nn.py 393.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
27
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
172
    'space_to_depth',
W
whs 已提交
173
    'affine_grid',
S
sneaxiy 已提交
174
    'sequence_reverse',
175
    'affine_channel',
B
barrierye 已提交
176
    'similarity_focus',
M
minqiyang 已提交
177
    'hash',
D
dengkaipeng 已提交
178
    'grid_sampler',
G
gmcather 已提交
179 180
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
181
    'bilinear_tensor_product',
C
chengduo 已提交
182 183
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
184
    'lstm',
S
shippingwang 已提交
185
    'shuffle_channel',
186
    'temporal_shift',
S
sneaxiy 已提交
187
    'py_func',
188
    'psroi_pool',
H
heqiaozhi 已提交
189
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
190
    'huber_loss',
D
dengkaipeng 已提交
191
    'kldiv_loss',
Z
zhaozhehao 已提交
192
    'tree_conv',
C
ceci3 已提交
193
    'npair_loss',
R
ruri 已提交
194
    'pixel_shuffle',
195
    'fsp_matrix',
Y
Yu Yang 已提交
196 197
]

J
jerrywgz 已提交
198 199
kIgnoreIndex = -100

Y
Yu Yang 已提交
200 201 202 203 204 205 206

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
207
       is_test=False,
208
       name=None):
Y
Yu Yang 已提交
209
    """
210
    **Fully Connected Layer**
Y
Yu Yang 已提交
211

212
    This function creates a fully connected layer in the network. It can take
213
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
214
    Args in detail). It creates a variable called weights for each input tensor,
215 216 217 218
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
219
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
220 221
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
222

223
    When the input is single tensor:
C
caoying03 已提交
224

225 226 227 228 229
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
230 231 232

    .. math::

233
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
234 235 236

    In the above equation:

237 238 239
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
240
    * :math:`b`: The bias parameter created by this layer (if needed).
241
    * :math:`Act`: The activation function.
C
caoying03 已提交
242
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
262
    Args:
R
ranqiu 已提交
263 264 265 266 267 268 269 270 271 272
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
273
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
274 275 276 277
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
278 279
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
280
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
281
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
282
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
283

284
    Returns:
F
fengjiayi 已提交
285
        Variable: The transformation result.
286 287

    Raises:
C
caoying03 已提交
288
        ValueError: If rank of the input tensor is less than 2.
289 290 291 292

    Examples:
        .. code-block:: python

293
          # when input is single tensor
F
fengjiayi 已提交
294
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
295
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
296 297 298 299 300

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
301
    """
C
caoying03 已提交
302
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
303 304 305 306

    dtype = helper.input_dtype()

    mul_results = []
307 308
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
309 310 311
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
312

Y
Yu Yang 已提交
313
        w = helper.create_parameter(
314
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
315
        tmp = helper.create_variable_for_type_inference(dtype)
316
        helper.append_op(
317 318 319
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
320
            outputs={"Out": tmp},
M
mozga-intel 已提交
321 322
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
323 324 325 326
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
327
    else:
X
Xin Pan 已提交
328
        pre_bias = helper.create_variable_for_type_inference(dtype)
329
        helper.append_op(
330 331 332
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
333
            attrs={"use_mkldnn": False})
334 335 336 337
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
338 339


340 341 342
def embedding(input,
              size,
              is_sparse=False,
343
              is_distributed=False,
344 345 346
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
347
    """
348 349
    **Embedding Layer**

350
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
351 352
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
353 354 355

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
356 357

    Args:
358 359 360 361 362
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
363
        is_distributed(bool): Whether to run lookup table from remote parameter server.
364 365
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
366
            with zeros whenever lookup encounters it in :attr:`input`. If
367
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
368 369
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
370
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
371

372 373 374
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
375

376 377
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
378

C
chengduoZH 已提交
379
          dict_size = len(dataset.ids)
380
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
381
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
382 383 384
    """

    helper = LayerHelper('embedding', **locals())
385
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
386 387
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
388 389
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
390
    tmp = helper.create_variable_for_type_inference(dtype)
391 392
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
393 394 395 396 397
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
398 399 400
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
401
            'remote_prefetch': remote_prefetch,
402 403
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
404 405 406
    return tmp


W
wopeizl 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
423

W
wopeizl 已提交
424 425 426 427 428 429 430 431 432 433 434
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
435

W
wopeizl 已提交
436 437 438 439
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
440

W
wopeizl 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
527 528


P
phlrain 已提交
529 530 531 532 533 534
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
535
         dropout_prob=0.0,
P
phlrain 已提交
536 537 538 539 540
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
541
    """
P
phlrain 已提交
542
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
543 544

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
545
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
546 547
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
548
    .. math::
M
minqiyang 已提交
549 550 551 552 553 554 555

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
556
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
557 558 559 560

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
561 562

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
563 564 565 566 567 568
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
569 570 571
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
572
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
573

M
minqiyang 已提交
574
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
575 576 577 578 579
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
580
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
581 582 583 584 585
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
586
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
587 588
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
589 590
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
591 592 593 594 595 596
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
597
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
598

L
liuhongyu 已提交
599 600

    Returns:
M
minqiyang 已提交
601 602
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
603
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
604

H
haowang101779990 已提交
605 606 607 608
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
609
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
610 611
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
612
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
628
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
629 630 631 632 633 634
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
635 636 637
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
697 698 699 700 701 702 703 704 705 706
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
707
                  proj_activation='tanh',
708
                  dtype='float32',
X
xuezhong 已提交
709 710 711 712 713
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
714 715 716
    """
    **Dynamic LSTMP Layer**

717 718 719 720 721 722
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
723 724 725 726 727

    The formula is as follows:

    .. math::

728
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
729

730
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
731

732
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
733

734
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
735

736
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
737

738
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
739

740
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
741

Y
Yibing Liu 已提交
742 743 744 745 746 747
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
748
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
749
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
750
          bias vector).
Y
Yibing Liu 已提交
751 752 753
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
754
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
755
    * :math:`h`: The hidden state.
756
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
757 758
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
759
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
760
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
761
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
762 763
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
764 765 766 767

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
768

Y
Yibing Liu 已提交
769 770 771 772 773 774 775 776 777 778 779 780
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
781
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
782 783
                               hidden-hidden weight and projection weight.

784 785
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
786 787
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
788 789
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
790
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
791 792 793 794 795

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
796
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
797 798 799 800 801 802
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
803
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
804 805 806
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
807
                                - The shape is (1 x 7D).
C
chengduo 已提交
808 809 810 811 812

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
813 814 815 816 817 818 819 820 821
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
822
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
823 824
                              default "tanh".
        proj_activation(str): The activation for projection output.
825
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
826
                              default "tanh".
Y
Yibing Liu 已提交
827
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
828 829
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
830 831 832 833 834 835 836 837 838 839 840
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
841 842

    Returns:
843 844 845 846
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
847 848

    Examples:
849

Y
Yibing Liu 已提交
850 851
        .. code-block:: python

852 853 854 855
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
856
            hidden_dim, proj_dim = 512, 256
857
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
858
                                     act=None, bias_attr=None)
859 860 861
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
862 863 864 865
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
866
    """
867

C
chengduo 已提交
868
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
869
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
870
    size = size // 4
Y
Yibing Liu 已提交
871 872 873 874 875 876 877 878 879 880
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
881 882 883 884 885 886
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
902

X
xuezhong 已提交
903 904 905 906 907
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
908 909
    helper.append_op(
        type='lstmp',
910
        inputs=inputs,
Y
Yibing Liu 已提交
911 912 913 914 915 916 917 918 919
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
920 921
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
922 923 924 925 926 927 928 929 930
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
931 932 933 934 935 936 937
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
938 939
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
940
    """
941
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
942

943 944 945
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
946

G
guosheng 已提交
947 948 949 950 951 952 953 954 955
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
956

G
guosheng 已提交
957
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
958

Q
Qiao Longfei 已提交
959 960 961

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
962 963 964 965 966 967 968 969 970 971 972 973
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
974
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
975 976
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
977 978 979 980
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
981
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
982 983

    Args:
984 985
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
986
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
987
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
988 989
            is the hidden size.
        size(int): The dimension of the gru cell.
990
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
991 992
            hidden-hidden weight matrix. Note:

993
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
994
              :math:`D` is the hidden size.
995
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
996
              The first part are weights of the update gate and reset gate with
997
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
998
              candidate hidden state with shape :math:`(D \\times D)`.
999 1000 1001 1002 1003

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1004
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1005
            the bias in the update gate, reset gate and candidate calculations.
1006 1007 1008
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1009 1010
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1011
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1012 1013 1014
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1015
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1016
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1017 1018 1019 1020
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1021 1022

    Returns:
G
guosheng 已提交
1023
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1024
            and sequence length is the same with the input.
1025

G
guosheng 已提交
1026
    Examples:
1027

G
guosheng 已提交
1028 1029
        .. code-block:: python

1030 1031 1032 1033
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1034
            hidden_dim = 512
1035
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1036
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1046
    batch_size = input.shape[0]
G
guosheng 已提交
1047
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1048
    if h_0:
G
guosheng 已提交
1049
        assert h_0.shape == (
Y
Yancey 已提交
1050 1051 1052
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1053

X
Xin Pan 已提交
1054 1055 1056 1057
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1071 1072
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1073 1074 1075 1076
        })
    return hidden


Y
Yu Yang 已提交
1077 1078 1079
def gru_unit(input,
             hidden,
             size,
1080 1081
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1082
             activation='tanh',
Q
Qiao Longfei 已提交
1083 1084
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1085
    """
1086 1087 1088
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1089
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1090
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1091

1092 1093
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1094

1095
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1096

1097
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1114 1115

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1116 1117 1118
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1119 1120
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1121 1122
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1123 1124 1125
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1126 1127 1128

    Args:
        input (Variable): The fc transformed input value of current step.
1129
        hidden (Variable): The hidden value of gru unit from previous step.
1130
        size (integer): The input dimension value.
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1145
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1146
            the bias in the update gate, reset gate and candidate calculations.
1147 1148 1149
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1150 1151
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1152 1153 1154 1155
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1156

1157 1158 1159 1160 1161 1162
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1163

1164
             # assuming we have x_t_data and prev_hidden of size=10
1165
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1166 1167
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1180
    size = size // 3
Y
Yu Yang 已提交
1181 1182

