='tanh',
Q
Qiao Longfei 已提交
1079 1080
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1081
    """
1082 1083 1084
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1085
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1086
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1087

1088 1089
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1090

1091
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1092

1093
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1110 1111

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1112 1113 1114
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1115 1116
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1117 1118
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1119 1120 1121
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1122 1123 1124

    Args:
        input (Variable): The fc transformed input value of current step.
1125
        hidden (Variable): The hidden value of gru unit from previous step.
1126
        size (integer): The input dimension value.
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1141
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1142
            the bias in the update gate, reset gate and candidate calculations.
1143 1144 1145
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1146 1147
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1148 1149 1150 1151
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1152

1153 1154 1155 1156 1157 1158
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1159

1160
             # assuming we have x_t_data and prev_hidden of size=10
1161
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1162 1163
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1176
    size = size // 3
Y
Yu Yang 已提交
1177 1178

    # create weight
1179 1180
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1181

X
Xin Pan 已提交
1182 1183 1184
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1185
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1186
    # create bias
1187
    if helper.bias_attr:
Y
Yu Yang 已提交
1188 1189 1190
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1191
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1192 1193 1194

    helper.append_op(
        type='gru_unit',
1195
        inputs=inputs,
Y
Yu Yang 已提交
1196 1197 1198 1199 1200 1201
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1202 1203
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1204 1205 1206 1207 1208
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1209
@templatedoc()
1210
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1211 1212 1213 1214 1215 1216 1217
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1218
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1219 1220 1221 1222
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1223 1224 1225
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1226 1227

    """
Y
Yu Yang 已提交
1228 1229 1230 1231 1232 1233
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1234 1235 1236 1237 1238 1239 1240 1241
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1257 1258 1259 1260
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1261

W
wopeizl 已提交
1262 1263
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1264

W
wopeizl 已提交
1265
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1266

W
wopeizl 已提交
1267
        label(${label_type}): ${label_comment}
1268

W
wopeizl 已提交
1269 1270
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1271

W
wopeizl 已提交
1272 1273
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1274

W
wopeizl 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1285
                "Transition": transition,
W
wopeizl 已提交
1286 1287
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1288

W
wopeizl 已提交
1289
    return viterbi_path
Y
Yu Yang 已提交
1290 1291


Y
yi.wu 已提交
1292
@templatedoc()
F
fengjiayi 已提交
1293
def cos_sim(X, Y):
Y
Yu Yang 已提交
1294
    """
Y
yi.wu 已提交
1295 1296 1297
    ${comment}

    Args:
1298 1299
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1300

Y
yi.wu 已提交
1301
    Returns:
1302
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1303
    """
F
fengjiayi 已提交
1304
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1305 1306 1307
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1318 1319 1320 1321 1322
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1323
            dropout_implementation="downgrade_in_infer"):
1324 1325 1326 1327 1328
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1329
    training. The dropout operator randomly sets (according to the given dropout
1330 1331 1332
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1333 1334
    dropout op can be removed from the program to make the program more efficient.

1335
    Args:
1336 1337
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1338 1339 1340 1341 1342 1343 1344
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1345 1346
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1347
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1348 1349 1350 1351 1352 1353

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1354
                                        2. upscale_in_train, upscale the outcome at training time
1355

H
haowang101779990 已提交
1356 1357
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1358

H
haowang101779990 已提交
1359 1360
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1361

M
minqiyang 已提交
1362

1363
    Returns:
1364
        Variable: A tensor variable is the shape with `x`.
1365 1366

    Examples:
1367

1368 1369
        .. code-block:: python

1370 1371
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1372 1373
    """

F
fengjiayi 已提交
1374
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1375 1376 1377
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1378 1379 1380 1381

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1382 1383 1384 1385 1386
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1387 1388 1389 1390
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1391 1392
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1393
        })
1394 1395 1396
    return out


J
jerrywgz 已提交
1397
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1398
    """
Y
Yibing Liu 已提交
1399 1400
    **Cross Entropy Layer**

1401 1402 1403
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1404 1405

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1406
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1407

Y
Yibing Liu 已提交
1408
        .. math::
Y
yangyaming 已提交
1409

Y
Yibing Liu 已提交
1410 1411 1412
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1413 1414
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1415 1416 1417 1418 1419

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1420
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1421 1422 1423
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1424 1425
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1426
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1427

Y
Yibing Liu 已提交
1428
    Args:
Y
yangyaming 已提交
1429
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1430 1431 1432 1433
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1434
        label (Variable|list): the ground truth which is a 2-D tensor. When
1435 1436 1437 1438
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1439
        soft_label (bool): a flag indicating whether to
1440
                                           interpretate the given labels as soft
1441
                                           labels. Default: `False`.
M
minqiyang 已提交
1442 1443
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1444
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1445 1446 1447 1448 1449

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1450 1451 1452
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1453

H
haowang101779990 已提交
1454 1455
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1456

H
haowang101779990 已提交
1457 1458
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1459 1460 1461 1462 1463 1464

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1465
    """
S
sneaxiy 已提交
1466 1467
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1468
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1469
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1470 1471 1472 1473 1474
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1475 1476
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1477 1478 1479
    return out


S
sneaxiy 已提交
1480 1481 1482 1483
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1484
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1485 1486 1487 1488 1489
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1490
                 'MatchX': [match_x],
S
sneaxiy 已提交
1491 1492 1493 1494 1495
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1496
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1497 1498 1499
    """
    Bayesian Personalized Ranking Loss Operator.

1500
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1501 1502 1503 1504 1505 1506
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1507 1508 1509 1510 1511 1512
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1513 1514
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1515 1516 1517
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1518 1519 1520
    Examples:
        .. code-block:: python

1521
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1522
    """
1523 1524 1525 1526 1527 1528

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1529
                'Label': [label]},
1530 1531 1532 1533
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1534
def square_error_cost(input, label):
Y
Yu Yang 已提交
1535
    """
1536 1537
    **Square error cost layer**

1538 1539
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1554 1555
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1556 1557

    Returns:
G
guosheng 已提交
1558
        Variable: The tensor variable storing the element-wise squared error \
1559
                  difference of input and label.
1560 1561 1562 1563 1564 1565 1566 1567

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1568
    """
F
fengjiayi 已提交
1569
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1570
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1571 1572 1573 1574 1575 1576
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1577
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1578
    helper.append_op(
F
fengjiayi 已提交
1579 1580
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1581 1582 1583
    return square_out


Y
yi.wu 已提交
1584
@templatedoc()
Y
Yu Yang 已提交
1585 1586 1587 1588
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1589
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1590
    """
Y
yi.wu 已提交
1591
    **Chunk Evaluator**
Y
yi.wu 已提交
1592

Y
yangyaming 已提交
1593
    This function computes and outputs the precision, recall and
1594
    F1-score of chunk detection.
Y
yi.wu 已提交
1595

M
minqiyang 已提交
1596
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1597
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1598 1599 1600 1601 1602 1603

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1604

Y
yi.wu 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1630

Y
yi.wu 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1655
    Args:
1656 1657 1658 1659 1660
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1661

Y
yi.wu 已提交
1662
    Returns:
Y
update  
yi.wu 已提交
1663 1664 1665
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1666

Y
yi.wu 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1679
    """
F
fengjiayi 已提交
1680
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1681 1682

    # prepare output
X
Xin Pan 已提交
1683 1684 1685 1686 1687 1688 1689
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1690 1691 1692 1693 1694 1695 1696 1697

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1698 1699 1700 1701
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1702 1703 1704
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1705 1706
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1707
        })
1708 1709
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1710 1711


1712
@templatedoc()
Y
Yu Yang 已提交
1713 1714 1715 1716 1717 1718 1719
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1720 1721
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1722 1723 1724 1725
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1726 1727 1728 1729 1730 1731 1732

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1746

1747 1748
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1749 1750 1751 1752 1753 1754 1755
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1756
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1767
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1768 1769 1770 1771 1772 1773
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1774
def sequence_softmax(input, use_cudnn=False, name=None):
1775 1776 1777
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1778
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1795 1796 1797
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1798

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1810 1811
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1812
    softmax_out = helper.create_variable_for_type_inference(dtype)
1813 1814 1815 1816 1817 1818 1819 1820
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1821
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1822
    """
1823
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1824
    has the same shape as the input.
Q
qiaolongfei 已提交
1825

1826 1827 1828 1829 1830 1831
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1832
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1833 1834 1835 1836 1837 1838 1839

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1840
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1841 1842 1843 1844 1845 1846 1847 1848

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1849 1850
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1851 1852
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1865 1866
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1867
    softmax_out = helper.create_variable_for_type_inference(dtype)
1868 1869 1870 1871 1872 1873 1874 1875
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1876 1877 1878
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1879 1880
           stride=1,
           padding=0,
1881
           dilation=1,
Y
Yu Yang 已提交
1882 1883 1884
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1885
           use_cudnn=True,
1886 1887
           act=None,
           name=None):
Y
Yu Yang 已提交
1888
    """
C
chengduoZH 已提交
1889
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1890 1891
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1892
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1893 1894 1895 1896 1897 1898 1899
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1900 1901 1902
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1903

1904
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1905

C
chengduoZH 已提交
1906 1907
    .. math::

C
refine  
chengduoZH 已提交
1908
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1909

T
tensor-tang 已提交
1910
    Where:
C
chengduoZH 已提交
1911

1912 1913 1914 1915 1916
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1917
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1918 1919 1920

    Example:

1921 1922
        - Input:

W
weixing02 已提交
1923
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1924

W
weixing02 已提交
1925
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1926

1927
        - Output:
T
tensor-tang 已提交
1928

W
weixing02 已提交
1929
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1930

C
chengduoZH 已提交
1931
        Where
1932 1933

        .. math::
C
chengduoZH 已提交
1934

W
weixing02 已提交
1935 1936
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1937 1938

    Args:
1939
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1940
        num_filters(int): The number of filter. It is as same as the output
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1958 1959 1960 1961 1962
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1963
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1964 1965 1966 1967 1968
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1969 1970
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1971 1972
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1973
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1974
            will be named automatically. Default: None
C
chengduoZH 已提交
1975 1976

    Returns:
G
guosheng 已提交
1977
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1978 1979
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1980
    Raises:
1981 1982
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1983

C
chengduoZH 已提交
1984 1985 1986
    Examples:
        .. code-block:: python

1987 1988
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1989 1990 1991
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1992
    assert param_attr is not False, "param_attr should not be False here."
1993
    l_type = 'conv2d'
X
xzl 已提交
1994 1995
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1996
        l_type = 'depthwise_conv2d'
1997 1998 1999 2000

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2001 2002 2003 2004 2005
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2006
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2007

C
chengduoZH 已提交
2008 2009 2010
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2011
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2012

C
chengduoZH 已提交
2013 2014
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2015 2016

    input_shape = input.shape
M
minqiyang 已提交
2017
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2018 2019

    def _get_default_param_initializer():
C
chengduo 已提交
2020 2021
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2022 2023 2024 2025 2026 2027 2028 2029
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2030
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2046
    helper.append_op(
2047
        type=l_type,
Y
Yu Yang 已提交
2048 2049 2050 2051 2052
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2053 2054 2055
        attrs={
            'strides': stride,
            'paddings': padding,
2056
            'dilations': dilation,
C
chengduoZH 已提交
2057
            'groups': groups,
2058
            'use_cudnn': use_cudnn,
2059
            'use_mkldnn': False,
2060
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2061
        })
Y
Yu Yang 已提交
2062 2063 2064 2065 2066 2067

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2085 2086 2087 2088 2089 2090
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2100 2101
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2102 2103 2104
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2105
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2131
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2132 2133
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2134
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2135 2136
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2137
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2138 2139
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2140
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2141 2142 2143 2144 2145 2146
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2157 2158
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2159 2160
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2161
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2162
            will be named automatically. Default: None.
C
chengduoZH 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2175 2176
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2177 2178 2179
    """

    l_type = 'conv3d'
C
chengduo 已提交
2180
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2191
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2205 2206 2207
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2208 2209 2210 2211 2212 2213 2214 2215
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2216
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2231
            'use_mkldnn': False
C
chengduoZH 已提交
2232 2233
        })