    # create weight
1183 1184
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1185

X
Xin Pan 已提交
1186 1187 1188
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1189
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1190
    # create bias
1191
    if helper.bias_attr:
Y
Yu Yang 已提交
1192 1193 1194
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1195
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1196 1197 1198

    helper.append_op(
        type='gru_unit',
1199
        inputs=inputs,
Y
Yu Yang 已提交
1200 1201 1202 1203 1204 1205
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1206 1207
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1208 1209 1210 1211 1212
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1213
@templatedoc()
1214
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1215 1216 1217 1218 1219 1220 1221
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1222
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1223 1224 1225 1226
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1227 1228 1229
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1230 1231

    """
Y
Yu Yang 已提交
1232 1233 1234 1235 1236 1237
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1238 1239 1240 1241 1242 1243 1244 1245
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1261 1262 1263 1264
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1265

W
wopeizl 已提交
1266 1267
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1268

W
wopeizl 已提交
1269
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1270

W
wopeizl 已提交
1271
        label(${label_type}): ${label_comment}
1272

W
wopeizl 已提交
1273 1274
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1275

W
wopeizl 已提交
1276 1277
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1278

W
wopeizl 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1289
                "Transition": transition,
W
wopeizl 已提交
1290 1291
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1292

W
wopeizl 已提交
1293
    return viterbi_path
Y
Yu Yang 已提交
1294 1295


Y
yi.wu 已提交
1296
@templatedoc()
F
fengjiayi 已提交
1297
def cos_sim(X, Y):
Y
Yu Yang 已提交
1298
    """
Y
yi.wu 已提交
1299 1300 1301
    ${comment}

    Args:
1302 1303
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1304

Y
yi.wu 已提交
1305
    Returns:
1306
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1307
    """
F
fengjiayi 已提交
1308
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1309 1310 1311
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1322 1323 1324 1325 1326
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1327
            dropout_implementation="downgrade_in_infer"):
1328 1329 1330 1331 1332
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1333
    training. The dropout operator randomly sets (according to the given dropout
1334 1335 1336
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1337 1338
    dropout op can be removed from the program to make the program more efficient.

1339
    Args:
1340 1341
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1342 1343 1344 1345 1346 1347 1348
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1349 1350
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1351
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1352 1353

                                           - train: out = input * mask
C
ceci3 已提交
1354
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1355 1356 1357

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1358
                                        2. upscale_in_train, upscale the outcome at training time
1359

H
haowang101779990 已提交
1360 1361
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1362

H
haowang101779990 已提交
1363 1364
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1365

M
minqiyang 已提交
1366

1367
    Returns:
1368
        Variable: A tensor variable is the shape with `x`.
1369 1370

    Examples:
1371

1372 1373
        .. code-block:: python

1374 1375
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1376 1377
    """

F
fengjiayi 已提交
1378
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1379 1380 1381
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1382 1383 1384 1385

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1386 1387 1388 1389 1390
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1391 1392 1393 1394
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1395 1396
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1397
        })
1398 1399 1400
    return out


J
jerrywgz 已提交
1401
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1402
    """
Y
Yibing Liu 已提交
1403 1404
    **Cross Entropy Layer**

1405 1406 1407
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1408 1409

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1410
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1411

Y
Yibing Liu 已提交
1412
        .. math::
Y
yangyaming 已提交
1413

Y
Yibing Liu 已提交
1414 1415 1416
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1417 1418
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1419 1420 1421 1422 1423

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1424
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1425 1426 1427
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1428 1429
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1430
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1431

Y
Yibing Liu 已提交
1432
    Args:
Y
yangyaming 已提交
1433
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1434 1435 1436 1437
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1438
        label (Variable|list): the ground truth which is a 2-D tensor. When
1439 1440 1441 1442
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1443
        soft_label (bool): a flag indicating whether to
1444
                                           interpretate the given labels as soft
1445
                                           labels. Default: `False`.
M
minqiyang 已提交
1446 1447
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1448
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1449 1450 1451 1452 1453

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1454 1455 1456
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1457

H
haowang101779990 已提交
1458 1459
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1460

H
haowang101779990 已提交
1461 1462
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1463 1464 1465 1466 1467 1468

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1469
    """
S
sneaxiy 已提交
1470 1471
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1472
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1473
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1474 1475 1476 1477 1478
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1479 1480
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1481 1482 1483
    return out


S
sneaxiy 已提交
1484 1485 1486 1487
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1488
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1489 1490 1491 1492 1493
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1494
                 'MatchX': [match_x],
S
sneaxiy 已提交
1495 1496 1497 1498 1499
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1500
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1501 1502 1503
    """
    Bayesian Personalized Ranking Loss Operator.

1504
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1505 1506 1507 1508 1509 1510
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1511 1512 1513 1514 1515 1516
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1517 1518
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1519 1520 1521
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1522 1523 1524
    Examples:
        .. code-block:: python

1525
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1526
    """
1527 1528 1529 1530 1531 1532

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1533
                'Label': [label]},
1534 1535 1536 1537
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1538
def square_error_cost(input, label):
Y
Yu Yang 已提交
1539
    """
1540 1541
    **Square error cost layer**

1542 1543
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1558 1559
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1560 1561

    Returns:
G
guosheng 已提交
1562
        Variable: The tensor variable storing the element-wise squared error \
1563
                  difference of input and label.
1564 1565 1566 1567 1568 1569 1570 1571

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1572
    """
F
fengjiayi 已提交
1573
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1574
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1575 1576 1577 1578 1579 1580
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1581
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1582
    helper.append_op(
F
fengjiayi 已提交
1583 1584
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1585 1586 1587
    return square_out


Y
yi.wu 已提交
1588
@templatedoc()
Y
Yu Yang 已提交
1589 1590 1591 1592
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1593
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1594
    """
Y
yi.wu 已提交
1595
    **Chunk Evaluator**
Y
yi.wu 已提交
1596

Y
yangyaming 已提交
1597
    This function computes and outputs the precision, recall and
1598
    F1-score of chunk detection.
Y
yi.wu 已提交
1599

M
minqiyang 已提交
1600
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1601
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1602 1603 1604 1605 1606 1607

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1608

Y
yi.wu 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1634

Y
yi.wu 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1659
    Args:
1660 1661 1662 1663 1664
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1665

Y
yi.wu 已提交
1666
    Returns:
Y
update  
yi.wu 已提交
1667 1668 1669
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1670

Y
yi.wu 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1683
    """
F
fengjiayi 已提交
1684
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1685 1686

    # prepare output
X
Xin Pan 已提交
1687 1688 1689 1690 1691 1692 1693
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1694 1695 1696 1697 1698 1699 1700 1701

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1702 1703 1704 1705
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1706 1707 1708
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1709 1710
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1711
        })
1712 1713
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1714 1715


1716
@templatedoc()
Y
Yu Yang 已提交
1717 1718 1719 1720 1721 1722 1723
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1724 1725
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1726 1727 1728 1729
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1730 1731 1732 1733 1734 1735 1736

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1750

1751 1752
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1753 1754 1755 1756 1757 1758 1759
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1760
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1771
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1772 1773 1774 1775 1776 1777
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1778
def sequence_softmax(input, use_cudnn=False, name=None):
1779 1780 1781
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1782
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1799 1800 1801
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1814 1815
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1816
    softmax_out = helper.create_variable_for_type_inference(dtype)
1817 1818 1819 1820 1821 1822 1823 1824
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1825
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1826
    """
1827
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1828
    has the same shape as the input.
Q
qiaolongfei 已提交
1829

D
dengkaipeng 已提交
1830
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1831
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1832
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1833 1834 1835
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1836
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1837
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1838 1839 1840 1841 1842 1843 1844

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1845
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1846 1847 1848 1849 1850 1851 1852 1853

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1854 1855
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1856 1857
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1858 1859 1860
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1870
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1871
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1872 1873
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1874 1875

    """
1876 1877
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1878
    softmax_out = helper.create_variable_for_type_inference(dtype)
1879 1880 1881 1882
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1883 1884
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1885 1886 1887
    return softmax_out


Y
Yu Yang 已提交
1888 1889 1890
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1891 1892
           stride=1,
           padding=0,
1893
           dilation=1,
Y
Yu Yang 已提交
1894 1895 1896
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1897
           use_cudnn=True,
1898 1899
           act=None,
           name=None):
Y
Yu Yang 已提交
1900
    """
C
chengduoZH 已提交
1901
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1902 1903
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1904
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1905 1906 1907 1908 1909 1910 1911
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1912 1913 1914
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1915

1916
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1917

C
chengduoZH 已提交
1918 1919
    .. math::

C
refine  
chengduoZH 已提交
1920
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1921

T
tensor-tang 已提交
1922
    Where:
C
chengduoZH 已提交
1923

1924 1925 1926 1927 1928
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1929
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1930 1931 1932

    Example:

1933 1934
        - Input:

W
weixing02 已提交
1935
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1936

W
weixing02 已提交
1937
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1938

1939
        - Output:
T
tensor-tang 已提交
1940

W
weixing02 已提交
1941
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1942

C
chengduoZH 已提交
1943
        Where
1944 1945

        .. math::
C
chengduoZH 已提交
1946

W
weixing02 已提交
1947 1948
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1949 1950

    Args:
1951
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1952
        num_filters(int): The number of filter. It is as same as the output
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1970 1971 1972 1973 1974
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1975
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1976 1977 1978 1979 1980
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1981 1982
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1983 1984
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1985
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1986
            will be named automatically. Default: None
C
chengduoZH 已提交
1987 1988

    Returns:
G
guosheng 已提交
1989
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1990 1991
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1992
    Raises:
1993 1994
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1995

C
chengduoZH 已提交
1996 1997 1998
    Examples:
        .. code-block:: python

1999 2000
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2001 2002 2003
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2004
    assert param_attr is not False, "param_attr should not be False here."
2005
    l_type = 'conv2d'
X
xzl 已提交
2006 2007
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2008
        l_type = 'depthwise_conv2d'
2009 2010 2011 2012

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2013 2014 2015 2016 2017
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2018
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2019

C
chengduoZH 已提交
2020 2021 2022
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2023
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2024

C
chengduoZH 已提交
2025 2026
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2027 2028

    input_shape = input.shape
M
minqiyang 已提交
2029
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2030 2031

    def _get_default_param_initializer():
C
chengduo 已提交
2032 2033
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2034 2035 2036 2037 2038 2039 2040 2041
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2042
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2058
    helper.append_op(
2059
        type=l_type,
Y
Yu Yang 已提交
2060 2061 2062 2063 2064
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2065 2066 2067
        attrs={
            'strides': stride,
            'paddings': padding,
2068
            'dilations': dilation,
C
chengduoZH 已提交
2069
            'groups': groups,
2070
            'use_cudnn': use_cudnn,
2071
            'use_mkldnn': False,
2072
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2073
        })
Y
Yu Yang 已提交
2074 2075 2076 2077 2078 2079