2234
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2235 2236 2237 2238

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2239
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2240
    """
Y
yangyaming 已提交
2241 2242 2243
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2255
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2256 2257 2258 2259 2260
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2261
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2262 2263 2264 2265 2266 2267 2268

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2269 2270
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2271

L
Luo Tao 已提交
2272 2273
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2274
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2275
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2276
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2277 2278 2279 2280 2281 2282 2283

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2284

Y
yangyaming 已提交
2285
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2286 2287 2288 2289 2290
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2291 2292
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2293
    """
F
fengjiayi 已提交
2294
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2295
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2296 2297
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2298 2299 2300 2301 2302 2303

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2304 2305
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2306

Y
yangyaming 已提交
2307 2308 2309 2310 2311
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2312 2313 2314
    return pool_out


C
add doc  
chengduoZH 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2334
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2335 2336 2337 2338 2339
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2340
def sequence_first_step(input):
L
Luo Tao 已提交
2341
    """
L
Luo Tao 已提交
2342
    This function gets the first step of sequence.
L
Luo Tao 已提交
2343 2344 2345 2346

    .. code-block:: text

       x is a 1-level LoDTensor:
2347
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2348 2349 2350 2351 2352
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2353
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2354
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2355

L
Luo Tao 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2365

Y
yangyaming 已提交
2366
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2367 2368 2369
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2370 2371 2372
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2373
def sequence_last_step(input):
L
Luo Tao 已提交
2374
    """
L
Luo Tao 已提交
2375
    This function gets the last step of sequence.
L
Luo Tao 已提交
2376 2377 2378 2379

    .. code-block:: text

       x is a 1-level LoDTensor:
2380
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2381 2382 2383 2384 2385
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2386
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2387
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2388

L
Luo Tao 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2398

Y
yangyaming 已提交
2399
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2400 2401 2402
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2403 2404 2405
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2406 2407 2408 2409
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2410
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2411 2412 2413 2414 2415
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2416

H
haowang101779990 已提交
2417
              - Case:
Y
Yibing Liu 已提交
2418

2419
            Given the input Variable **input**:
2420

2421 2422 2423
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2424

2425
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2426

2427
            the output Variable will be
2428

2429 2430 2431
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2432

M
minqiyang 已提交
2433
    Note:
H
haowang101779990 已提交
2434
          The first dimension size of **input**, **offset** and **length**
2435
          should be equal. The **offset** should start from 0.
2436

Y
Yibing Liu 已提交
2437
    Args:
2438
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2439
                         sequences.
Y
Yibing Liu 已提交
2440 2441 2442 2443 2444 2445
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2446
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2457
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2458 2459 2460 2461
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2462
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2477
@templatedoc()
Y
Yu Yang 已提交
2478
def pool2d(input,
C
chengduoZH 已提交
2479 2480
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2481 2482
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2483
           global_pooling=False,
C
chengduoZH 已提交
2484
           use_cudnn=True,
2485
           ceil_mode=False,
2486 2487
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2488
    """
F
fengjiayi 已提交
2489
    ${comment}
2490 2491

    Args:
2492 2493 2494
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2495
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2496
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2497 2498
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2499
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2500 2501 2502 2503 2504 2505
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2506 2507 2508
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2509
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2510
                        layer will be named automatically.
2511
        exclusive (bool): Whether to exclude padding points in average pooling
2512
                          mode, default is true
F
fengjiayi 已提交
2513

2514
    Returns:
F
fengjiayi 已提交
2515
        Variable: The pooling result.
F
fengjiayi 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2528
          pool2d = fluid.layers.pool2d(
2529 2530 2531 2532
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2533
                            global_pooling=False)
Y
Yu Yang 已提交
2534 2535 2536 2537 2538
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2539

C
chengduoZH 已提交
2540 2541 2542 2543 2544
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2545 2546 2547 2548
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2549 2550
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2551

C
Add doc  
chengduoZH 已提交
2552
    l_type = 'pool2d'
2553 2554

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2555
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2556
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2557 2558

    helper.append_op(
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2570 2571
            "use_mkldnn": False,
            "exclusive": exclusive,
2572 2573 2574 2575 2576
        })

    return pool_out


D
dengkaipeng 已提交
2577
@templatedoc()
2578 2579 2580 2581 2582 2583 2584 2585
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2586 2587
           name=None,
           exclusive=True):
2588
    """
2589
    ${comment}
2590 2591

    Args:
D
dengkaipeng 已提交
2592 2593 2594 2595 2596
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2597 2598 2599 2600 2601
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2602 2603 2604 2605 2606 2607 2608
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2609
        exclusive (bool): Whether to exclude padding points in average pooling
2610
                          mode, default is true
2611

2612
    Returns:
2613
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2627 2628 2629 2630 2631
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2632

C
chengduoZH 已提交
2633 2634 2635 2636 2637
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2638 2639 2640
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2641

C
chengduoZH 已提交
2642 2643
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2644

2645 2646
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2647
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2648
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2649 2650

    helper.append_op(
2651
        type=l_type,
Y
Yu Yang 已提交
2652 2653 2654 2655 2656 2657 2658
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2659
            "paddings": pool_padding,
2660
            "use_cudnn": use_cudnn,
2661
            "ceil_mode": ceil_mode,
2662 2663
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2664 2665 2666 2667 2668
        })

    return pool_out


2669 2670 2671 2672 2673 2674 2675
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2676 2677 2678 2679 2680 2681 2682
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2683

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2697 2698 2699 2700 2701 2702 2703 2704 2705

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2706 2707
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2722
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2723
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2724
          # of input data into m * n grids averagely and performs poolings in each
2725 2726
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2727
          #
2728 2729 2730 2731 2732 2733 2734 2735
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2736 2737
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2738
          pool_out = fluid.layers.adaptive_pool2d(
2739 2740
                            input=data,
                            pool_size=[3, 3],
2741
                            pool_type='avg')
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2752
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2778
    return (pool_out, mask) if require_index else pool_out
2779 2780 2781 2782 2783 2784 2785 2786 2787


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2788 2789 2790 2791 2792 2793 2794
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2795

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2813 2814 2815

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2816 2817 2818
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2819
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2820
            it must contain three integers, (Depth, Height, Width).
2821
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2822 2823
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2838 2839
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2840
          # of input data into l * m * n grids averagely and performs poolings in each
2841 2842
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2843
          #
2844 2845 2846 2847 2848 2849 2850 2851 2852
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2853
          #                 output[:, :, i, j, k] =
2854 2855
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2856 2857
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2858
          pool_out, mask = fluid.layers.adaptive_pool3d(
2859
                            input=data,
D
dengkaipeng 已提交
2860
                            pool_size=[3, 3, 3],
2861
                            pool_type='avg')
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2872
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2898
    return (pool_out, mask) if require_index else pool_out
2899 2900


Y
Yu Yang 已提交
2901 2902 2903 2904 2905 2906 2907
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2908
               data_layout='NCHW',
Y
Yang Yang 已提交
2909
               in_place=False,
2910 2911
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2912
               moving_variance_name=None,
2913
               do_model_average_for_mean_and_var=False,
2914 2915
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2916
    """
Q
qiaolongfei 已提交
2917 2918 2919 2920
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2921

Q
qiaolongfei 已提交
2922
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2923

Q
qiaolongfei 已提交
2924 2925
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2926 2927 2928
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2941

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2955
    Args:
Q
qingqing01 已提交
2956
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2957
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2967 2968 2969 2970 2971 2972 2973 2974
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2975
        data_layout(string, default NCHW): NCHW|NHWC
2976
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2977 2978 2979 2980
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2981
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2982
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2983 2984 2985 2986 2987
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2988 2989

    Returns:
Q
qiaolongfei 已提交
2990
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2991 2992 2993 2994 2995 2996 2997

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2998
    """
C
chengduo 已提交
2999
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3000 3001 3002
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3003 3004 3005 3006
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3025
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3026

3027 3028
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3029 3030 3031
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3032
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3033
        shape=param_shape,
W
Wu Yi 已提交
3034
        dtype=dtype)
3035 3036 3037 3038 3039 3040
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3041
            trainable=False,
W
wanghaoshuang 已提交
3042
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3043
        shape=param_shape,
W
Wu Yi 已提交
3044
        dtype=dtype)
3045
    variance.stop_gradient = True
Y
Yu Yang 已提交
3046 3047 3048 3049 3050 3051

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3052 3053 3054 3055
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3056

X
Xin Pan 已提交
3057 3058
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3076 3077 3078 3079
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3080
            "data_layout": data_layout,
X
Xin Pan 已提交
3081
            "use_mkldnn": False,
3082 3083
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3084
        })
Y
Yu Yang 已提交
3085 3086 3087 3088

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3208
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3209 3210 3211 3212

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3213
@templatedoc()
G
guosheng 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3224
    ${comment}
G
guosheng 已提交
3225 3226 3227

    The formula is as follows:

Y
yuyang18 已提交
3228
    ..  math::
G
guosheng 已提交
3229 3230 3231 3232 3233 3234 3235

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3236 3237 3238 3239 3240 3241 3242 3243
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3244

G
guosheng 已提交
3245 3246
    Args:
        input(Variable): The input tensor variable.
3247
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3248
            normalization. Default True.
3249
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3250 3251
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3252
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3253
            Default 1.
3254
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3255
            division by zero. Default 1e-05.
G
guosheng 已提交
3256
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3257 3258
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3259 3260
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3261
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3262 3263
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3264
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3265
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3266
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3267 3268 3269
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3270 3271

    Returns:
Y
yuyang18 已提交
3272
        ${y_comment}
G
guosheng 已提交
3273 3274 3275

    Examples:

Y
yuyang18 已提交
3276 3277 3278
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3294
    if shift:
G
guosheng 已提交
3295 3296 3297 3298 3299 3300
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3301 3302 3303 3304 3305
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3333
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3381 3382
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3400
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3401 3402 3403
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3404
    This layer calculates the spectral normalization value of weight parameters of
3405
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3406
    Parameters. Calculations are showed as follows.
3407

D
dengkaipeng 已提交
3408 3409 3410
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3411
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3424
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3425 3426 3427 3428

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3429

D
dengkaipeng 已提交
3430
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3431 3432
                

D
dengkaipeng 已提交
3433 3434 3435 3436
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3437 3438 3439
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3440 3441 3442
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3443
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3444 3445 3446 3447 3448 3449 3450 3451

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3452
    dtype = weight.dtype
D
dengkaipeng 已提交
3453 3454 3455

    # create intput and parameters
    inputs = {'Weight': weight}
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3474 3475

    # create output
3476
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3477 3478

    helper.append_op(
3479
        type="spectral_norm",
D
Dun 已提交
3480
        inputs=inputs,
3481 3482 3483 3484 3485 3486
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3487

3488
    return out
D
Dun 已提交
3489 3490


Y
Yu Yang 已提交
3491 3492 3493 3494
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3495 3496 3497
                     padding=0,
                     stride=1,
                     dilation=1,
3498
                     groups=None,
C
caoying03 已提交
3499
                     param_attr=None,
3500
                     bias_attr=None,
C
chengduoZH 已提交
3501
                     use_cudnn=True,
3502
                     act=None,
C
caoying03 已提交
3503
                     name=None):
Y
Yu Yang 已提交
3504
    """
3505 3506 3507 3508 3509 3510 3511 3512
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3513 3514
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3515 3516 3517
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3518 3519 3520 3521 3522

    For each input :math:`X`, the equation is:

    .. math::

3523
        Out = \sigma (W \\ast X + b)
3524

3525
    Where:
3526 3527 3528

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3529 3530 3531 3532
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3533

3534 3535 3536 3537
    Example:

        - Input:

3538
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3539

3540
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3541 3542 3543

        - Output:

3544
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3545 3546

        Where
Y
Yu Yang 已提交
3547

3548 3549
        .. math::

3550 3551
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3552 3553
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3554 3555

    Args:
3556 3557 3558 3559
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3560 3561 3562 3563
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3592
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3593 3594 3595
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3596
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3597
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3598 3599

    Returns:
3600
        Variable: The tensor variable storing the convolution transpose result.
3601 3602

    Raises:
3603 3604
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3605 3606 3607 3608

    Examples:
       .. code-block:: python

3609 3610
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3611
    """
C
chengduo 已提交
3612
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3613 3614 3615 3616 3617 3618 3619 3620
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3621 3622 3623
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3624 3625 3626
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3627

C
chengduoZH 已提交
3628 3629
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3630

Y
Yu Yang 已提交
3631 3632 3633 3634 3635
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3636

Y
Yu Yang 已提交
3637 3638
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3639

C
chengduoZH 已提交
3640
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3641
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3642
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3643
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3644
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3645 3646 3647
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3648

3649 3650 3651 3652 3653 3654 3655
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3656
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3657
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3658

Y
Yu Yang 已提交
3659 3660 3661
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3662
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3663
    helper.append_op(
3664
        type=op_type,
Y
Yu Yang 已提交
3665 3666
        inputs={'Input': [input],
                'Filter': [img_filter]},
3667
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3668
        attrs={
3669
            'output_size': output_size,
3670 3671 3672 3673 3674
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3675 3676
        })

3677 3678 3679
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3680 3681


3682
def conv3d_transpose(input,
Y
Yu Yang 已提交
3683 3684 3685
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3686 3687 3688
                     padding=0,
                     stride=1,
                     dilation=1,
3689
                     groups=None,
C
caoying03 已提交
3690
                     param_attr=None,
3691
                     bias_attr=None,
C
chengduoZH 已提交
3692
                     use_cudnn=True,
3693
                     act=None,
C
caoying03 已提交
3694
                     name=None):
Y
Yu Yang 已提交
3695
    """
3696
    **Convlution3D transpose layer**
3697

3698
    The convolution3D transpose layer calculates the output based on the input,
3699
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3700 3701 3702 3703 3704 3705
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3706 3707 3708
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3709 3710 3711 3712 3713

    For each input :math:`X`, the equation is:

    .. math::

3714
        Out = \sigma (W \\ast X + b)
3715 3716 3717

    In the above equation:

3718 3719
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3720 3721 3722 3723
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3724

3725 3726 3727 3728
    Example:

        - Input:

3729
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3730

3731
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3732 3733 3734

        - Output:

3735
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3736 3737

        Where
Y
Yu Yang 已提交
3738

3739 3740
        .. math::

3741 3742 3743
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3744 3745

    Args:
3746
        input(Variable): The input image with [N, C, D, H, W] format.
3747 3748 3749
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3750
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3751 3752
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3753
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3754 3755 3756
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3757 3758
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3759
        stride(int|tuple): The stride size. If stride is a tuple, it must
3760 3761
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3762
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3763 3764 3765
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3766 3767 3768 3769 3770
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3780 3781
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3782 3783
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3784 3785
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3786 3787

    Returns:
3788
        Variable: The tensor variable storing the convolution transpose result.
3789 3790

    Raises:
3791 3792
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3793 3794 3795 3796

    Examples:
       .. code-block:: python

3797 3798
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3799
    """
C
chengduo 已提交
3800
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3801 3802
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3803
    if not isinstance(input, Variable):
3804
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3805 3806
    input_channel = input.shape[1]

3807 3808 3809
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3810

C
chengduoZH 已提交
3811 3812 3813
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3814 3815 3816 3817 3818 3819
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3820 3821 3822
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3823

3824
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3825
                         padding[0] - 1) // dilation[0] + 1
3826
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3827
                         padding[1] - 1) // dilation[1] + 1
3828
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3829
                         padding[2] - 1) // dilation[2] + 1
3830
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3831
    else:
3832 3833
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3834

3835
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3836
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3837 3838 3839
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3840
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3841
    helper.append_op(
3842
        type=l_type,
Y
Yu Yang 已提交
3843 3844
        inputs={'Input': [input],
                'Filter': [img_filter]},
3845
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3846 3847 3848 3849
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3850
            'groups': groups,
C
chengduoZH 已提交
3851 3852
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3853

3854 3855
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3856
    return out
Y
yangyaming 已提交
3857 3858


Y
yangyaming 已提交
3859
def sequence_expand(x, y, ref_level=-1, name=None):
3860
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3861 3862 3863 3864
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3865 3866 3867 3868 3869

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3870
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3871
                x.data = [[a], [b], [c], [d]]
3872 3873 3874
                x.dims = [4, 1]

            y is a LoDTensor:
3875 3876
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3877

Y
yangyaming 已提交
3878
            ref_level: 0
3879

Y
yangyaming 已提交
3880
            then output is a 1-level LoDTensor:
3881
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3882
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3883 3884 3885 3886
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3887
                x.data = [[a], [b], [c]]
3888 3889 3890
                x.dims = [3, 1]

            y is a LoDTensor:
3891
                y.lod = [[2, 0, 3]]
3892

Y
yangyaming 已提交
3893
            ref_level: -1
3894

Y
yangyaming 已提交
3895 3896 3897
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3898 3899 3900
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3901 3902
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3903
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3904
                        will be named automatically.
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3915
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3916
    """
Y
yangyaming 已提交
3917
    helper = LayerHelper('sequence_expand', input=x, **locals())
3918
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3919
    tmp = helper.create_variable_for_type_inference(dtype)
3920
    helper.append_op(
Y
yangyaming 已提交
3921 3922 3923 3924 3925
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3926
    return tmp
3927 3928


C
chengduo 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3985
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3986 3987 3988 3989 3990 3991 3992 3993
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3994
@templatedoc()
3995
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3996 3997 3998 3999 4000
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4001 4002 4003
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4004
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4005 4006 4007 4008
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4009 4010 4011
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4012

F
fengjiayi 已提交
4013
    Returns:
M
minqiyang 已提交
4014
        Variable: The padded sequence batch and the original lengths before
4015
                  padding. All sequences has the same length.
M
minqiyang 已提交
4016

F
fengjiayi 已提交
4017 4018 4019 4020 4021 4022 4023
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4024
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4025
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4026 4027 4028 4029 4030
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4031 4032
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4033 4034 4035 4036

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4037 4038 4039 4040 4041 4042
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4043 4044
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4045
        attrs={'padded_length': maxlen})
4046
    return out, length
F
fengjiayi 已提交
4047 4048


4049
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4050
    """
4051
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4052

4053 4054
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4064 4065 4066
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4067
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4068 4069 4070 4071 4072 4073

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4074
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4075 4076 4077 4078 4079 4080

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4081 4082
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4097
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4109 4110 4111 4112 4113 4114 4115
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4116
                is_accumulated=True,
4117 4118
                name=None,
                return_parent_idx=False):
4119
    """
4120 4121
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4122 4123 4124

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4125 4126

    This layer does the search in beams for one time step. Specifically, it
4127 4128 4129
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4141 4142 4143 4144

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4145

4146
    Args:
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4170 4171
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4172 4173
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4174 4175 4176 4177
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4178

4179
    Returns:
4180 4181 4182 4183
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4184 4185 4186 4187

    Examples:
        .. code-block:: python

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4205
    helper = LayerHelper('beam_search', **locals())
4206 4207 4208 4209 4210 4211
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4212

X
Xin Pan 已提交
4213 4214 4215
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4216 4217 4218 4219 4220
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4221 4222 4223

    helper.append_op(
        type='beam_search',
4224
        inputs=inputs,
Q
Qiao Longfei 已提交
4225 4226 4227
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4228
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4229 4230 4231 4232 4233 4234
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4235
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4236
        })
4237 4238 4239 4240
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4241 4242


4243 4244 4245 4246 4247 4248 4249
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4250

4251 4252 4253 4254 4255 4256 4257 4258 4259
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4260

4261 4262 4263 4264 4265 4266
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4267

4268 4269
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4270

4271 4272 4273 4274 4275 4276
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4277 4278
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4294 4295 4296 4297
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4298
              param_attr=None,
C
caoying03 已提交
4299 4300
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4301 4302 4303 4304
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4305
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4306

4307
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4308

4309
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4310

4311
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4312 4313 4314

            h_t & = o_t tanh(c_t)

4315 4316 4317 4318 4319 4320
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4321 4322 4323

        .. math::

4324
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4325 4326 4327 4328 4329 4330 4331 4332

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4333
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4334 4335

    Args:
Y
yangyaming 已提交
4336 4337 4338 4339 4340 4341
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4342
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4355 4356
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4357 4358

    Returns:
Y
yangyaming 已提交
4359
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4360 4361

    Raises:
4362 4363 4364 4365
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4366 4367 4368 4369 4370 4371

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4372
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4373
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4374
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4391
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4392 4393 4394 4395
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4396 4397
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4398 4399 4400
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4401
    size = cell_t_prev.shape[1]
4402
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4403 4404
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4405
                param_attr=param_attr,
4406
                bias_attr=bias_attr)
Y
yangyaming 已提交
4407
    dtype = x_t.dtype
X
Xin Pan 已提交
4408 4409
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4419
    return h, c
G
guosheng 已提交
4420 4421


C
caoying03 已提交
4422
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4423
    """
Y
yangyaming 已提交
4424
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4425 4426 4427

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4428
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4429 4430
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4431 4432
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4433
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4434
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4435
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4436 4437
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4438 4439 4440

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4441

G
guosheng 已提交
4442 4443 4444 4445 4446 4447
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4448
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4449 4450 4451 4452
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4453 4454 4455 4456

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4457
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4458 4459 4460
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4461 4462
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4463
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4464 4465
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4466 4467 4468 4469 4470
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4471
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4472 4473 4474 4475
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4476 4477


C
caoying03 已提交
4478
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4479
    """
Y
Yibing Liu 已提交
4480
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4481 4482 4483

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4484 4485 4486
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4487
            must be in the range :math:`[-rank(input), rank(input))`. If
4488
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4489
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4490 4491
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4492
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4493
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4494
                       will be named automatically.
G
guosheng 已提交
4495 4496

    Returns:
Y
Yibing Liu 已提交
4497
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4498

G
guosheng 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4509 4510
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4511 4512 4513 4514 4515 4516 4517

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4518 4519
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4520
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4521 4522
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4523 4524 4525 4526 4527
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4528
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4529 4530 4531 4532
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4533 4534


C
caoying03 已提交
4535
def reduce_max(input, dim=None, keep_dim=False, name=None):
4536
    """
Y
yangyaming 已提交
4537
    Computes the maximum of tensor elements over the given dimension.
4538 4539 4540

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4541
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4542 4543 4544
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4545
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4546 4547
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4548
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4549 4550
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4551 4552 4553

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4554

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4566 4567 4568 4569 4570 4571 4572

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4573 4574
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4575
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4576 4577
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4578 4579 4580 4581 4582
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4583
            'dim': dim if dim != None else [0],
4584 4585 4586 4587 4588 4589
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4590
def reduce_min(input, dim=None, keep_dim=False, name=None):
4591
    """
Y
yangyaming 已提交
4592
    Computes the minimum of tensor elements over the given dimension.
4593 4594 4595

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4596
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4597 4598 4599
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4600
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4601 4602
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4603
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4604 4605
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4606 4607 4608

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4609

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4621 4622 4623 4624 4625 4626 4627

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4628 4629
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4630
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4631 4632
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4633 4634 4635 4636 4637
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4638
            'dim': dim if dim != None else [0],
4639 4640 4641 4642
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4643 4644