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2097 2098 2099 2100 2101 2102
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2112 2113
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2114 2115 2116
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2117
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2143
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2144 2145
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2146
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2147 2148
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2149
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2150 2151
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2152
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2153 2154 2155 2156 2157 2158
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2169 2170
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2171 2172
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2173
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2174
            will be named automatically. Default: None.
C
chengduoZH 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2187 2188
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2189 2190 2191
    """

    l_type = 'conv3d'
C
chengduo 已提交
2192
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2203
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2217 2218 2219
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2220 2221 2222 2223 2224 2225 2226 2227
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2228
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2243
            'use_mkldnn': False
C
chengduoZH 已提交
2244 2245
        })

2246
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2247 2248 2249 2250

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2251
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2252
    """
Y
yangyaming 已提交
2253 2254 2255
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2267
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2268 2269 2270 2271 2272
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2273
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2274 2275 2276 2277 2278 2279 2280

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2281 2282
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2283

L
Luo Tao 已提交
2284 2285
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2286
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2287
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2288
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2289 2290 2291 2292 2293 2294 2295

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2296

Y
yangyaming 已提交
2297
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2298 2299 2300 2301 2302
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2303 2304
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2305
    """
F
fengjiayi 已提交
2306
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2307
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2308 2309
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2310 2311 2312 2313 2314 2315

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2316 2317
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2318

Y
yangyaming 已提交
2319 2320 2321 2322 2323
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2324 2325 2326
    return pool_out


C
add doc  
chengduoZH 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2346
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2347 2348 2349 2350 2351
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2352
def sequence_first_step(input):
L
Luo Tao 已提交
2353
    """
L
Luo Tao 已提交
2354
    This function gets the first step of sequence.
L
Luo Tao 已提交
2355 2356 2357 2358

    .. code-block:: text

       x is a 1-level LoDTensor:
2359
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2360 2361 2362 2363 2364
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2365
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2366
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2367

L
Luo Tao 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2377

Y
yangyaming 已提交
2378
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2379 2380 2381
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2382 2383 2384
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2385
def sequence_last_step(input):
L
Luo Tao 已提交
2386
    """
L
Luo Tao 已提交
2387
    This function gets the last step of sequence.
L
Luo Tao 已提交
2388 2389 2390 2391

    .. code-block:: text

       x is a 1-level LoDTensor:
2392
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2393 2394 2395 2396 2397
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2398
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2399
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2400

L
Luo Tao 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2410

Y
yangyaming 已提交
2411
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2412 2413 2414
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2415 2416 2417
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2418 2419 2420 2421
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2422
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2423 2424 2425 2426 2427
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2428

H
haowang101779990 已提交
2429
              - Case:
Y
Yibing Liu 已提交
2430

2431
            Given the input Variable **input**:
2432

2433 2434 2435
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2436

2437
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2438

2439
            the output Variable will be
2440

2441 2442 2443
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2444

M
minqiyang 已提交
2445
    Note:
H
haowang101779990 已提交
2446
          The first dimension size of **input**, **offset** and **length**
2447
          should be equal. The **offset** should start from 0.
2448

Y
Yibing Liu 已提交
2449
    Args:
2450
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2451
                         sequences.
Y
Yibing Liu 已提交
2452 2453 2454 2455 2456 2457
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2458
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2469
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2470 2471 2472 2473
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2474
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2489
@templatedoc()
Y
Yu Yang 已提交
2490
def pool2d(input,
C
chengduoZH 已提交
2491 2492
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2493 2494
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2495
           global_pooling=False,
C
chengduoZH 已提交
2496
           use_cudnn=True,
2497
           ceil_mode=False,
2498 2499
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2500
    """
F
fengjiayi 已提交
2501
    ${comment}
2502 2503

    Args:
2504 2505 2506
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2507
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2508
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2509 2510
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2511
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2512 2513 2514 2515 2516 2517
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2518 2519 2520
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2521
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2522
                        layer will be named automatically.
2523
        exclusive (bool): Whether to exclude padding points in average pooling
2524
                          mode, default is true
F
fengjiayi 已提交
2525

2526
    Returns:
F
fengjiayi 已提交
2527
        Variable: The pooling result.
F
fengjiayi 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2540
          pool2d = fluid.layers.pool2d(
2541 2542 2543 2544
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2545
                            global_pooling=False)
Y
Yu Yang 已提交
2546 2547 2548 2549 2550
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2551

C
chengduoZH 已提交
2552 2553 2554 2555 2556
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2557 2558 2559 2560
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2561 2562
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2563

C
Add doc  
chengduoZH 已提交
2564
    l_type = 'pool2d'
2565 2566

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2567
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2568
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2569 2570

    helper.append_op(
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2582 2583
            "use_mkldnn": False,
            "exclusive": exclusive,
2584 2585 2586 2587 2588
        })

    return pool_out


D
dengkaipeng 已提交
2589
@templatedoc()
2590 2591 2592 2593 2594 2595 2596 2597
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2598 2599
           name=None,
           exclusive=True):
2600
    """
2601
    ${comment}
2602 2603

    Args:
D
dengkaipeng 已提交
2604 2605 2606 2607 2608
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2609 2610 2611 2612 2613
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2614 2615 2616 2617 2618 2619 2620
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2621
        exclusive (bool): Whether to exclude padding points in average pooling
2622
                          mode, default is true
2623

2624
    Returns:
2625
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2639 2640 2641 2642 2643
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2644

C
chengduoZH 已提交
2645 2646 2647 2648 2649
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2650 2651 2652
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2653

C
chengduoZH 已提交
2654 2655
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2656

2657 2658
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2659
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2660
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2661 2662

    helper.append_op(
2663
        type=l_type,
Y
Yu Yang 已提交
2664 2665 2666 2667 2668 2669 2670
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2671
            "paddings": pool_padding,
2672
            "use_cudnn": use_cudnn,
2673
            "ceil_mode": ceil_mode,
2674 2675
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2676 2677 2678 2679 2680
        })

    return pool_out


2681 2682 2683 2684 2685 2686 2687
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2688 2689 2690 2691 2692 2693 2694
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2695

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2709 2710 2711 2712 2713 2714 2715 2716 2717

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2718 2719
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2734
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2735
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2736
          # of input data into m * n grids averagely and performs poolings in each
2737 2738
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2739
          #
2740 2741 2742 2743 2744 2745 2746 2747
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2748 2749
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2750
          pool_out = fluid.layers.adaptive_pool2d(
2751 2752
                            input=data,
                            pool_size=[3, 3],
2753
                            pool_type='avg')
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2764
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2790
    return (pool_out, mask) if require_index else pool_out
2791 2792 2793 2794 2795 2796 2797 2798 2799


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2800 2801 2802 2803 2804 2805 2806
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2807

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2825 2826 2827

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2828 2829 2830
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2831
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2832
            it must contain three integers, (Depth, Height, Width).
2833
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2834 2835
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2850 2851
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2852
          # of input data into l * m * n grids averagely and performs poolings in each
2853 2854
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2855
          #
2856 2857 2858 2859 2860 2861 2862 2863 2864
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2865
          #                 output[:, :, i, j, k] =
2866 2867
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2868 2869
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2870
          pool_out, mask = fluid.layers.adaptive_pool3d(
2871
                            input=data,
D
dengkaipeng 已提交
2872
                            pool_size=[3, 3, 3],
2873
                            pool_type='avg')
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2884
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2910
    return (pool_out, mask) if require_index else pool_out
2911 2912


Y
Yu Yang 已提交
2913 2914 2915 2916 2917 2918 2919
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2920
               data_layout='NCHW',
Y
Yang Yang 已提交
2921
               in_place=False,
2922 2923
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2924
               moving_variance_name=None,
2925
               do_model_average_for_mean_and_var=False,
2926 2927
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2928
    """
Q
qiaolongfei 已提交
2929 2930 2931 2932
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2933

Q
qiaolongfei 已提交
2934
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2935

Q
qiaolongfei 已提交
2936 2937
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2938 2939 2940
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2953

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2967
    Args:
Q
qingqing01 已提交
2968
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2969
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2970 2971 2972 2973 2974 2975 2976 2977 2978
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2979 2980 2981 2982 2983 2984 2985 2986
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2987
        data_layout(string, default NCHW): NCHW|NHWC
2988
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2989 2990 2991 2992
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2993
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2994
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2995 2996 2997 2998 2999
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3000 3001

    Returns:
Q
qiaolongfei 已提交
3002
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3003 3004 3005 3006 3007 3008 3009

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3010
    """
C
chengduo 已提交
3011
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3012 3013 3014
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3015 3016 3017 3018
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3037
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3038

3039 3040
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3041 3042 3043
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3044
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3045
        shape=param_shape,
W
Wu Yi 已提交
3046
        dtype=dtype)
3047 3048 3049 3050 3051 3052
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3053
            trainable=False,
W
wanghaoshuang 已提交
3054
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3055
        shape=param_shape,
W
Wu Yi 已提交
3056
        dtype=dtype)
3057
    variance.stop_gradient = True
Y
Yu Yang 已提交
3058 3059 3060 3061 3062 3063

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3064 3065 3066 3067
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3068

X
Xin Pan 已提交
3069 3070
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3088 3089 3090 3091
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3092
            "data_layout": data_layout,
X
Xin Pan 已提交
3093
            "use_mkldnn": False,
3094 3095
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3096
        })
Y
Yu Yang 已提交
3097 3098 3099 3100

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3220
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3221 3222 3223 3224

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3225
@templatedoc()
G
guosheng 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3236
    ${comment}
G
guosheng 已提交
3237 3238 3239

    The formula is as follows:

Y
yuyang18 已提交
3240
    ..  math::
G
guosheng 已提交
3241 3242 3243 3244 3245 3246 3247

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3248 3249 3250 3251 3252 3253 3254 3255
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3256

G
guosheng 已提交
3257 3258
    Args:
        input(Variable): The input tensor variable.
3259
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3260
            normalization. Default True.
3261
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3262 3263
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3264
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3265
            Default 1.
3266
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3267
            division by zero. Default 1e-05.
G
guosheng 已提交
3268
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3269 3270
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3271 3272
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3273
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3274 3275
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3276
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3277
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3278
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3279 3280 3281
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3282 3283