4645 4646 4647 4648 4649 4650
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4651
        dim (list|int|None): The dimensions along which the product is performed. If
4652 4653
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4654 4655
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4656 4657 4658
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4659
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4660
            layer will be named automatically.
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4675
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4676
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4677 4678 4679 4680 4681 4682 4683

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4684 4685
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4686
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4687 4688
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4689 4690 4691 4692 4693
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4694
            'dim': dim if dim != None else [0],
4695 4696 4697 4698 4699 4700
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4701
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4702
    """
C
caoying03 已提交
4703
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4704 4705 4706

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4707 4708 4709 4710 4711
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4712
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4713
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4714
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4715 4716
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4717 4718

    Returns:
D
dzhwinter 已提交
4719
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4729 4730
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4746
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4769
    .. math::
4770 4771

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4772 4773 4774 4775 4776

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4777
        x(Variable|list): The input tensor to l2_normalize layer.
4778
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4779 4780
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4781
        epsilon(float): The epsilon value is used to avoid division by zero, \
4782
            the defalut value is 1e-10.
4783
        name(str|None): A name for this layer(optional). If set None, the layer \
4784
            will be named automatically.
C
caoying03 已提交
4785 4786

    Returns:
4787
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4788 4789

    Examples:
4790

C
caoying03 已提交
4791 4792
        .. code-block:: python

4793 4794 4795 4796
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4797 4798
    """

F
fengjiayi 已提交
4799 4800
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4801 4802
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4803 4804
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4805
    helper.append_op(
4806 4807 4808 4809
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4810
        attrs={
4811 4812
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4813 4814
        })
    return out
4815 4816


S
sneaxiy 已提交
4817
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4818
    """
Y
ying 已提交
4819 4820 4821 4822
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4823

C
chengduoZH 已提交
4824
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4825
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4826

4827 4828 4829 4830 4831
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4832
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4833

C
chengduoZH 已提交
4834
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4835
      performs in the following way.
G
guosheng 已提交
4836

4837
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4838
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4839
        last two dimensions and a batched matrix multiply supporting broadcast
4840
        applies on the two tensors.
G
guosheng 已提交
4841

Y
ying 已提交
4842 4843
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4844
    removed after matrix multiplication.
G
guosheng 已提交
4845 4846 4847

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4848 4849 4850
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4851
        alpha (float): The scale of output. Default 1.0.
4852
        name(str|None): A name for this layer(optional). If set None, the layer
4853
            will be named automatically.
G
guosheng 已提交
4854 4855

    Returns:
4856
        Variable: The product Tensor variable.
G
guosheng 已提交
4857

G
guosheng 已提交
4858 4859 4860
    Examples:
        .. code-block:: python

4861
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4862 4863
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4864

4865 4866
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4867

4868 4869
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4870

4871 4872
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4873 4874 4875 4876

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4877 4878
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4879

Y
ying 已提交
4880
            # x: [M], y: [N]
4881
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4882
    """
Y
ying 已提交
4883 4884 4885 4886 4887 4888 4889

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4890
            y_shape = y_shape + [1]
Y
ying 已提交
4891 4892 4893 4894 4895 4896 4897

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4898 4899
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4900

C
chengduo 已提交
4901
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4902 4903
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
C
chengduo 已提交
4904 4905
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4906 4907 4908

    __check_input(x, y)

4909
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4910
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4911
    helper.append_op(
4912 4913 4914 4915
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4916 4917 4918
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4919
            'alpha': float(alpha),
S
sneaxiy 已提交
4920
        })
4921
    return out
4922 4923


4924
def topk(input, k, name=None):
Q
qingqing01 已提交
4925 4926 4927 4928
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4929
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4930 4931 4932 4933 4934 4935
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4957 4958 4959
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4960
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4961
                 of input.
4962
        name(str|None): A name for this layer(optional). If set None, the layer
4963
                       will be named automatically.
F
fengjiayi 已提交
4964
                       Default: None
Q
qingqing01 已提交
4965 4966

    Returns:
4967 4968 4969
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4970
        within the last dimension of input.
Q
qingqing01 已提交
4971

F
fengjiayi 已提交
4972 4973
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4974 4975 4976 4977 4978 4979 4980

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4981 4982
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4983 4984 4985 4986 4987 4988
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4989 4990
    helper.append_op(
        type="top_k",
W
whs 已提交
4991
        inputs=inputs,
Q
qingqing01 已提交
4992 4993
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4994
        attrs=attrs)
Q
qingqing01 已提交
4995 4996 4997 4998 4999
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5000
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5001
    """
Y
ying 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5011

Y
ying 已提交
5012
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5013

5014
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5015 5016
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5017
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5018

5019
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5020 5021
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5022

5023 5024 5025
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5026
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5027
                          the length of reference string.
5028
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5029
                                     calculating edit distance.
5030
        name (str): The name of this layer. It is optional.
5031

W
wanghaoshuang 已提交
5032
    Returns:
W
wanghaoshuang 已提交
5033
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5034 5035 5036 5037

    Examples:
        .. code-block:: python

T
tink2123 已提交
5038 5039
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5040
            cost = fluid.layers.edit_distance(input=x,label=y)
5041
    """
5042
    helper = LayerHelper("edit_distance", **locals())
5043

5044
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5045
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5046 5047
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5048 5049 5050 5051 5052

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5053
            attrs={"tokens": ignored_tokens})
5054 5055 5056 5057 5058
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5059
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5060
            attrs={"tokens": ignored_tokens})
5061 5062
        label = erased_label

5063
    # edit distance op
X
Xin Pan 已提交
5064 5065
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5066 5067 5068 5069
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5070 5071
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5072 5073
        attrs={"normalized": normalized})

5074
    return edit_distance_out, sequence_num
5075 5076 5077 5078 5079


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5080

Y
ying 已提交
5081 5082 5083 5084
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5102
        input.lod = [[4, 4]]
M
minqiyang 已提交
5103

W
whs 已提交
5104
        Computation:
5105

W
whs 已提交
5106 5107 5108 5109 5110 5111
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5112 5113 5114 5115 5116

        output.data = [[2],
                       [1],
                       [3]]

5117
        output.lod = [[2, 1]]
5118

W
whs 已提交
5119

5120 5121
    Args:

Y
ying 已提交
5122 5123 5124 5125 5126 5127 5128 5129 5130
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5131
        name (str): The name of this layer. It is optional.
5132 5133

    Returns:
H
haowang101779990 已提交
5134 5135 5136
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5137
                  LoD [[]] and dims [1, 1].
5138 5139 5140 5141 5142

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5143

5144
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5145
    """
5146
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5147
    _, topk_indices = topk(input, k=1)
5148 5149

    # ctc align op
X
Xin Pan 已提交
5150
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5151 5152 5153
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5154
        outputs={"Output": [ctc_out]},
5155 5156
        attrs={"merge_repeated": True,
               "blank": blank})
5157
    return ctc_out
5158 5159


W
Wu Yi 已提交
5160
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5161
    """
5162 5163
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5164
    to compute Connectionist Temporal Classification (CTC) loss.
5165 5166
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5167 5168 5169
    input tensor.

    Args:
5170
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5171 5172 5173 5174
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5175
       label (Variable): The ground truth of variable-length sequence,
5176 5177 5178
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5179 5180
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5181 5182 5183
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5184
         follewed by a mean_op.
W
Wu Yi 已提交
5185
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5186 5187

    Returns:
5188 5189
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5190 5191

    Examples:
5192

W
wanghaoshuang 已提交
5193
        .. code-block:: python
5194

5195 5196 5197
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5198 5199

    """
F
fengjiayi 已提交
5200
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5201 5202
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5203 5204 5205 5206 5207 5208
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5209 5210 5211 5212 5213
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5214
    return loss_out
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5230 5231 5232
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5233 5234 5235 5236 5237
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5238

5239
            out.lod  = [[0, 1, 3]]
5240 5241 5242 5243

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5244 5245 5246 5247 5248 5249 5250
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5251 5252 5253

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5254 5255

    Returns:
5256

5257 5258 5259 5260 5261
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5262
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5263
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5264 5265
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5266
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5267 5268 5269 5270 5271 5272
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5273 5274


5275 5276 5277 5278
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5279 5280 5281 5282 5283 5284
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5285
        num_neg_samples=None,
5286 5287 5288
        name=None,
        sampler="uniform",
        custom_dist=None,
5289 5290
        seed=0,
        is_sparse=False):
5291 5292 5293 5294 5295 5296 5297
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5298 5299
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5300
            sample is 1.0.
C
chengduo 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5310
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5311 5312
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5313 5314 5315
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5316
        custom_dist (float[]): A float[] with size=num_total_classes.
5317 5318 5319 5320
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5321
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5322

5323
    Returns:
Y
Yibing Liu 已提交
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5351 5352 5353 5354 5355 5356 5357 5358 5359

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5360

5361
    """
Y
Yang Yu 已提交
5362 5363 5364
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5365 5366

    dim = input.shape[1]
Y
Yang Yu 已提交
5367 5368 5369 5370 5371 5372
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5373
    inputs = {}
C
chengduo 已提交
5374 5375 5376 5377 5378 5379 5380
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5381 5382 5383
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5384

5385 5386 5387 5388
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5389 5390 5391 5392 5393 5394 5395

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5396 5397 5398 5399 5400 5401 5402 5403 5404
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5405
            if normal_prob - 1.0 > 0:
5406
                bigs.append((i, normal_prob))
5407
            elif 1.0 - normal_prob > 0:
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5423
            if big_left - 1.0 > 0:
5424
                bigs.append((big_idx, big_left))
5425
            elif 1.0 - big_left > 0:
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5455 5456 5457 5458
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5459 5460 5461 5462 5463
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5464 5465 5466 5467
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5468

Y
Yang Yu 已提交
5469 5470
    attrs = {
        'num_total_classes': int(num_total_classes),
5471 5472
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5473
        'sampler': sampler,
5474 5475
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5476
    }
Y
Yang Yu 已提交
5477 5478 5479

    helper.append_op(
        type='nce',
C
chengduo 已提交
5480
        inputs=inputs,
Y
Yang Yu 已提交
5481 5482 5483 5484 5485 5486
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5487
    return cost / (num_neg_samples + 1)
5488 5489


C
chengduo 已提交
5490 5491
def hsigmoid(input,
             label,
5492
             num_classes,
C
chengduo 已提交
5493 5494
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5495
             name=None,
5496 5497 5498
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5499
             is_sparse=False):
W
weixing02 已提交
5500 5501
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5502
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5503
    complete binary tree, or you can use is_custom to pass your own tree to
5504
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5505 5506 5507 5508 5509 5510
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5511
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5512
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5513

5514 5515
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5516 5517 5518 5519
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5520
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5521
       related to the same batch of inputs.
5522

W
weixing02 已提交
5523
    Args:
M
minqiyang 已提交
5524
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5525 5526 5527 5528
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5529 5530
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5531
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5543
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5544
            it should be in leaf -> root order
M
minqiyang 已提交
5545 5546 5547
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5548
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5549
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5550
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5551
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5552
             of W and input will be sparse.
W
weixing02 已提交
5553 5554

    Returns:
J
JiabinYang 已提交
5555
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5556 5557 5558 5559 5560

    Examples:

        .. code-block:: python

G
guosheng 已提交
5561 5562 5563
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5564 5565 5566 5567
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5568 5569
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5570
    dim = input.shape[1]
5571
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5572 5573 5574
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5575 5576 5577 5578
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5579 5580
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5581 5582 5583
    else:
        pass