    Returns:
Y
yuyang18 已提交
3284
        ${y_comment}
G
guosheng 已提交
3285 3286 3287

    Examples:

Y
yuyang18 已提交
3288 3289 3290
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3291
    """
L
lujun 已提交
3292
    assert in_dygraph_mode(
L
lujun 已提交
3293
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3308
    if shift:
G
guosheng 已提交
3309 3310 3311 3312 3313 3314
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3315 3316 3317 3318 3319
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3347
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3395 3396
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3414
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3415 3416 3417
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3418
    This layer calculates the spectral normalization value of weight parameters of
3419
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3420
    Parameters. Calculations are showed as follows.
3421

D
dengkaipeng 已提交
3422 3423 3424
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3425
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3438
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3439 3440 3441 3442

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3443

D
dengkaipeng 已提交
3444
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3445 3446
                

D
dengkaipeng 已提交
3447 3448 3449 3450
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3451 3452 3453
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3454 3455 3456
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3457
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3458 3459 3460 3461 3462 3463 3464 3465

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3466
    dtype = weight.dtype
D
dengkaipeng 已提交
3467 3468 3469

    # create intput and parameters
    inputs = {'Weight': weight}
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3488 3489

    # create output
3490
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3491 3492

    helper.append_op(
3493
        type="spectral_norm",
D
Dun 已提交
3494
        inputs=inputs,
3495 3496 3497 3498 3499 3500
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3501

3502
    return out
D
Dun 已提交
3503 3504


Y
Yu Yang 已提交
3505 3506 3507 3508
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3509 3510 3511
                     padding=0,
                     stride=1,
                     dilation=1,
3512
                     groups=None,
C
caoying03 已提交
3513
                     param_attr=None,
3514
                     bias_attr=None,
C
chengduoZH 已提交
3515
                     use_cudnn=True,
3516
                     act=None,
C
caoying03 已提交
3517
                     name=None):
Y
Yu Yang 已提交
3518
    """
3519 3520 3521 3522 3523 3524 3525 3526
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3527 3528
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3529 3530 3531
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3532 3533 3534 3535 3536

    For each input :math:`X`, the equation is:

    .. math::

3537
        Out = \sigma (W \\ast X + b)
3538

3539
    Where:
3540 3541 3542

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3543 3544 3545 3546
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3547

3548 3549 3550 3551
    Example:

        - Input:

3552
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3553

3554
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3555 3556 3557

        - Output:

3558
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3559 3560

        Where
Y
Yu Yang 已提交
3561

3562 3563
        .. math::

3564 3565
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3566 3567
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3568 3569

    Args:
3570 3571 3572 3573
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3574 3575 3576 3577
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3606
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3607 3608 3609
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3610
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3611
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3612 3613

    Returns:
3614
        Variable: The tensor variable storing the convolution transpose result.
3615 3616

    Raises:
3617 3618
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3619 3620 3621 3622

    Examples:
       .. code-block:: python

3623 3624
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3625
    """
C
chengduo 已提交
3626
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3627 3628 3629 3630 3631 3632 3633 3634
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3635 3636 3637
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3638 3639 3640
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3641

C
chengduoZH 已提交
3642 3643
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3644

Y
Yu Yang 已提交
3645 3646 3647 3648 3649
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3650

Y
Yu Yang 已提交
3651 3652
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3653

C
chengduoZH 已提交
3654
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3655
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3656
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3657
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3658
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3659 3660 3661
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3662

3663 3664 3665 3666 3667 3668 3669
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3670
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3671
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3672

Y
Yu Yang 已提交
3673 3674 3675
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3676
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3677
    helper.append_op(
3678
        type=op_type,
Y
Yu Yang 已提交
3679 3680
        inputs={'Input': [input],
                'Filter': [img_filter]},
3681
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3682
        attrs={
3683
            'output_size': output_size,
3684 3685 3686 3687 3688
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3689 3690
        })

3691 3692 3693
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3694 3695


3696
def conv3d_transpose(input,
Y
Yu Yang 已提交
3697 3698 3699
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3700 3701 3702
                     padding=0,
                     stride=1,
                     dilation=1,
3703
                     groups=None,
C
caoying03 已提交
3704
                     param_attr=None,
3705
                     bias_attr=None,
C
chengduoZH 已提交
3706
                     use_cudnn=True,
3707
                     act=None,
C
caoying03 已提交
3708
                     name=None):
Y
Yu Yang 已提交
3709
    """
3710
    **Convlution3D transpose layer**
3711

3712
    The convolution3D transpose layer calculates the output based on the input,
3713
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3714 3715 3716 3717 3718 3719
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3720 3721 3722
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3723 3724 3725 3726 3727

    For each input :math:`X`, the equation is:

    .. math::

3728
        Out = \sigma (W \\ast X + b)
3729 3730 3731

    In the above equation:

3732 3733
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3734 3735 3736 3737
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3738

3739 3740 3741 3742
    Example:

        - Input:

3743
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3744

3745
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3746 3747 3748

        - Output:

3749
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3750 3751

        Where
Y
Yu Yang 已提交
3752

3753 3754
        .. math::

3755 3756 3757
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3758 3759

    Args:
3760
        input(Variable): The input image with [N, C, D, H, W] format.
3761 3762 3763
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3764
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3765 3766
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3767
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3768 3769 3770
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3771 3772
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3773
        stride(int|tuple): The stride size. If stride is a tuple, it must
3774 3775
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3776
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3777 3778 3779
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3780 3781 3782 3783 3784
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3794 3795
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3796 3797
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3798 3799
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3800 3801

    Returns:
3802
        Variable: The tensor variable storing the convolution transpose result.
3803 3804

    Raises:
3805 3806
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3807 3808 3809 3810

    Examples:
       .. code-block:: python

3811 3812
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3813
    """
C
chengduo 已提交
3814
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3815 3816
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3817
    if not isinstance(input, Variable):
3818
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3819 3820
    input_channel = input.shape[1]

3821 3822 3823
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3824

C
chengduoZH 已提交
3825 3826 3827
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3828 3829 3830 3831 3832 3833
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3834 3835 3836
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3837

3838
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3839
                         padding[0] - 1) // dilation[0] + 1
3840
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3841
                         padding[1] - 1) // dilation[1] + 1
3842
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3843
                         padding[2] - 1) // dilation[2] + 1
3844
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3845
    else:
3846 3847
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3848

3849
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3850
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3851 3852 3853
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3854
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3855
    helper.append_op(
3856
        type=l_type,
Y
Yu Yang 已提交
3857 3858
        inputs={'Input': [input],
                'Filter': [img_filter]},
3859
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3860 3861 3862 3863
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3864
            'groups': groups,
C
chengduoZH 已提交
3865 3866
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3867

3868 3869
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3870
    return out
Y
yangyaming 已提交
3871 3872


Y
yangyaming 已提交
3873
def sequence_expand(x, y, ref_level=-1, name=None):
3874
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3875 3876 3877 3878
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3879 3880 3881 3882 3883

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3884
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3885
                x.data = [[a], [b], [c], [d]]
3886 3887 3888
                x.dims = [4, 1]

            y is a LoDTensor:
3889 3890
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3891

Y
yangyaming 已提交
3892
            ref_level: 0
3893

Y
yangyaming 已提交
3894
            then output is a 1-level LoDTensor:
3895
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3896
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3897 3898 3899 3900
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3901
                x.data = [[a], [b], [c]]
3902 3903 3904
                x.dims = [3, 1]

            y is a LoDTensor:
3905
                y.lod = [[2, 0, 3]]
3906

Y
yangyaming 已提交
3907
            ref_level: -1
3908

Y
yangyaming 已提交
3909 3910 3911
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3912 3913 3914
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3915 3916
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3917
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3918
                        will be named automatically.
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3929
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3930
    """
Y
yangyaming 已提交
3931
    helper = LayerHelper('sequence_expand', input=x, **locals())
3932
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3933
    tmp = helper.create_variable_for_type_inference(dtype)
3934
    helper.append_op(
Y
yangyaming 已提交
3935 3936 3937 3938 3939
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3940
    return tmp
3941 3942


C
chengduo 已提交
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3999
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4000 4001 4002 4003 4004 4005 4006 4007
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4008
@templatedoc()
4009
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4010 4011 4012 4013 4014
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4015 4016 4017
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4018
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4019 4020 4021 4022
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4023 4024 4025
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4026

F
fengjiayi 已提交
4027
    Returns:
M
minqiyang 已提交
4028
        Variable: The padded sequence batch and the original lengths before
4029
                  padding. All sequences has the same length.
M
minqiyang 已提交
4030

F
fengjiayi 已提交
4031 4032 4033 4034 4035 4036 4037
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4038
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4039
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4040 4041 4042 4043 4044
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4045 4046
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4047 4048 4049 4050

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4051 4052 4053 4054 4055 4056
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4057 4058
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4059
        attrs={'padded_length': maxlen})
4060
    return out, length
F
fengjiayi 已提交
4061 4062


4063
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4064
    """
4065
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4066

4067 4068
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4069 4070 4071 4072 4073 4074 4075 4076 4077
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4078 4079 4080
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4081
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4082 4083 4084 4085 4086 4087

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4088
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4089 4090 4091 4092 4093 4094

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4095 4096
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4111
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4123 4124 4125 4126 4127 4128 4129
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4130
                is_accumulated=True,
4131 4132
                name=None,
                return_parent_idx=False):
4133
    """
4134 4135
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4136 4137 4138

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4139 4140

    This layer does the search in beams for one time step. Specifically, it
4141 4142 4143
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4155 4156 4157 4158

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4159

4160
    Args:
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4184 4185
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4186 4187
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4188 4189 4190 4191
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4192

4193
    Returns:
4194 4195 4196 4197
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4198 4199 4200 4201

    Examples:
        .. code-block:: python

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4219
    helper = LayerHelper('beam_search', **locals())
4220 4221 4222 4223 4224 4225
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4226

X
Xin Pan 已提交
4227 4228 4229
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4230 4231 4232 4233 4234
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4235 4236 4237

    helper.append_op(
        type='beam_search',
4238
        inputs=inputs,
Q
Qiao Longfei 已提交
4239 4240 4241
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4242
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4243 4244 4245 4246 4247 4248
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4249
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4250
        })
4251 4252 4253 4254
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4255 4256


4257 4258 4259 4260 4261 4262 4263
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4264

4265 4266 4267 4268 4269 4270 4271 4272 4273
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4274

4275 4276 4277 4278 4279 4280
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4281