J
JiabinYang 已提交
5584
    weights = None
5585 5586 5587 5588
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5589
    if not is_custom:
J
JiabinYang 已提交
5590 5591 5592 5593 5594 5595 5596 5597
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5598
            shape=[num_classes, dim],
J
JiabinYang 已提交
5599 5600
            is_bias=False,
            dtype=input.dtype)
5601 5602 5603
    inputs = {
        "X": input,
        "W": weights,
5604
        "PathTable": path_table,
5605
        "PathCode": path_code,
5606 5607
        "Label": label
    }
W
weixing02 已提交
5608
    if helper.bias_attr:
5609
        if not is_custom:
J
JiabinYang 已提交
5610 5611
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5612
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5613 5614 5615 5616 5617 5618
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5619
                shape=[num_classes, 1],
J
JiabinYang 已提交
5620 5621 5622
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5623 5624
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5625
        inputs=inputs,
W
weixing02 已提交
5626
        outputs={"Out": out,
5627 5628 5629 5630 5631 5632 5633
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5634 5635 5636
    return out


Y
fix ci.  
ying 已提交
5637
def transpose(x, perm, name=None):
Y
ying 已提交
5638 5639 5640 5641 5642 5643 5644
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5645 5646 5647
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5648 5649 5650 5651 5652 5653 5654

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5655
            # use append_batch_size=False to avoid prepending extra
5656
            # batch size in shape
5657
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5658
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5659
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5660 5661
    """

Y
fix ci.  
ying 已提交
5662
    if len(perm) != len(x.shape):
Y
ying 已提交
5663 5664 5665
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5666 5667 5668 5669 5670 5671
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5672 5673

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5674 5675
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5676
    helper.append_op(
5677
        type='transpose2',
Y
fix ci.  
ying 已提交
5678
        inputs={'X': [x]},
5679 5680
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5681 5682
        attrs={'axis': perm})
    return out
5683 5684


5685 5686 5687 5688 5689 5690 5691
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5692
    """
5693 5694 5695 5696 5697 5698 5699
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5728 5729 5730 5731 5732 5733 5734 5735 5736
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5737 5738 5739
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5740 5741 5742 5743 5744
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5772 5773 5774
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5787
            output.dims = {8, 8}
5788

5789
            output.lod = [[4, 4]]
5790

T
Tink_Y 已提交
5791
    Examples:
5792 5793 5794

        .. code-block:: python

5795 5796
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5797 5798

    """
W
wanghaoshuang 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5809 5810 5811 5812 5813 5814 5815
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5816
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5817
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5818
    helper.append_op(
5819
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5820
    return out
5821 5822


Y
yuyang18 已提交
5823
@templatedoc()
5824
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5825 5826
    """
    ${comment}
5827 5828

    Args:
Y
yuyang18 已提交
5829
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5830 5831
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5832 5833 5834 5835 5836
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5837
        ${out_comment}.
5838 5839

    Examples:
Y
yuyang18 已提交
5840 5841 5842 5843
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5844 5845 5846 5847 5848 5849
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5850
    out = helper.create_variable_for_type_inference(dtype)
5851 5852 5853 5854 5855
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5856
    return helper.append_activation(out)
5857 5858


Y
yuyang18 已提交
5859
@templatedoc()
5860 5861
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5862 5863 5864 5865 5866 5867 5868
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5869 5870

    Args:
Y
yuyang18 已提交
5871 5872
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5873 5874

    Returns:
Y
yuyang18 已提交
5875
        ${out_comment}.
5876 5877
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5878 5879 5880 5881 5882

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5883
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5884 5885 5886 5887 5888 5889
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5890 5891


5892 5893 5894
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5895
                               ignore_index=kIgnoreIndex,
5896
                               numeric_stable_mode=True,
5897
                               return_softmax=False):
5898 5899
    """
    **Softmax With Cross Entropy Operator.**
5900

5901 5902 5903 5904
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5905

5906 5907 5908
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5909

5910 5911 5912
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5913

5914
    The equation is as follows:
5915

5916
    1) Hard label (one-hot label, so every sample has exactly one class)
5917

5918 5919 5920 5921
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5922

5923 5924 5925
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5926

5927 5928 5929 5930
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5931 5932 5933
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5934

H
haowang101779990 已提交
5935
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5936

H
haowang101779990 已提交
5937
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5938

H
haowang101779990 已提交
5939
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5940 5941 5942

    and then cross entropy loss is calculated by softmax and label.

5943 5944 5945 5946 5947 5948 5949 5950
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5951 5952
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5953
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5954 5955 5956
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5957 5958 5959
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5960
                                    stable algorithm. Default: True
5961
        return_softmax (bool): A flag indicating whether to return the softmax
5962
                               along with the cross entropy loss. Default: False
5963

5964
    Returns:
H
haowang101779990 已提交
5965 5966 5967 5968 5969
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5970 5971 5972 5973 5974 5975 5976

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5977 5978
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5979 5980
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5981 5982
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5983 5984 5985 5986 5987 5988
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5989 5990 5991 5992 5993
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5994 5995 5996 5997

    if return_softmax:
        return loss, softmax

5998 5999 6000
    return loss


6001 6002 6003
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6004
                                       num_true=1,
6005
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6006 6007 6008
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6009
                                       seed=0):
X
xuezhong 已提交
6010 6011 6012 6013 6014
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6015
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6016 6017 6018 6019 6020 6021 6022 6023
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6024
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6025 6026 6027 6028 6029 6030 6031 6032
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6033
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6045
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6046 6047 6048 6049 6050
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6051
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6052
            logits.
X
xuezhong 已提交
6053 6054 6055 6056 6057
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6058 6059 6060
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6081 6082
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6083 6084 6085 6086 6087

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6088
            'Labels': label,
X
xuezhong 已提交
6089 6090
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6091 6092 6093 6094
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6095
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6096 6097 6098
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6099
            'use_customized_samples': use_customized_samples,
6100
            'uniq': True,
X
xuezhong 已提交
6101 6102 6103 6104
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6105 6106
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6107 6108 6109 6110 6111 6112
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6113 6114
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6115
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6116
                'Label': sampled_softlabel},
X
xuezhong 已提交
6117 6118 6119
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6120
            'soft_label': True,
X
xuezhong 已提交
6121 6122 6123
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6124
    return loss / num_true
X
xuezhong 已提交
6125 6126


6127 6128
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6129 6130
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6131
    For each instance, it computes the smooth L1 loss element by element first
6132
    and then sums all the losses. So the shape of ouput Variable is
6133
    [batch_size, 1].
6134

6135 6136
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6137
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6138
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6139
            L1 loss op with same shape as :attr:`x`.
6140
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6141 6142
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6143
            by this tensor element by element.
6144
        outside_weight (Variable|None): A tensor with rank at least 2. This
6145 6146
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6147
            element by element.
6148
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6149 6150
           scalar with default value 1.0.

6151
    Returns:
6152
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6153 6154 6155 6156 6157

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6158 6159
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6160
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6161
            out = fluid.layers.smooth_l1(x=fc, y=label)
6162
    """
6163

6164
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6165 6166
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6179 6180 6181 6182


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6183
    This layer creates the one-hot representations for input indices.
6184 6185

    Args:
Y
Yibing Liu 已提交
6186 6187
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6188 6189

    Returns:
Y
Yibing Liu 已提交
6190
        Variable: The one-hot representations of input.
6191 6192

    Examples:
C
caoying03 已提交
6193
        .. code-block:: python
6194

Y
Yibing Liu 已提交
6195 6196
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6197 6198
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6199
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6200 6201 6202 6203 6204 6205
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6206 6207


Y
Yu Yang 已提交
6208
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6209
    """
Y
yi.wu 已提交
6210 6211 6212
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6213 6214 6215 6216 6217 6218

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6219 6220
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6221 6222 6223 6224 6225 6226

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6227 6228
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6229 6230
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6231 6232 6233 6234 6235
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6236
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6237
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6238 6239
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6240
            outputs={'Out': [counter]},
M
minqiyang 已提交
6241 6242
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6243 6244 6245
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6246 6247


6248
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6249
    """
C
caoying03 已提交
6250 6251
    Gives a new shape to the input Tensor without changing its data.

6252 6253 6254 6255 6256
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6257

6258
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6259

6260 6261 6262 6263
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6264
    2. 0 means the actual dimension value is going to be copied from the
6265 6266 6267 6268
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6269 6270

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6271
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6272
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6273

6274
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6275 6276
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6277 6278
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6279
    dimensions.
C
caoying03 已提交
6280

6281
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6282 6283 6284 6285
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6286 6287

    Args:
6288
        x(variable): The input tensor.
C
caoying03 已提交
6289 6290
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6291 6292 6293 6294 6295
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6296 6297
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6298 6299 6300
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6301
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6302
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6303

6304
    Returns:
G
guosheng 已提交
6305 6306 6307 6308
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6309

X
Xin Pan 已提交
6310 6311 6312
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6313 6314
    Examples:
        .. code-block:: python
G
guosheng 已提交
6315

6316
            data = fluid.layers.data(
6317
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6318
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6319
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6320 6321 6322
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6323
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6324 6325 6326 6327 6328
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6329

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6345
    helper = LayerHelper("reshape2", **locals())
6346 6347
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6348
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6349
    helper.append_op(
6350
        type="reshape2",
X
Xin Pan 已提交
6351
        inputs=inputs,
D
dzhwinter 已提交
6352
        attrs={"shape": shape},
6353 6354
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6355

D
dzhwinter 已提交
6356
    return helper.append_activation(out)
6357

6358

6359
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6360
    """
M
minqiyang 已提交
6361 6362 6363
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6364
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6365

H
haowang101779990 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6387

Y
Yibing Liu 已提交
6388
    Args:
6389
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6390
        axes (list): List of integers, indicating the dimensions to be squeezed.
6391
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6392 6393 6394 6395 6396 6397 6398 6399

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6400
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6401
    """
6402 6403
    assert not _in_imperative_mode(), (
        "squeeze layer is not supported in imperative mode yet.")
Y
Yibing Liu 已提交
6404
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6405 6406
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6407
    helper.append_op(
6408
        type="squeeze2",
6409
        inputs={"X": input},
Y
Yibing Liu 已提交
6410
        attrs={"axes": axes},
6411 6412
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6413

6414 6415 6416
    return out


6417
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6418
    """
M
minqiyang 已提交
6419 6420 6421
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6422

M
minqiyang 已提交
6423
    For example:
H
haowang101779990 已提交
6424 6425 6426

    .. code-block:: text

M
minqiyang 已提交
6427
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6428
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6429

Y
Yibing Liu 已提交
6430
    Args:
6431
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6432
        axes (list): List of integers, indicating the dimensions to be inserted.
6433
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6434 6435 6436 6437 6438 6439 6440 6441

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6442
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6443 6444
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6445 6446
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6447
    helper.append_op(
6448
        type="unsqueeze2",
6449
        inputs={"X": input},
Y
Yibing Liu 已提交
6450
        attrs={"axes": axes},
6451 6452
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6453

6454 6455
    return out

6456

Y
yangyaming 已提交
6457
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6458
    """
Y
Yibing Liu 已提交
6459
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6460 6461 6462 6463
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6464
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6465 6466 6467 6468 6469 6470

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6471
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6472 6473 6474
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6475
            target_lod: [4, 2]
Y
yangyaming 已提交
6476 6477

            then we get a 1-level LoDTensor:
6478
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6479 6480 6481 6482 6483 6484
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6485
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6486 6487 6488 6489
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6490
                y.data = [[2, 4]]
Y
yangyaming 已提交
6491 6492 6493
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6494
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6495 6496 6497 6498 6499 6500
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6501
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6502 6503 6504 6505
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6506
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6507 6508 6509 6510
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6511
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6512 6513 6514 6515 6516
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6517
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6518
                           from :attr:`y`.
Y
yangyaming 已提交
6519
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6520
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6521 6522

    Returns:
Y
Yibing Liu 已提交
6523
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6524 6525

    Raises:
Y
Yibing Liu 已提交
6526
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6527 6528 6529 6530 6531 6532 6533 6534 6535

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6536
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6562
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6591 6592
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6605 6606 6607
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6621 6622 6623 6624


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6625
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6626
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6627

G
guosheng 已提交
6628 6629 6630 6631
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6654
                         The length of :attr:paddings must be
G
guosheng 已提交
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6665

G
guosheng 已提交
6666 6667 6668 6669 6670 6671
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6672
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6673 6674 6675 6676 6677 6678 6679
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6680 6681


C
chengduo 已提交
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6713 6714
		And
            pad_value = -1,
C
chengduo 已提交
6715

T
Tink_Y 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6751
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6752 6753 6754 6755 6756 6757 6758 6759 6760
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6761 6762 6763 6764 6765 6766 6767
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6768 6769
    called label-smoothing regularization (LSR).

6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6793
                              be :math:`(1, class\_num)`.
6794 6795
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6796
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6816
    smooth_label = helper.create_variable_for_type_inference(dtype)
6817 6818 6819 6820 6821 6822 6823
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6824 6825


W
wopeizl 已提交
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6862 6863


J
jerrywgz 已提交
6864 6865 6866 6867 6868 6869
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6870 6871
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6888 6889 6890
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6891 6892 6893 6894 6895 6896
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6897
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6938 6939
        .. code-block:: python

W
whs 已提交
6940 6941 6942 6943
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6944
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6945 6946 6947 6948 6949 6950
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6951 6952


6953 6954 6955 6956
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6957
                 resample='BILINEAR',
6958 6959
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6960
                 align_mode=1):
6961
    """
Q
qiaolongfei 已提交
6962
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6963

6964
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6965 6966 6967
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6968

6969
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6970

6971
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6972

6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6983
    Align_corners and align_mode are optinal parameters,the calculation method 
6984 6985 6986 6987
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6988
    .. code-block:: text
6989

T
Tink_Y 已提交
6990
        For scale:
6991
          
T
Tink_Y 已提交
6992
            if align_corners = True && out_size > 1 :
6993

T
Tink_Y 已提交
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7005

T
Tink_Y 已提交
7006 7007
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7008

T
Tink_Y 已提交
7009 7010
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7011

T
Tink_Y 已提交
7012 7013
          else:
              align_corners = True
7014

T
Tink_Y 已提交
7015 7016
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7017

T
Tink_Y 已提交
7018 7019
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7020

T
Tink_Y 已提交
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7031

T
Tink_Y 已提交
7032 7033 7034 7035
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7036

T
Tink_Y 已提交
7037 7038
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7039 7040 7041 7042 7043 7044 7045 7046 7047

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7048
    Args:
7049
        input (Variable): The input tensor of image resize layer,
7050 7051
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7052
        out_shape(list|tuple|Variable|None): Output shape of image resize
7053 7054
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7055
        scale(float|None): The multiplier for the input height or width.
7056 7057 7058
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7059 7060
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7061
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7062
                       currently.
7063
                       Default: 'BILINEAR'
7064 7065 7066
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7067
                                :attr:`out_shape` and :attr:`scale` specifying
7068 7069 7070 7071 7072 7073 7074
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7075 7076
                                constructing stage.
                                Default: None
7077 7078 7079 7080
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7081
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7082 7083
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7084 7085

    Returns:
Q
update  
qiaolongfei 已提交
7086 7087
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7088

7089 7090 7091
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7092
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7093 7094 7095
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7096 7097
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7098

7099 7100 7101
    Examples:
        .. code-block:: python

7102
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7103
    """
7104 7105 7106 7107
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7108 7109
    if resample not in resample_methods:
        raise ValueError(
7110
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7111
        )
7112
    resample_type = resample_methods[resample]
7113 7114 7115 7116 7117 7118

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7119
    if out_shape is None and scale is None:
7120
        raise ValueError("One of out_shape and scale must not be None.")
7121
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7122
    dtype = helper.input_dtype()
7123 7124 7125 7126

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7127 7128 7129
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7130
    if out_shape is not None:
7131 7132 7133 7134
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7135
            inputs['OutSize'] = out_shape
7136 7137 7138 7139 7140 7141 7142 7143
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7144 7145 7146 7147
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7148 7149 7150 7151 7152
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7153
    out = helper.create_variable_for_type_inference(dtype)
7154
    helper.append_op(
7155
        type='{}_interp'.format(resample_type),
7156
        inputs=inputs,
7157
        outputs={"Out": out},
7158 7159 7160 7161 7162 7163 7164
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7165
    return out
F
stash  
fengjiayi 已提交
7166 7167


7168
@templatedoc(op_type="bilinear_interp")
7169 7170 7171 7172
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7173 7174
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7175
                    align_mode=1):
7176
    """
7177 7178
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7179 7180
    in priority order.

7181 7182 7183 7184
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7185 7186
    again in the other direction.

7187
    For details of bilinear interpolation, please refer to Wikipedia:
7188
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7189

T
tink2123 已提交
7190
    Align_corners and align_mode are optinal parameters,the calculation 
7191 7192 7193 7194
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7195
    .. code-block:: text
7196

T
Tink_Y 已提交
7197
        For scale:
7198
          
T
Tink_Y 已提交
7199
            if align_corners = True && out_size > 1 :
7200

T
Tink_Y 已提交
7201 7202 7203 7204 7205
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7206

T
Tink_Y 已提交
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7217 7218


T
Tink_Y 已提交
7219
          else:
T
tink2123 已提交
7220

T
Tink_Y 已提交
7221 7222
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7223

T
Tink_Y 已提交
7224 7225
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7226 7227 7228



Y
yuyang18 已提交
7229 7230 7231 7232
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7233

Y
yuyang18 已提交
7234 7235 7236 7237 7238
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7239 7240 7241
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7242
                                :attr:`out_shape` and :attr:`scale` specifying
7243 7244 7245 7246 7247 7248 7249
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7250 7251
                                constructing stage.
                                Default: None
7252 7253
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7254 7255 7256

    Returns:
        ${out_comment}.
7257 7258 7259 7260 7261

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7262 7263
    """

7264 7265
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7266 7267


7268
@templatedoc(op_type="nearest_interp")
7269 7270 7271 7272
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7273 7274
                   actual_shape=None,
                   align_corners=True):
7275
    """
7276
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7277 7278
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7279 7280
    out_shape and scale in priority order.

7281 7282
    Example:

T
Tink_Y 已提交
7283 7284 7285 7286 7287
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7288

T
Tink_Y 已提交
7289 7290 7291 7292 7293 7294 7295 7296
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7297
          
T
Tink_Y 已提交
7298 7299
          if:
              align_corners = False
7300

T
Tink_Y 已提交
7301 7302
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7303

T
Tink_Y 已提交
7304 7305
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7306

T
Tink_Y 已提交
7307 7308
          else:
              align_corners = True
7309

T
Tink_Y 已提交
7310 7311
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7312

T
Tink_Y 已提交
7313 7314
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7315 7316


7317
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7318
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7319 7320 7321 7322 7323

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7324

Y
yuyang18 已提交
7325 7326 7327 7328 7329
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7330 7331 7332
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7333
                                :attr:`out_shape` and :attr:`scale` specifying
7334 7335 7336 7337 7338 7339 7340
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7341 7342
                                constructing stage.
                                Default: None
7343
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7344 7345 7346

    Returns:
        ${out_comment}.
7347 7348 7349 7350 7351

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7352 7353
    """

7354 7355
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7356 7357 7358 7359


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7360 7361 7362
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7363 7364 7365 7366 7367 7368 7369
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7370
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7371

7372
    Returns:
Q
update  
qiaolongfei 已提交
7373
        Variable: The output is a 4-D tensor of the shape
7374
        (num_batches, channls, out_h, out_w).
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7385 7386 7387
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7388 7389 7390
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7391 7392
def gather(input, index):
    """
Q
qiaolongfei 已提交
7393 7394
    **Gather Layer**

7395
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7396 7397 7398 7399
    of X indexed by `index` and concatenate them together.

    .. math::

7400
        Out = X[Index]
W
whs 已提交
7401 7402 7403 7404 7405 7406 7407


    .. code-block:: text


                Given:

7408 7409
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7420
        input (Variable): The source input with rank>=1.
W
whs 已提交
7421 7422 7423 7424 7425 7426
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7427

W
whs 已提交
7428 7429 7430 7431 7432 7433
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7434
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7435 7436 7437 7438 7439 7440 7441 7442
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7474
    out = helper.create_variable_for_type_inference(dtype)
7475 7476 7477 7478 7479 7480 7481 7482 7483
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7484 7485 7486 7487 7488 7489 7490 7491 7492
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7493

Q
Qingsheng Li 已提交
7494
    Given the following input:
H
haowang101779990 已提交
7495

Q
Qingsheng Li 已提交
7496
    .. code-block:: text
H
haowang101779990 已提交
7497

Q
Qingsheng Li 已提交
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7510

Q
Qingsheng Li 已提交
7511
    .. code-block:: text
H
haowang101779990 已提交
7512

Q
Qingsheng Li 已提交
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7528
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7529 7530 7531 7532 7533 7534 7535 7536 7537 7538

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7539
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7562

7563 7564 7565
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7566
    """
F
stash  
fengjiayi 已提交
7567
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7568
    dtype = x.dtype
X
Xin Pan 已提交
7569
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7570
    if seed is None:
7571
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7572
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7573
    if isinstance(seed, int):
F
fengjiayi 已提交
7574 7575 7576 7577 7578
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7579 7580 7581 7582
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7583
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7584 7585
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7586 7587
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7588
    return out
W
whs 已提交
7589 7590


7591
def log(x, name=None):
W
wanghaoshuang 已提交
7592 7593 7594 7595 7596
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7597
        Out = \\ln(x)
W
wanghaoshuang 已提交
7598 7599

    Args:
7600
        x (Variable): Input tensor.
7601 7602
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7603 7604 7605 7606 7607 7608 7609 7610

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7611
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7612 7613
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7614
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7615
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7616
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7617 7618 7619
    return out


7620
def relu(x, name=None):
W
wanghaoshuang 已提交
7621 7622
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7623
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7624 7625 7626 7627
    the tensor elementwise.

    .. math::

7628
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7629 7630

    Args:
7631
        x (Variable): The input tensor.
7632 7633
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7634 7635 7636 7637 7638 7639 7640 7641

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7642
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7643 7644
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7645
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7646
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7647 7648
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7649
    return out
7650 7651


C
chengduo 已提交
7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7693 7694 7695
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7696 7697 7698 7699
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7700
    .. math::
7701

H
haowang101779990 已提交
7702
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7703

7704
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7705 7706 7707 7708 7709
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7710
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7711
                           Its shape should be the same as input.
7712
        num_classes (int): The possible number of labels.
W
whs 已提交
7713 7714

    Returns:
M
minqiyang 已提交
7715 7716
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7717
                     Three variables:
M
minqiyang 已提交
7718

H
haowang101779990 已提交
7719 7720 7721
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7722 7723 7724 7725

    Examples:

        .. code-block:: python
7726

W
whs 已提交
7727 7728 7729 7730
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7731 7732 7733
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7734 7735
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7736 7737
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7738
        outputs={
W
whs 已提交
7739 7740 7741
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7742 7743 7744
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7813
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7814 7815 7816 7817 7818

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7819
            isinstance(shape, Variable)):
7820 7821 7822 7823 7824
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7825
    out = helper.create_variable_for_type_inference(x.dtype)
7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7843 7844


W
whs 已提交
7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7862

W
whs 已提交
7863
              out_shape = [2, 3, 5, 5]
7864

W
whs 已提交
7865
          Step 1:
7866

W
whs 已提交
7867 7868 7869
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7870

W
whs 已提交
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7916
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7917
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7930

W
whs 已提交
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7942
            isinstance(out_shape, Variable)):
W
whs 已提交
7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7964 7965
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7966

7967 7968
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7969
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7970 7971 7972
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7973

7974 7975
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7976

H
haowang101779990 已提交
7977 7978
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7979 7980
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7981

H
haowang101779990 已提交
7982 7983 7984 7985 7986 7987 7988 7989
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7990 7991 7992

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8027
    out = helper.create_variable_for_type_inference("float32")
8028 8029 8030 8031 8032 8033 8034 8035