4282 4283
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4284

4285 4286 4287 4288 4289 4290
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4291 4292
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4308 4309 4310 4311
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4312
              param_attr=None,
C
caoying03 已提交
4313 4314
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4315 4316 4317 4318
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4319
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4320

4321
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4322

4323
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4324

4325
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4326 4327 4328

            h_t & = o_t tanh(c_t)

4329 4330 4331 4332 4333 4334
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4335 4336 4337

        .. math::

4338
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4339 4340 4341 4342 4343 4344 4345 4346

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4347
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4348 4349

    Args:
Y
yangyaming 已提交
4350 4351 4352 4353 4354 4355
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4356
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4369 4370
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4371 4372

    Returns:
Y
yangyaming 已提交
4373
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4374 4375

    Raises:
4376 4377 4378 4379
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4380 4381 4382 4383 4384 4385

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4386
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4387
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4388
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4405
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4406 4407 4408 4409
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4410 4411
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4412 4413 4414
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4415
    size = cell_t_prev.shape[1]
4416
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4417 4418
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4419
                param_attr=param_attr,
4420
                bias_attr=bias_attr)
Y
yangyaming 已提交
4421
    dtype = x_t.dtype
X
Xin Pan 已提交
4422 4423
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4424 4425 4426 4427 4428 4429 4430 4431 4432

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4433
    return h, c
G
guosheng 已提交
4434 4435


C
caoying03 已提交
4436
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4437
    """
Y
yangyaming 已提交
4438
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4439 4440 4441

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4442
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4443 4444
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4445 4446
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4447
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4448
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4449
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4450 4451
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4452 4453 4454

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4455

G
guosheng 已提交
4456 4457 4458 4459 4460 4461
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4462
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4463 4464 4465 4466
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4467 4468 4469 4470

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4471
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4472 4473 4474
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4475 4476
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4477
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4478 4479
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4480 4481 4482 4483 4484
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4485
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4486 4487 4488 4489
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4490 4491


C
caoying03 已提交
4492
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4493
    """
Y
Yibing Liu 已提交
4494
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4495 4496 4497

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4498 4499 4500
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4501
            must be in the range :math:`[-rank(input), rank(input))`. If
4502
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4503
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4504 4505
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4506
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4507
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4508
                       will be named automatically.
G
guosheng 已提交
4509 4510

    Returns:
Y
Yibing Liu 已提交
4511
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4512

G
guosheng 已提交
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4523 4524
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4525 4526 4527 4528 4529 4530 4531

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4532 4533
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4534
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4535 4536
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4537 4538 4539 4540 4541
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4542
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4543 4544 4545 4546
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4547 4548


C
caoying03 已提交
4549
def reduce_max(input, dim=None, keep_dim=False, name=None):
4550
    """
Y
yangyaming 已提交
4551
    Computes the maximum of tensor elements over the given dimension.
4552 4553 4554

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4555
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4556 4557 4558
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4559
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4560 4561
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4562
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4563 4564
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4565 4566 4567

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4568

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4580 4581 4582 4583 4584 4585 4586

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4587 4588
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4589
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4590 4591
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4592 4593 4594 4595 4596
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4597
            'dim': dim if dim != None else [0],
4598 4599 4600 4601 4602 4603
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4604
def reduce_min(input, dim=None, keep_dim=False, name=None):
4605
    """
Y
yangyaming 已提交
4606
    Computes the minimum of tensor elements over the given dimension.
4607 4608 4609

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4610
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4611 4612 4613
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4614
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4615 4616
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4617
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4618 4619
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4620 4621 4622

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4623

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4635 4636 4637 4638 4639 4640 4641

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4642 4643
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4644
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4645 4646
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4647 4648 4649 4650 4651
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4652
            'dim': dim if dim != None else [0],
4653 4654 4655 4656
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4657 4658


4659 4660 4661 4662 4663 4664
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4665
        dim (list|int|None): The dimensions along which the product is performed. If
4666 4667
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4668 4669
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4670 4671 4672
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4673
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4674
            layer will be named automatically.
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4689
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4690
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4691 4692 4693 4694 4695 4696 4697

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4698 4699
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4700
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4701 4702
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4703 4704 4705 4706 4707
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4708
            'dim': dim if dim != None else [0],
4709 4710 4711 4712 4713 4714
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4715
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4716
    """
C
caoying03 已提交
4717
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4718 4719 4720

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4721 4722 4723 4724 4725
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4726
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4727
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4728
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4729 4730
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4731 4732

    Returns:
D
dzhwinter 已提交
4733
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4743 4744
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4760
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4774 4775 4776 4777 4778 4779 4780 4781 4782


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4783
    .. math::
4784 4785

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4786 4787 4788 4789 4790

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4791
        x(Variable|list): The input tensor to l2_normalize layer.
4792
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4793 4794
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4795
        epsilon(float): The epsilon value is used to avoid division by zero, \
R
ruri 已提交
4796
            the defalut value is 1e-12.
4797
        name(str|None): A name for this layer(optional). If set None, the layer \
4798
            will be named automatically.
C
caoying03 已提交
4799 4800

    Returns:
4801
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4802 4803

    Examples:
4804

C
caoying03 已提交
4805 4806
        .. code-block:: python

4807 4808 4809 4810
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4811 4812
    """

F
fengjiayi 已提交
4813 4814
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4815 4816
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4817 4818
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4819
    helper.append_op(
4820 4821 4822 4823
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4824
        attrs={
4825 4826
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4827 4828
        })
    return out
4829 4830


S
sneaxiy 已提交
4831
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4832
    """
Y
ying 已提交
4833 4834 4835 4836
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4837

C
chengduoZH 已提交
4838
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4839
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4840

4841 4842 4843 4844 4845
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4846
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4847

C
chengduoZH 已提交
4848
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4849
      performs in the following way.
G
guosheng 已提交
4850

4851
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4852
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4853
        last two dimensions and a batched matrix multiply supporting broadcast
4854
        applies on the two tensors.
G
guosheng 已提交
4855

Y
ying 已提交
4856 4857
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4858
    removed after matrix multiplication.
G
guosheng 已提交
4859 4860 4861

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4862 4863 4864
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4865
        alpha (float): The scale of output. Default 1.0.
4866
        name(str|None): A name for this layer(optional). If set None, the layer
4867
            will be named automatically.
G
guosheng 已提交
4868 4869

    Returns:
4870
        Variable: The product Tensor variable.
G
guosheng 已提交
4871

G
guosheng 已提交
4872 4873 4874
    Examples:
        .. code-block:: python

4875
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4876 4877
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4878

4879 4880
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4881

4882 4883
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4884

4885 4886
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4887 4888 4889 4890

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4891 4892
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4893

Y
ying 已提交
4894
            # x: [M], y: [N]
4895
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4896
    """
Y
ying 已提交
4897 4898 4899 4900 4901 4902 4903

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4904
            y_shape = y_shape + [1]
Y
ying 已提交
4905 4906 4907 4908 4909 4910 4911

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4912 4913
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4914

C
chengduo 已提交
4915
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4916
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4917 4918 4919
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4920
                if dim_x != y_shape[i]:
C
chengduo 已提交
4921 4922
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4923 4924 4925

    __check_input(x, y)

4926
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4927
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4928
    helper.append_op(
4929 4930 4931 4932
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4933 4934 4935
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4936
            'alpha': float(alpha),
S
sneaxiy 已提交
4937
        })
4938
    return out
4939 4940


4941
def topk(input, k, name=None):
Q
qingqing01 已提交
4942 4943 4944 4945
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4946
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4947 4948 4949 4950 4951 4952
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4974 4975 4976
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4977
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4978
                 of input.
4979
        name(str|None): A name for this layer(optional). If set None, the layer
4980
                       will be named automatically.
F
fengjiayi 已提交
4981
                       Default: None
Q
qingqing01 已提交
4982 4983

    Returns:
4984 4985 4986
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4987
        within the last dimension of input.
Q
qingqing01 已提交
4988

F
fengjiayi 已提交
4989 4990
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4991 4992 4993 4994 4995 4996 4997

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4998 4999
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5000 5001 5002 5003 5004 5005
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5006 5007
    helper.append_op(
        type="top_k",
W
whs 已提交
5008
        inputs=inputs,
Q
qingqing01 已提交
5009 5010
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5011
        attrs=attrs)
Q
qingqing01 已提交
5012 5013 5014 5015 5016
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5017
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5018
    """
Y
ying 已提交
5019 5020 5021 5022 5023 5024 5025 5026 5027
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5028

Y
ying 已提交
5029
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5030

5031
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5032 5033
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5034
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5035

5036
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5037 5038
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5039

5040 5041 5042
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5043
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5044
                          the length of reference string.
5045
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5046
                                     calculating edit distance.
5047
        name (str): The name of this layer. It is optional.
5048

W
wanghaoshuang 已提交
5049
    Returns:
W
wanghaoshuang 已提交
5050
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5051 5052 5053 5054

    Examples:
        .. code-block:: python

T
tink2123 已提交
5055 5056
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5057
            cost = fluid.layers.edit_distance(input=x,label=y)
5058
    """
5059
    helper = LayerHelper("edit_distance", **locals())
5060

5061
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5062
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5063 5064
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5065 5066 5067 5068 5069

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5070
            attrs={"tokens": ignored_tokens})
5071 5072 5073 5074 5075
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5076
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5077
            attrs={"tokens": ignored_tokens})
5078 5079
        label = erased_label

5080
    # edit distance op
X
Xin Pan 已提交
5081 5082
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5083 5084 5085 5086
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5087 5088
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5089 5090
        attrs={"normalized": normalized})

5091
    return edit_distance_out, sequence_num
5092 5093 5094 5095 5096


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5097

Y
ying 已提交
5098 5099 5100 5101
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5119
        input.lod = [[4, 4]]
M
minqiyang 已提交
5120

W
whs 已提交
5121
        Computation:
5122

W
whs 已提交
5123 5124 5125 5126 5127 5128
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5129 5130 5131 5132 5133

        output.data = [[2],
                       [1],
                       [3]]

5134
        output.lod = [[2, 1]]
5135

W
whs 已提交
5136

5137 5138
    Args:

Y
ying 已提交
5139 5140 5141 5142 5143 5144 5145 5146 5147
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5148
        name (str): The name of this layer. It is optional.
5149 5150

    Returns:
H
haowang101779990 已提交
5151 5152 5153
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5154
                  LoD [[]] and dims [1, 1].
5155 5156 5157 5158 5159

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5160

5161
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5162
    """
5163
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5164
    _, topk_indices = topk(input, k=1)
5165 5166

    # ctc align op
X
Xin Pan 已提交
5167
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5168 5169 5170
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5171
        outputs={"Output": [ctc_out]},
5172 5173
        attrs={"merge_repeated": True,
               "blank": blank})
5174
    return ctc_out
5175 5176


W
Wu Yi 已提交
5177
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5178
    """
5179 5180
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5181
    to compute Connectionist Temporal Classification (CTC) loss.
5182 5183
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5184 5185 5186
    input tensor.

    Args:
5187
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5188 5189 5190 5191
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5192
       label (Variable): The ground truth of variable-length sequence,
5193 5194 5195
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5196 5197
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5198 5199 5200
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5201
         follewed by a mean_op.
W
Wu Yi 已提交
5202
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5203 5204

    Returns:
5205 5206
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5207 5208

    Examples:
5209

W
wanghaoshuang 已提交
5210
        .. code-block:: python
5211

5212 5213 5214
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5215 5216

    """
F
fengjiayi 已提交
5217
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5218 5219
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5220 5221 5222 5223 5224 5225
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5226 5227 5228 5229 5230
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5231
    return loss_out
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5247 5248 5249
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5250 5251 5252 5253 5254
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5255

5256
            out.lod  = [[0, 1, 3]]
5257 5258 5259 5260

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5261 5262 5263 5264 5265 5266 5267
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5268 5269 5270

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5271 5272

    Returns:
5273

5274 5275 5276 5277 5278
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5279
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5280
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5281 5282
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5283
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5284 5285 5286 5287 5288 5289
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5290 5291


5292 5293 5294 5295
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5296 5297 5298 5299 5300 5301
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5302
        num_neg_samples=None,
5303 5304 5305
        name=None,
        sampler="uniform",
        custom_dist=None,
5306 5307
        seed=0,
        is_sparse=False):
5308 5309 5310 5311 5312 5313 5314
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5315 5316
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5317
            sample is 1.0.
C
chengduo 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5327
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5328 5329
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5330 5331 5332
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5333
        custom_dist (float[]): A float[] with size=num_total_classes.
5334 5335 5336 5337
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5338
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5339

5340
    Returns:
Y
Yibing Liu 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5368 5369 5370 5371 5372 5373 5374 5375 5376

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5377

5378
    """
Y
Yang Yu 已提交
5379 5380 5381
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5382 5383

    dim = input.shape[1]
Y
Yang Yu 已提交
5384 5385 5386 5387 5388 5389
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5390
    inputs = {}
C
chengduo 已提交
5391 5392 5393 5394 5395 5396 5397
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5398 5399 5400
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5401

5402 5403 5404 5405
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5406 5407 5408 5409 5410 5411 5412

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5413 5414 5415 5416 5417 5418 5419 5420 5421
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5422
            if normal_prob - 1.0 > 0:
5423
                bigs.append((i, normal_prob))
5424
            elif 1.0 - normal_prob > 0:
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5440
            if big_left - 1.0 > 0:
5441
                bigs.append((big_idx, big_left))
5442
            elif 1.0 - big_left > 0:
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5472 5473 5474 5475
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5476 5477 5478 5479 5480
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5481 5482 5483 5484
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5485

Y
Yang Yu 已提交
5486 5487
    attrs = {
        'num_total_classes': int(num_total_classes),
5488 5489
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5490
        'sampler': sampler,
5491 5492
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5493
    }
Y
Yang Yu 已提交
5494 5495 5496

    helper.append_op(
        type='nce',
C
chengduo 已提交
5497
        inputs=inputs,
Y
Yang Yu 已提交
5498 5499 5500 5501 5502 5503
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5504
    return cost / (num_neg_samples + 1)
5505 5506


C
chengduo 已提交
5507 5508
def hsigmoid(input,
             label,
5509
             num_classes,
C
chengduo 已提交
5510 5511
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5512
             name=None,
5513 5514 5515
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5516
             is_sparse=False):
W
weixing02 已提交
5517 5518
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5519
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5520
    complete binary tree, or you can use is_custom to pass your own tree to
5521
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5522 5523 5524 5525 5526 5527
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5528
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5529
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5530

5531 5532
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5533 5534 5535 5536
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5537
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5538
       related to the same batch of inputs.
5539

W
weixing02 已提交
5540
    Args:
M
minqiyang 已提交
5541
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5542 5543 5544 5545
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5546 5547
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5548
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5560
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5561
            it should be in leaf -> root order
M
minqiyang 已提交
5562 5563 5564
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5565
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5566
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5567
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5568
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5569
             of W and input will be sparse.
W
weixing02 已提交
5570 5571

    Returns:
J
JiabinYang 已提交
5572
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5573 5574 5575 5576 5577

    Examples:

        .. code-block:: python

G
guosheng 已提交
5578 5579 5580
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5581 5582 5583 5584
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5585 5586
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5587
    dim = input.shape[1]
5588
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5589 5590 5591
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5592 5593 5594 5595 5596 5597 5598 5599 5600
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5601
    if (is_custom) and (path_code is None):
5602
        raise ValueError("path_code should not be None with custom tree")
5603
    elif (is_custom) and (path_table is None):
5604
        raise ValueError("path_table should not be None with custom tree")
5605
    elif (is_custom) and (num_classes is None):
5606
        raise ValueError("num_classes should not be None with custom tree")
5607 5608 5609
    else:
        pass

J
JiabinYang 已提交
5610
    weights = None
5611 5612 5613 5614
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5615
    if not is_custom:
J
JiabinYang 已提交
5616 5617 5618 5619 5620 5621 5622 5623
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5624
            shape=[num_classes, dim],
J
JiabinYang 已提交
5625 5626
            is_bias=False,
            dtype=input.dtype)
5627 5628 5629
    inputs = {
        "X": input,
        "W": weights,
5630
        "PathTable": path_table,
5631
        "PathCode": path_code,
5632 5633
        "Label": label
    }
W
weixing02 已提交
5634
    if helper.bias_attr:
5635
        if not is_custom:
J
JiabinYang 已提交
5636 5637
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5638
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5639 5640 5641 5642 5643 5644
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5645
                shape=[num_classes, 1],
J
JiabinYang 已提交
5646 5647 5648
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5649 5650
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5651
        inputs=inputs,
W
weixing02 已提交
5652
        outputs={"Out": out,
5653 5654 5655 5656 5657 5658 5659
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5660 5661 5662
    return out


Y
fix ci.  
ying 已提交
5663
def transpose(x, perm, name=None):
Y
ying 已提交
5664 5665 5666 5667 5668 5669 5670
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5671 5672 5673
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5674 5675 5676 5677 5678 5679 5680

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5681
            # use append_batch_size=False to avoid prepending extra
5682
            # batch size in shape
5683
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5684
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5685
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5686 5687
    """

Y
fix ci.  
ying 已提交
5688
    if len(perm) != len(x.shape):
Y
ying 已提交
5689 5690 5691
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5692 5693 5694 5695 5696 5697
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5698 5699

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5700 5701
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5702
    helper.append_op(
5703
        type='transpose2',
Y
fix ci.  
ying 已提交
5704
        inputs={'X': [x]},
5705 5706
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5707 5708
        attrs={'axis': perm})
    return out
5709 5710


5711 5712 5713 5714 5715 5716 5717
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5718
    """
5719 5720 5721 5722 5723 5724 5725
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5754 5755 5756 5757 5758 5759 5760 5761 5762
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5763 5764 5765
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5766 5767 5768 5769 5770
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5798 5799 5800
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5813
            output.dims = {8, 8}
5814

5815
            output.lod = [[4, 4]]
5816

T
Tink_Y 已提交
5817
    Examples:
5818 5819 5820

        .. code-block:: python

5821 5822
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5823 5824

    """
W
wanghaoshuang 已提交
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5835 5836 5837 5838 5839 5840 5841
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5842
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5843
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5844
    helper.append_op(
5845
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5846
    return out
5847 5848


Y
yuyang18 已提交
5849
@templatedoc()
5850
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5851 5852
    """
    ${comment}
5853 5854

    Args:
Y
yuyang18 已提交
5855
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5856 5857
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5858 5859 5860 5861 5862
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5863
        ${out_comment}.
5864 5865

    Examples:
Y
yuyang18 已提交
5866 5867 5868 5869
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5870 5871 5872 5873 5874 5875
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5876
    out = helper.create_variable_for_type_inference(dtype)
5877 5878 5879 5880 5881
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5882
    return helper.append_activation(out)
5883 5884


Y
yuyang18 已提交
5885
@templatedoc()
5886 5887
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5888 5889
    ${comment}

L
lujun 已提交
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5933 5934

    Args:
Y
yuyang18 已提交
5935 5936
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5937 5938

    Returns:
Y
yuyang18 已提交
5939
        ${out_comment}.
5940 5941
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5942 5943 5944 5945 5946

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5947
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5948 5949 5950 5951 5952 5953
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5954 5955


5956 5957 5958
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5959
                               ignore_index=kIgnoreIndex,
5960
                               numeric_stable_mode=True,
5961
                               return_softmax=False):
5962 5963
    """
    **Softmax With Cross Entropy Operator.**
5964

5965 5966 5967 5968
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5969

5970 5971 5972
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5973

5974 5975 5976
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5977

5978
    The equation is as follows:
5979

5980
    1) Hard label (one-hot label, so every sample has exactly one class)
5981

5982 5983 5984 5985
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5986

5987 5988 5989
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5990

5991 5992 5993 5994
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5995 5996 5997
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5998

H
haowang101779990 已提交
5999
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6000

H
haowang101779990 已提交
6001
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6002

H
haowang101779990 已提交
6003
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6004 6005 6006

    and then cross entropy loss is calculated by softmax and label.