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8036 8037


M
minqiyang 已提交
8038 8039
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8040
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8041
    which compares left score and right score passed in.
M
minqiyang 已提交
8042
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8043 8044 8045

    .. math::

H
haowang101779990 已提交
8046
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8047 8048

    Args:
M
minqiyang 已提交
8049
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8050 8051
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8052
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8053 8054
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8055

M
minqiyang 已提交
8056
    Returns:
M
minqiyang 已提交
8057
       Variable: The ranking loss.
H
haowang101779990 已提交
8058

M
minqiyang 已提交
8059
    Raises:
M
minqiyang 已提交
8060
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8061

M
minqiyang 已提交
8062
    Examples:
H
haowang101779990 已提交
8063

M
minqiyang 已提交
8064
        .. code-block:: python
H
haowang101779990 已提交
8065

M
minqiyang 已提交
8066 8067 8068 8069 8070
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8071
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8072 8073 8074 8075 8076 8077
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8078 8079
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8103
        .. code-block:: text
W
whs 已提交
8104

T
Tink_Y 已提交
8105
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8106

T
Tink_Y 已提交
8107 8108
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8109

T
Tink_Y 已提交
8110
	      Case 0:
M
minqiyang 已提交
8111

T
Tink_Y 已提交
8112 8113 8114
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8115

T
Tink_Y 已提交
8116 8117 8118
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8119

T
Tink_Y 已提交
8120
	      Case 1:
M
minqiyang 已提交
8121

T
Tink_Y 已提交
8122 8123
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8124

T
Tink_Y 已提交
8125 8126 8127
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8128

T
Tink_Y 已提交
8129
	      Case 2:
M
minqiyang 已提交
8130

T
Tink_Y 已提交
8131 8132
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8133

T
Tink_Y 已提交
8134 8135 8136
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8137 8138


W
whs 已提交
8139 8140
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8141
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8165
    out = helper.create_variable_for_type_inference(dtype)
8166 8167 8168 8169 8170 8171 8172 8173 8174
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8175
    helper.append_op(
8176
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8177 8178 8179 8180

    return out


8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8193 8194 8195 8196 8197

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8198 8199
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8200 8201
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8202
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8223 8224 8225 8226 8227

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8228 8229
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8230 8231
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8232
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8253 8254 8255 8256 8257

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8258 8259
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8260 8261
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8262
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8284 8285 8286 8287 8288

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8289
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8290
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8291 8292
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8293
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8316 8317 8318 8319 8320

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8321 8322
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8323 8324
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8325
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8347 8348 8349 8350 8351

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8352 8353
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8354 8355
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8356
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8357 8358 8359 8360 8361 8362 8363 8364
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8365 8366 8367 8368
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8369 8370
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8371 8372 8373

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8374
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8375
          weight (alpha).
J
jerrywgz 已提交
8376
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8377 8378 8379
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8380
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8381
          will be named automatically.
J
jerrywgz 已提交
8382 8383 8384 8385 8386 8387 8388 8389

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8390
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8404
        attr=helper.param_attr,
J
jerrywgz 已提交
8405 8406 8407 8408
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8409
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8410 8411 8412 8413 8414 8415 8416 8417 8418
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8429
    Returns:
8430
        output(${out_type}): ${out_comment}
8431 8432 8433

    Examples:

8434
    .. code-block:: python
8435

H
haowang101779990 已提交
8436 8437
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8438 8439
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8440
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8459
    Returns:
8460
        output(${out_type}): ${out_comment}
8461 8462 8463 8464 8465

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8466 8467
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8468 8469
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8470
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8488
    Returns:
8489
        output(${out_type}): ${out_comment}
8490 8491 8492 8493 8494

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8495 8496
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8497 8498
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8499
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8500 8501 8502 8503 8504 8505 8506 8507
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8508 8509 8510 8511
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8512

H
haowang101779990 已提交
8513
    For Example:
M
minqiyang 已提交
8514

H
haowang101779990 已提交
8515
    .. code-block:: text
8516

H
haowang101779990 已提交
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8538 8539 8540

    Args:
        x (Variable): A tensor of rank >= axis.
8541 8542
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8543 8544 8545 8546 8547 8548 8549 8550
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8551 8552 8553
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8554 8555 8556 8557
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8558
        ValueError: If axis is not in range [0, rank(x)].
8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8575 8576
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8577
    helper.append_op(
8578
        type='flatten2',
8579
        inputs={"X": x},
8580 8581
        outputs={'Out': out,
                 'XShape': x_shape},
8582 8583
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8584 8585


C
chenweihang 已提交
8586
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8587
    """
C
chenweihang 已提交
8588
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8589
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8590 8591
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8592

H
haowang101779990 已提交
8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8610 8611

    Args:
C
chenweihang 已提交
8612 8613 8614
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8626 8627
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8628 8629 8630 8631 8632 8633
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8634
    return out
8635

8636

S
sneaxiy 已提交
8637 8638 8639 8640 8641 8642 8643 8644 8645
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8646

S
sneaxiy 已提交
8647
    .. math::
8648

S
sneaxiy 已提交
8649 8650 8651
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8652
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8653 8654 8655 8656
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8657 8658 8659
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8660 8661
    Returns:
        Variable: The output sequence mask.
8662

S
sneaxiy 已提交
8663 8664
    """

Q
qingqing01 已提交
8665
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8666
    if name is None:
X
Xin Pan 已提交
8667
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8668
    else:
X
Xin Pan 已提交
8669
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8670

Q
qingqing01 已提交
8671 8672 8673
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8674 8675
        outputs={'Y': out},
        attrs={
8676
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8677 8678 8679
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8680 8681


X
Xin Pan 已提交
8682
def stack(x, axis=0):
S
sneaxiy 已提交
8683 8684 8685 8686
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8687 8688 8689 8690 8691 8692 8693

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8694
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8695
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8696

C
chengduozh 已提交
8697 8698
    For Example:

C
chengduozh 已提交
8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8737
    Args:
8738
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8739
        axis (int|None): The axis along which all inputs are stacked.
8740

S
sneaxiy 已提交
8741 8742
    Returns:
        Variable: The stacked variable.
8743

S
sneaxiy 已提交
8744 8745
    """

X
Xin Pan 已提交
8746 8747 8748 8749 8750 8751
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8752
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8753
    helper.append_op(
S
sneaxiy 已提交
8754 8755
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8756

X
Xin Pan 已提交
8757
    return out
D
dzhwinter 已提交
8758 8759 8760 8761 8762 8763 8764


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8765

D
dzhwinter 已提交
8766 8767 8768
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8769
    raised.
D
dzhwinter 已提交
8770 8771

    Args:
M
minqiyang 已提交
8772
        x (Variable): Input variable.
D
dzhwinter 已提交
8773 8774
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8775

D
dzhwinter 已提交
8776 8777
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8778

D
dzhwinter 已提交
8779 8780 8781 8782 8783 8784 8785 8786 8787 8788
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8789
    for _ in range(num):
X
Xin Pan 已提交
8790
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8791 8792 8793 8794 8795 8796 8797 8798

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8811

W
whs 已提交
8812 8813 8814 8815
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8816

W
whs 已提交
8817
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8818

W
whs 已提交
8819
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8820

W
whs 已提交
8821 8822 8823 8824
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8825

W
whs 已提交
8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8842
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8843 8844 8845 8846 8847 8848
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8849 8850


G
fix  
gongweibao 已提交
8851 8852 8853
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8854
@templatedoc()
G
fix  
gongweibao 已提交
8855 8856 8857 8858 8859 8860 8861 8862 8863
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8864
    ${comment}
G
fix  
gongweibao 已提交
8865 8866

    Args:
G
gongweibao 已提交
8867 8868 8869
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8870
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8871 8872 8873
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8874 8875
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8876
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8877

8878 8879 8880 8881 8882
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8883 8884 8885
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8886
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8903 8904


G
gongweibao 已提交
8905
@templatedoc()
X
Xin Pan 已提交
8906
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8907
    """
G
gongweibao 已提交
8908
    ${comment}
G
fix  
gongweibao 已提交
8909 8910

    Args:
G
gongweibao 已提交
8911 8912 8913 8914
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8915 8916 8917
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8918
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8919

8920 8921 8922 8923
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8924 8925 8926
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8927
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8938
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8939 8940 8941 8942 8943
        })

    return out


G
gongweibao 已提交
8944
@templatedoc()
G
fix  
gongweibao 已提交
8945
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8946
    """
G
gongweibao 已提交
8947
    ${comment}
G
fix  
gongweibao 已提交
8948 8949

    Args:
G
gongweibao 已提交
8950 8951 8952 8953
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8954
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8955 8956

    Returns:
G
gongweibao 已提交
8957
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8958

8959 8960 8961 8962 8963 8964 8965 8966 8967 8968
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8969 8970 8971
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8972
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8984
@templatedoc()
G
fix  
gongweibao 已提交
8985 8986 8987 8988 8989 8990 8991 8992 8993
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8994
    ${comment}
G
fix  
gongweibao 已提交
8995 8996

    Args:
G
gongweibao 已提交
8997 8998
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8999
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9000 9001 9002 9003
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9004
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9005 9006

    Returns:
G
gongweibao 已提交
9007
        out (Variable): ${out_comment}
9008 9009 9010 9011 9012 9013 9014 9015

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9016 9017 9018
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9019
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9038
@templatedoc()
X
Xin Pan 已提交
9039
def sum(x):
G
fix  
gongweibao 已提交
9040
    """
G
gongweibao 已提交
9041
    ${comment}
G
fix  
gongweibao 已提交
9042 9043

    Args:
G
gongweibao 已提交
9044
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9045 9046

    Returns:
G
gongweibao 已提交
9047
        out (Variable): ${out_comment}
9048 9049 9050 9051 9052 9053

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9054 9055 9056
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9057 9058
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9059 9060 9061 9062
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9063
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9064 9065 9066 9067

    return out


G
gongweibao 已提交
9068
@templatedoc()
G
fix  
gongweibao 已提交
9069 9070
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9071
    ${comment}
G
fix  
gongweibao 已提交
9072 9073

    Args:
G
gongweibao 已提交
9074 9075 9076 9077
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9078 9079

    Returns:
G
gongweibao 已提交
9080
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9081

9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9093 9094 9095
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9096 9097
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9111 9112
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9113
    Get the shape of the input.
G
fix  
gongweibao 已提交
9114 9115

    Args:
C
chengduozh 已提交
9116
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9117 9118

    Returns:
C
fix doc  
chengduozh 已提交
9119
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9120

9121 9122 9123 9124 9125 9126
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9127 9128 9129
    """

    helper = LayerHelper('shape', **locals())
9130
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9131
    helper.append_op(
G
fix  
gongweibao 已提交
9132
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9133 9134

    return out
G
merge  
gongweibao 已提交
9135 9136


S
sneaxiy 已提交
9137 9138 9139 9140 9141 9142 9143 9144
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9145 9146
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9147
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9148 9149 9150
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9151

S
sneaxiy 已提交
9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9163
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9164 9165 9166 9167 9168 9169 9170 9171
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9172
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9173
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9174 9175 9176 9177 9178 9179

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9180
    if name is None:
X
Xin Pan 已提交
9181
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9182 9183 9184
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9185 9186 9187 9188 9189 9190 9191 9192 9193 9194

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9195
    return helper.append_activation(out)
S
sneaxiy 已提交
9196 9197


X
Xin Pan 已提交
9198
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9199 9200 9201
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9202
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9203 9204 9205
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9206
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9207 9208 9209
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9210
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9211 9212 9213
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9214
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9215 9216 9217
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9218
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9219 9220 9221
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9222
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9234 9235
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9236
        ])
M
minqiyang 已提交
9237 9238


9239
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9240 9241
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9242 9243
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9244 9245 9246

    if out is None:
        if name is None:
X
Xin Pan 已提交
9247
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9263
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9275 9276 9277 9278 9279 9280 9281 9282 9283