6007 6008 6009 6010 6011 6012 6013 6014
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6015 6016
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6017
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6018 6019 6020
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6021 6022 6023
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6024
                                    stable algorithm. Default: True
6025
        return_softmax (bool): A flag indicating whether to return the softmax
6026
                               along with the cross entropy loss. Default: False
6027

6028
    Returns:
H
haowang101779990 已提交
6029 6030 6031 6032 6033
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6034 6035 6036 6037 6038 6039 6040

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6041 6042
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6043 6044
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6045 6046
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6047 6048 6049 6050 6051 6052
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6053 6054 6055 6056 6057
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6058 6059 6060 6061

    if return_softmax:
        return loss, softmax

6062 6063 6064
    return loss


6065 6066 6067
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6068
                                       num_true=1,
6069
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6070 6071 6072
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6073
                                       seed=0):
X
xuezhong 已提交
6074 6075 6076 6077 6078
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6079
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6080 6081 6082 6083 6084 6085 6086 6087
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6088
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6089 6090 6091 6092 6093 6094 6095 6096
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6097
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6109
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6110 6111 6112 6113 6114
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6115
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6116
            logits.
X
xuezhong 已提交
6117 6118 6119 6120 6121
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6122 6123 6124
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6145 6146
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6147 6148
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6149 6150 6151 6152 6153

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6154
            'Labels': label,
X
xuezhong 已提交
6155 6156
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6157 6158 6159 6160
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6161
            'SampledLabels': sampled_label,
6162 6163 6164
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6165 6166
        },
        attrs={
X
xuezhong 已提交
6167
            'use_customized_samples': use_customized_samples,
6168
            'uniq': True,
X
xuezhong 已提交
6169 6170 6171 6172
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6173 6174
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6175 6176 6177 6178 6179 6180
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6181 6182
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6183
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6184
                'Label': sampled_softlabel},
X
xuezhong 已提交
6185 6186 6187
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6188
            'soft_label': True,
X
xuezhong 已提交
6189 6190 6191
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6192
    return loss / num_true
X
xuezhong 已提交
6193 6194


6195 6196
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6197 6198
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6199
    For each instance, it computes the smooth L1 loss element by element first
6200
    and then sums all the losses. So the shape of ouput Variable is
6201
    [batch_size, 1].
6202

6203 6204
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6205
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6206
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6207
            L1 loss op with same shape as :attr:`x`.
6208
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6209 6210
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6211
            by this tensor element by element.
6212
        outside_weight (Variable|None): A tensor with rank at least 2. This
6213 6214
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6215
            element by element.
6216
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6217 6218
           scalar with default value 1.0.

6219
    Returns:
6220
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6221 6222 6223 6224 6225

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6226 6227
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6228
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6229
            out = fluid.layers.smooth_l1(x=fc, y=label)
6230
    """
6231

6232
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6233 6234
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6247 6248 6249 6250


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6251
    This layer creates the one-hot representations for input indices.
6252 6253

    Args:
Y
Yibing Liu 已提交
6254 6255
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6256 6257

    Returns:
Y
Yibing Liu 已提交
6258
        Variable: The one-hot representations of input.
6259 6260

    Examples:
C
caoying03 已提交
6261
        .. code-block:: python
6262

Y
Yibing Liu 已提交
6263 6264
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6265 6266
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6267
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6268 6269 6270 6271
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6272 6273
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6274
    return one_hot_out
Y
Yu Yang 已提交
6275 6276


Y
Yu Yang 已提交
6277
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6278
    """
Y
yi.wu 已提交
6279 6280 6281
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6282 6283 6284 6285 6286 6287

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6288 6289
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6290 6291 6292 6293 6294 6295

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6296 6297
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6298 6299
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6300 6301 6302 6303 6304
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6305
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6306
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6307 6308
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6309
            outputs={'Out': [counter]},
M
minqiyang 已提交
6310 6311
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6312 6313 6314
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6315 6316


6317
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6318
    """
C
caoying03 已提交
6319 6320
    Gives a new shape to the input Tensor without changing its data.

6321 6322 6323 6324 6325
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6326

6327
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6328

6329 6330 6331 6332
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6333
    2. 0 means the actual dimension value is going to be copied from the
6334 6335 6336 6337
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6338 6339

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6340
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6341
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6342

6343
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6344 6345
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6346 6347
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6348
    dimensions.
C
caoying03 已提交
6349

6350
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6351 6352 6353 6354
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6355 6356

    Args:
6357
        x(variable): The input tensor.
C
caoying03 已提交
6358 6359
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6360 6361 6362 6363 6364
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6365 6366
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6367 6368 6369
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6370
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6371
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6372

6373
    Returns:
G
guosheng 已提交
6374 6375 6376 6377
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6378

X
Xin Pan 已提交
6379 6380 6381
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6382 6383
    Examples:
        .. code-block:: python
G
guosheng 已提交
6384

6385
            data = fluid.layers.data(
6386
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6387
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6388
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6389 6390 6391
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6392
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6393 6394 6395 6396 6397
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6398

6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6414
    helper = LayerHelper("reshape2", **locals())
6415 6416
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6417
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6418
    helper.append_op(
6419
        type="reshape2",
X
Xin Pan 已提交
6420
        inputs=inputs,
D
dzhwinter 已提交
6421
        attrs={"shape": shape},
6422 6423
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6424

D
dzhwinter 已提交
6425
    return helper.append_activation(out)
6426

6427

6428
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6429
    """
M
minqiyang 已提交
6430 6431 6432
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6433
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6434

H
haowang101779990 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6456

Y
Yibing Liu 已提交
6457
    Args:
6458
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6459
        axes (list): List of integers, indicating the dimensions to be squeezed.
6460
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6461 6462 6463 6464 6465 6466 6467 6468

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6469
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6470
    """
L
lujun 已提交
6471
    assert not in_dygraph_mode(), (
L
lujun 已提交
6472
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6473
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6474 6475
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6476
    helper.append_op(
6477
        type="squeeze2",
6478
        inputs={"X": input},
Y
Yibing Liu 已提交
6479
        attrs={"axes": axes},
6480 6481
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6482

6483 6484 6485
    return out


6486
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6487
    """
M
minqiyang 已提交
6488 6489 6490
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6491

M
minqiyang 已提交
6492
    For example:
H
haowang101779990 已提交
6493 6494 6495

    .. code-block:: text

M
minqiyang 已提交
6496
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6497
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6498

Y
Yibing Liu 已提交
6499
    Args:
6500
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6501
        axes (list): List of integers, indicating the dimensions to be inserted.
6502
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6503 6504 6505 6506 6507 6508 6509 6510

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6511
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6512 6513
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6514 6515
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6516
    helper.append_op(
6517
        type="unsqueeze2",
6518
        inputs={"X": input},
Y
Yibing Liu 已提交
6519
        attrs={"axes": axes},
6520 6521
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6522

6523 6524
    return out

6525

Y
yangyaming 已提交
6526
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6527
    """
Y
Yibing Liu 已提交
6528
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6529 6530 6531 6532
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6533
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6534 6535 6536 6537 6538 6539

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6540
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6541 6542 6543
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6544
            target_lod: [4, 2]
Y
yangyaming 已提交
6545 6546

            then we get a 1-level LoDTensor:
6547
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6548 6549 6550 6551 6552 6553
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6554
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6555 6556 6557 6558
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6559
                y.data = [[2, 4]]
Y
yangyaming 已提交
6560 6561 6562
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6563
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6564 6565 6566 6567 6568 6569
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6570
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6571 6572 6573 6574
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6575
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6576 6577 6578 6579
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6580
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6581 6582 6583 6584 6585
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6586
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6587
                           from :attr:`y`.
Y
yangyaming 已提交
6588
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6589
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6590 6591

    Returns:
Y
Yibing Liu 已提交
6592
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6593 6594

    Raises:
Y
Yibing Liu 已提交
6595
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6605
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6631
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6660 6661
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6674 6675 6676
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6690 6691 6692 6693


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6694
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6695
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6696

G
guosheng 已提交
6697 6698 6699 6700
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6723
                         The length of :attr:paddings must be
G
guosheng 已提交
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6734

G
guosheng 已提交
6735 6736 6737 6738 6739 6740
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6741
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6742 6743 6744 6745 6746 6747 6748
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6749 6750


C
chengduo 已提交
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6782 6783
		And
            pad_value = -1,
C
chengduo 已提交
6784

T
Tink_Y 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6820
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6821 6822 6823 6824 6825 6826 6827 6828 6829
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6830 6831 6832 6833 6834 6835 6836
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6837 6838
    called label-smoothing regularization (LSR).

6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6862
                              be :math:`(1, class\_num)`.
6863 6864
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6865
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6885
    smooth_label = helper.create_variable_for_type_inference(dtype)
6886 6887 6888 6889 6890 6891 6892
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6893 6894


W
wopeizl 已提交
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6931 6932


J
jerrywgz 已提交
6933 6934 6935 6936 6937 6938
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6939 6940
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6957 6958 6959
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6960 6961 6962 6963 6964 6965
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6966
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7007 7008
        .. code-block:: python

W
whs 已提交
7009 7010 7011 7012
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7013
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7014 7015 7016 7017 7018 7019
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7020 7021


7022 7023 7024 7025
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7026
                 resample='BILINEAR',
7027 7028
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7029
                 align_mode=1):
7030
    """
Q
qiaolongfei 已提交
7031
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7032

7033
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7034 7035 7036
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7037

7038
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7039

7040
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7041

7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7052
    Align_corners and align_mode are optinal parameters,the calculation method 
7053 7054 7055 7056
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7057
    .. code-block:: text
7058

T
Tink_Y 已提交
7059
        For scale:
7060
          
T
Tink_Y 已提交
7061
            if align_corners = True && out_size > 1 :
7062

T
Tink_Y 已提交
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7074

T
Tink_Y 已提交
7075 7076
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7077

T
Tink_Y 已提交
7078 7079
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7080

T
Tink_Y 已提交
7081 7082
          else:
              align_corners = True
7083

T
Tink_Y 已提交
7084 7085
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7086

T
Tink_Y 已提交
7087 7088
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7089

T
Tink_Y 已提交
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7100

T
Tink_Y 已提交
7101 7102 7103 7104
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7105

T
Tink_Y 已提交
7106 7107
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7108 7109 7110 7111 7112 7113 7114 7115 7116

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7117
    Args:
7118
        input (Variable): The input tensor of image resize layer,
7119 7120
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7121
        out_shape(list|tuple|Variable|None): Output shape of image resize
7122 7123
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7124
        scale(float|None): The multiplier for the input height or width.
7125 7126 7127
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7128 7129
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7130
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7131
                       currently.
7132
                       Default: 'BILINEAR'
7133 7134 7135
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7136
                                :attr:`out_shape` and :attr:`scale` specifying
7137 7138 7139 7140 7141 7142 7143
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7144 7145
                                constructing stage.
                                Default: None
7146 7147 7148 7149
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7150
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7151 7152
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7153 7154

    Returns:
Q
update  
qiaolongfei 已提交
7155 7156
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7157

7158 7159 7160
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7161
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7162 7163 7164
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7165 7166
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7167

7168 7169 7170
    Examples:
        .. code-block:: python

7171
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7172
    """
7173 7174 7175 7176
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7177 7178
    if resample not in resample_methods:
        raise ValueError(
7179
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7180
        )
7181
    resample_type = resample_methods[resample]
7182 7183 7184 7185 7186 7187

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7188
    if out_shape is None and scale is None:
7189
        raise ValueError("One of out_shape and scale must not be None.")
7190
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7191
    dtype = helper.input_dtype()
7192 7193 7194 7195

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7196 7197 7198
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7199
    if out_shape is not None:
7200 7201 7202 7203
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7204
            inputs['OutSize'] = out_shape
7205 7206 7207 7208 7209 7210 7211 7212
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7213 7214 7215 7216
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7217 7218 7219 7220 7221
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7222
    out = helper.create_variable_for_type_inference(dtype)
7223
    helper.append_op(
7224
        type='{}_interp'.format(resample_type),
7225
        inputs=inputs,
7226
        outputs={"Out": out},
7227 7228 7229 7230 7231 7232 7233
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7234
    return out
F
stash  
fengjiayi 已提交
7235 7236


7237
@templatedoc(op_type="bilinear_interp")
7238 7239 7240 7241
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7242 7243
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7244
                    align_mode=1):
7245
    """
7246 7247
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7248 7249
    in priority order.

7250 7251 7252 7253
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7254 7255
    again in the other direction.

7256
    For details of bilinear interpolation, please refer to Wikipedia:
7257
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7258

T
tink2123 已提交
7259
    Align_corners and align_mode are optinal parameters,the calculation 
7260 7261 7262 7263
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7264
    .. code-block:: text
7265

T
Tink_Y 已提交
7266
        For scale:
7267
          
T
Tink_Y 已提交
7268
            if align_corners = True && out_size > 1 :
7269

T
Tink_Y 已提交
7270 7271 7272 7273 7274
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7275

T
Tink_Y 已提交
7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7286 7287


T
Tink_Y 已提交
7288
          else:
T
tink2123 已提交
7289

T
Tink_Y 已提交
7290 7291
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7292

T
Tink_Y 已提交
7293 7294
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7295 7296 7297



Y
yuyang18 已提交
7298 7299 7300 7301
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7302

Y
yuyang18 已提交
7303 7304 7305 7306 7307
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7308 7309 7310
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7311
                                :attr:`out_shape` and :attr:`scale` specifying
7312 7313 7314 7315 7316 7317 7318
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7319 7320
                                constructing stage.
                                Default: None
7321 7322
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7323 7324 7325

    Returns:
        ${out_comment}.
7326 7327 7328 7329 7330

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7331 7332
    """

7333 7334
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7335 7336


7337
@templatedoc(op_type="nearest_interp")
7338 7339 7340 7341
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7342 7343
                   actual_shape=None,
                   align_corners=True):
7344
    """
7345
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7346 7347
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7348 7349
    out_shape and scale in priority order.

7350 7351
    Example:

T
Tink_Y 已提交
7352 7353 7354 7355 7356
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7357

T
Tink_Y 已提交
7358 7359 7360 7361 7362 7363 7364 7365
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7366
          
T
Tink_Y 已提交
7367 7368
          if:
              align_corners = False
7369

T
Tink_Y 已提交
7370 7371
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7372

T
Tink_Y 已提交
7373 7374
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7375

T
Tink_Y 已提交
7376 7377
          else:
              align_corners = True
7378

T
Tink_Y 已提交
7379 7380
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7381

T
Tink_Y 已提交
7382 7383
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7384 7385


7386
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7387
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7388 7389 7390 7391 7392

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7393

Y
yuyang18 已提交
7394 7395 7396 7397 7398
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7399 7400 7401
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7402
                                :attr:`out_shape` and :attr:`scale` specifying
7403 7404 7405 7406 7407 7408 7409
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7410 7411
                                constructing stage.
                                Default: None
7412
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7413 7414 7415

    Returns:
        ${out_comment}.
7416 7417 7418 7419 7420

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7421 7422
    """

7423 7424
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7425 7426 7427 7428


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7429 7430 7431
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7432 7433 7434 7435 7436 7437 7438
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7439
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7440

7441
    Returns:
Q
update  
qiaolongfei 已提交
7442
        Variable: The output is a 4-D tensor of the shape
7443
        (num_batches, channls, out_h, out_w).
7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7454 7455 7456
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7457 7458 7459
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7460 7461
def gather(input, index):
    """
Q
qiaolongfei 已提交
7462 7463
    **Gather Layer**

7464
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7465 7466 7467 7468
    of X indexed by `index` and concatenate them together.

    .. math::

7469
        Out = X[Index]
W
whs 已提交
7470 7471 7472 7473 7474 7475 7476


    .. code-block:: text


                Given:

7477 7478
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7489
        input (Variable): The source input with rank>=1.
W
whs 已提交
7490 7491 7492 7493 7494 7495
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7496

W
whs 已提交
7497 7498 7499 7500 7501 7502
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7503
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7504 7505 7506 7507 7508 7509 7510 7511
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7543
    out = helper.create_variable_for_type_inference(dtype)
7544 7545 7546 7547 7548 7549 7550 7551 7552
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7553 7554 7555 7556 7557 7558 7559 7560 7561
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7562

Q
Qingsheng Li 已提交
7563
    Given the following input:
H
haowang101779990 已提交
7564

Q
Qingsheng Li 已提交
7565
    .. code-block:: text
H
haowang101779990 已提交
7566

Q
Qingsheng Li 已提交
7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7579

Q
Qingsheng Li 已提交
7580
    .. code-block:: text
H
haowang101779990 已提交
7581

Q
Qingsheng Li 已提交
7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7597
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7608
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7609 7610 7611 7612 7613 7614 7615 7616 7617
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7631

7632 7633 7634
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7635
    """
F
stash  
fengjiayi 已提交
7636
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7637
    dtype = x.dtype
X
Xin Pan 已提交
7638
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7639
    if seed is None:
7640
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7641
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7642
    if isinstance(seed, int):
F
fengjiayi 已提交
7643 7644 7645 7646 7647
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7648 7649 7650 7651
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7652
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7653 7654
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7655 7656
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7657
    return out
W
whs 已提交
7658 7659


7660
def log(x, name=None):
W
wanghaoshuang 已提交
7661 7662 7663 7664 7665
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7666
        Out = \\ln(x)
W
wanghaoshuang 已提交
7667 7668

    Args:
7669
        x (Variable): Input tensor.
7670 7671
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7672 7673 7674 7675 7676 7677 7678 7679

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7680
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7681 7682
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7683
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7684
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7685
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7686 7687 7688
    return out


7689
def relu(x, name=None):
W
wanghaoshuang 已提交
7690 7691
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7692
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7693 7694 7695 7696
    the tensor elementwise.

    .. math::

7697
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7698 7699

    Args:
7700
        x (Variable): The input tensor.
7701 7702
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7703 7704 7705 7706 7707 7708 7709 7710

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7711
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7712 7713
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7714
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7715
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7716 7717
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7718
    return out
7719 7720


C
chengduo 已提交
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7762 7763 7764
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7765 7766 7767 7768
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7769
    .. math::
7770

H
haowang101779990 已提交
7771
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7772

7773
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7774 7775 7776 7777 7778
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7779
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7780
                           Its shape should be the same as input.
7781
        num_classes (int): The possible number of labels.
W
whs 已提交
7782 7783

    Returns:
M
minqiyang 已提交
7784 7785
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7786
                     Three variables:
M
minqiyang 已提交
7787

H
haowang101779990 已提交
7788 7789 7790
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7791 7792 7793 7794

    Examples:

        .. code-block:: python
7795

W
whs 已提交
7796 7797 7798 7799
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7800 7801 7802
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7803 7804
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7805 7806
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7807
        outputs={
W
whs 已提交
7808 7809 7810
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7811 7812 7813
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7882
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7883 7884 7885 7886 7887

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7888
            isinstance(shape, Variable)):
7889 7890 7891 7892 7893
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7894
    out = helper.create_variable_for_type_inference(x.dtype)
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7912 7913


W
whs 已提交
7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7931

W
whs 已提交
7932
              out_shape = [2, 3, 5, 5]
7933

W
whs 已提交
7934
          Step 1:
7935

W
whs 已提交
7936 7937 7938
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7939

W
whs 已提交
7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7985
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7986
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7999

W
whs 已提交
8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8011
            isinstance(out_shape, Variable)):
W
whs 已提交
8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8033 8034
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8035

8036 8037
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8038
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8039 8040 8041
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8042

8043 8044
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8045

H
haowang101779990 已提交
8046 8047
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8048 8049
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8050

H
haowang101779990 已提交
8051 8052 8053 8054 8055 8056 8057 8058
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8059 8060 8061

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8096
    out = helper.create_variable_for_type_inference("float32")
8097 8098 8099 8100 8101 8102 8103 8104

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8105 8106


M
minqiyang 已提交
8107 8108
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8109
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8110
    which compares left score and right score passed in.
M
minqiyang 已提交
8111
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8112 8113 8114

    .. math::

H
haowang101779990 已提交
8115
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8116 8117

    Args:
M
minqiyang 已提交
8118
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8119 8120
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8121
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8122 8123
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8124

M
minqiyang 已提交
8125
    Returns:
M
minqiyang 已提交
8126
       Variable: The ranking loss.
H
haowang101779990 已提交
8127

M
minqiyang 已提交
8128
    Raises:
M
minqiyang 已提交
8129
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8130

M
minqiyang 已提交
8131
    Examples:
H
haowang101779990 已提交
8132

M
minqiyang 已提交
8133
        .. code-block:: python
H
haowang101779990 已提交
8134

M
minqiyang 已提交
8135 8136 8137 8138 8139
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8140
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8141 8142 8143 8144 8145 8146
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8147 8148
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8172
        .. code-block:: text
W
whs 已提交
8173

T
Tink_Y 已提交
8174
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8175

T
Tink_Y 已提交
8176 8177
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8178

T
Tink_Y 已提交
8179
	      Case 0:
M
minqiyang 已提交
8180

T
Tink_Y 已提交
8181 8182 8183
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8184

T
Tink_Y 已提交
8185 8186 8187
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8188

T
Tink_Y 已提交
8189
	      Case 1:
M
minqiyang 已提交
8190

T
Tink_Y 已提交
8191 8192
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8193

T
Tink_Y 已提交
8194 8195 8196
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8197

T
Tink_Y 已提交
8198
	      Case 2:
M
minqiyang 已提交
8199

T
Tink_Y 已提交
8200 8201
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8202

T
Tink_Y 已提交
8203 8