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9284 9285 9286 9287 9288 9289 9290
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9291
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9303 9304 9305 9306 9307 9308 9309 9310 9311

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9312 9313 9314 9315 9316 9317 9318
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9319
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9331 9332 9333 9334 9335 9336 9337 9338 9339

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9340 9341 9342 9343 9344 9345 9346
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9347
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9348 9349 9350 9351 9352 9353 9354 9355 9356 9357
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9358 9359 9360 9361 9362 9363 9364

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9365 9366 9367 9368
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9384 9385 9386 9387 9388 9389 9390

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9391 9392 9393 9394 9395
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9396 9397 9398 9399
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9423 9424 9425 9426 9427 9428 9429

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9430 9431 9432 9433 9434
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9435 9436 9437 9438
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9439 9440 9441 9442 9443 9444 9445 9446

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9465
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9466 9467 9468 9469 9470 9471 9472 9473 9474 9475
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9518
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9519 9520 9521 9522 9523 9524 9525 9526 9527
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9528 9529
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9530 9531 9532 9533 9534 9535
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9536 9537 9538
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9539 9540
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9541 9542 9543 9544 9545 9546
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9547
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9548
        name(basestring|None): Name of the output.
9549 9550
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9551 9552 9553

    Returns:
        out(${out_type}): ${out_comment}
9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9568 9569 9570 9571 9572
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9573
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9574 9575 9576 9577 9578 9579 9580 9581
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9582 9583
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9604
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9605 9606 9607 9608 9609 9610 9611 9612 9613 9614
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9615 9616


J
JiabinYang 已提交
9617
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9618
    """
J
JiabinYang 已提交
9619
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9620 9621 9622

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9623
    The attr blocksize indicates the input block size.
9624 9625

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9626
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9627 9628

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9629
    (but keeping all data)
J
JiabinYang 已提交
9630

J
JiabinYang 已提交
9631
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9632
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9633 9634 9635 9636 9637
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9638
    Args:
J
JiabinYang 已提交
9639
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9640
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9641 9642

    Returns:
J
JiabinYang 已提交
9643
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9644 9645

    Raises:
J
JiabinYang 已提交
9646
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9647 9648 9649 9650 9651 9652

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9653
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9654
                x=data, blocksize=2)
J
JiabinYang 已提交
9655 9656
    """

J
JiabinYang 已提交
9657
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9658

J
JiabinYang 已提交
9659 9660
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9661 9662

    if name is None:
J
JiabinYang 已提交
9663 9664
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9665 9666 9667 9668 9669
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9670
        type="space_to_depth",
J
JiabinYang 已提交
9671
        inputs={"X": x},
J
JiabinYang 已提交
9672
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9673
        outputs={"Out": out})
J
JiabinYang 已提交
9674 9675
    return out

J
JiabinYang 已提交
9676

S
sneaxiy 已提交
9677 9678
@templatedoc()
def sequence_reverse(x, name=None):
9679
    """
S
sneaxiy 已提交
9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9691
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9692 9693 9694 9695 9696 9697 9698 9699 9700 9701
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9702 9703


9704 9705 9706 9707 9708 9709
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9710

9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9730
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9743 9744


B
barrierye 已提交
9745
def similarity_focus(input, axis, indexes, name=None):
9746
    """
B
barrierye 已提交
9747
    SimilarityFocus Operator
B
barrierye 已提交
9748 9749

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9750

9751 9752 9753
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9754
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9755 9756 9757 9758 9759 9760 9761
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9762
       each index.
B
barrierye 已提交
9763 9764 9765 9766
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9816
    Args:
9817
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9818
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9819
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9820
            1, 2 or 3.
B
barrierye 已提交
9821
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9822 9823

    Returns:
H
haowang101779990 已提交
9824 9825
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9826

B
barrierye 已提交
9827 9828
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9829

B
barrierye 已提交
9830
            data = fluid.layers.data(
B
barrierye 已提交
9831 9832
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9833

B
barrierye 已提交
9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9846 9847 9848 9849 9850
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9851 9852 9853 9854 9855 9856 9857
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9858 9859


M
minqiyang 已提交
9860 9861
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9862 9863
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9864 9865
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9904
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9905
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9906 9907 9908 9909 9910 9911

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9912

M
minqiyang 已提交
9913 9914 9915
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9916 9917
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9918 9919
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9920 9921 9922 9923 9924 9925 9926
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9927 9928


D
dengkaipeng 已提交
9929
@templatedoc()
9930 9931
def grid_sampler(x, grid, name=None):
    """
9932
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9933
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9934 9935 9936 9937
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9938
    interpolation value of 4 nearest corner points.
9939

H
haowang101779990 已提交
9940
    .. code-block:: text
9941

H
haowang101779990 已提交
9942 9943
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9944

H
haowang101779990 已提交
9945 9946
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9947

H
haowang101779990 已提交
9948 9949 9950
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9951

H
haowang101779990 已提交
9952 9953 9954 9955 9956 9957 9958 9959 9960
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9961

H
haowang101779990 已提交
9962 9963 9964 9965
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9966

H
haowang101779990 已提交
9967 9968 9969 9970
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9971

H
haowang101779990 已提交
9972 9973 9974 9975
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9976

H
haowang101779990 已提交
9977 9978
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9979 9980

    Args:
9981 9982 9983
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9984 9985

    Returns:
H
haowang101779990 已提交
9986
        Variable: Output of shape [N, C, H, W] data samples input X
9987 9988
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9989 9990 9991 9992 9993 9994 9995 9996
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9997

D
dengkaipeng 已提交
9998 9999 10000 10001 10002 10003 10004 10005 10006
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10007
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10008 10009
    ipts = {'X': x, 'Grid': grid}

10010
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10011 10012 10013
    return out


G
gmcather 已提交
10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10080
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10081 10082 10083 10084 10085 10086 10087
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10088

H
heqiaozhi 已提交
10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10103 10104 10105 10106
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10107
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10108 10109
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10110
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10111 10112

    .. math::
H
haowang101779990 已提交
10113 10114 10115
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10116 10117

    Where:
H
haowang101779990 已提交
10118 10119
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10134

G
gmcather 已提交
10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10151 10152 10153 10154 10155 10156 10157 10158 10159 10160


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10161
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10162

Q
Qiao Longfei 已提交
10163
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10164 10165 10166
    For example:

    .. math::
H
haowang101779990 已提交
10167
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10168

Q
Qiao Longfei 已提交
10169
    In this formula:
10170 10171
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10172
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10173
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10174 10175 10176
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10177 10178
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10179 10180 10181
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10182
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10183
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10184
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10185 10186 10187 10188
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10189
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10190 10191 10192 10193

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10194
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10195 10196
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10197
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10198 10199 10200 10201

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10202
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10243 10244


S
shippingwang 已提交
10245
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10246 10247
    """
    **Shuffle Channel Operator**
10248

S
shippingwang 已提交
10249 10250 10251 10252 10253 10254
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10255
    
S
shippingwang 已提交
10256
    .. code-block:: text
10257

S
shippingwang 已提交
10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10286
    Args: 
S
shippingwang 已提交
10287 10288
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10289 10290

    Returns:
S
shippingwang 已提交
10291 10292
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10293 10294

    Raises:
S
shippingwang 已提交
10295
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10296 10297 10298

    Examples:
        .. code-block:: python
10299 10300

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10301
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10302 10303 10304
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10305
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10306 10307 10308 10309 10310 10311 10312 10313 10314

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10315
    return out
S
Add  
shippingwang 已提交
10316 10317


S
sneaxiy 已提交
10318
class PyFuncRegistry(object):
S
sneaxiy 已提交
10319 10320 10321
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10322
        if func is None or not callable(func):
S
sneaxiy 已提交
10323 10324 10325
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10326
        # find named args using reflection
S
sneaxiy 已提交
10327 10328 10329 10330 10331 10332 10333
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10334 10335 10336
        '''
        Why record self here?

M
minqiyang 已提交
10337 10338
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10339
           to find the registered function corresponding
M
minqiyang 已提交
10340
           to :code:`idx`.
S
sneaxiy 已提交
10341

M
minqiyang 已提交
10342 10343
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10344
           whose reference count is 1 would cause
M
minqiyang 已提交
10345
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10346 10347
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10348
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10363 10364 10365 10366 10367 10368 10369 10370 10371
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10372

S
sneaxiy 已提交
10373 10374
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10375 10376

        ret = []
S
sneaxiy 已提交
10377 10378 10379
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10380 10381
                continue

S
sneaxiy 已提交
10382 10383
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10384

S
sneaxiy 已提交
10385 10386 10387
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10388

S
sneaxiy 已提交
10389
        return tuple(ret)
S
sneaxiy 已提交
10390 10391


S
sneaxiy 已提交
10392 10393 10394 10395
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10396

S
sneaxiy 已提交
10397 10398 10399 10400 10401 10402 10403 10404
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10405
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10406

S
sneaxiy 已提交
10407 10408
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10409 10410 10411 10412
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10413
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10414
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10415 10416
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10417 10418 10419 10420 10421
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10422
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10423
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10424
                                       None means no backward. Default None.
S
sneaxiy 已提交
10425
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10426
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10427 10428
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10429
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10430 10431 10432

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10433 10434

    Examples:
M
minqiyang 已提交
10435

S
sneaxiy 已提交
10436 10437 10438 10439 10440
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10441
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10442 10443
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10444
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10445 10446 10447
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10448
        >>>
S
sneaxiy 已提交
10449 10450 10451 10452 10453
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10454
        >>>     print(x)
S
sneaxiy 已提交
10455 10456 10457 10458 10459 10460
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10461
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10462 10463
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10464 10465
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10466 10467 10468 10469 10470 10471 10472 10473
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10474
    """
S
sneaxiy 已提交
10475
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10476 10477 10478
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10479
        x = [x]
S
sneaxiy 已提交
10480 10481
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10482

S
sneaxiy 已提交
10483 10484 10485
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10486
        out_list = [out]
S
sneaxiy 已提交
10487
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10488
        out_list = out
S
sneaxiy 已提交
10489 10490 10491
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10492

S
sneaxiy 已提交
10493 10494
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10495
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10496 10497

    for each_out in out_list:
S
sneaxiy 已提交
10498 10499
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10500 10501
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10502

S
sneaxiy 已提交
10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10518 10519 10520 10521

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10522 10523
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10524 10525 10526
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10527
        })
S
sneaxiy 已提交
10528
    return out
S
sneaxiy 已提交
10529 10530 10531


# For debug usage
S
sneaxiy 已提交
10532 10533 10534 10535
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10588

M
minqiyang 已提交
10589

M
minqiyang 已提交
10590
def huber_loss(input, label, delta):
10591
    """
M
minqiyang 已提交
10592 10593 10594
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10595 10596 10597 10598

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10599
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10600 10601 10602 10603

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10604
        huber\_loss = 0.5 * (label - input) * (label - input)
10605 10606 10607 10608 10609 10610 10611


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10612
        delta (float): The parameter of huber loss, which controls
10613 10614 10615
                       the range of outliers

    Returns:
M
minqiyang 已提交
10616
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10617 10618 10619 10620 10621

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10622
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10623
    """
M
minqiyang 已提交
10624
    helper = LayerHelper('huber_loss', **locals())
10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10706 10707


C
ceci3 已提交
10708
from .ops import square
C
ceci3 已提交
10709
from .control_flow import equal
C
ceci3 已提交
10710 10711


C
ceci3 已提交
10712 10713 10714
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10715

C
ceci3 已提交
10716
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10717 10718

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10719
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10720 10721 10722 10723 10724
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10725 10726
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10727 10728 10729 10730 10731 10732 10733

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10734 10735 10736 10737 10738 10739 10740 10741
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10742 10743 10744 10745 10746 10747 10748
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10749
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10750 10751
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10752 10753
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10754 10755 10756 10757
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10758 10759 10760
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10761 10762 10763
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss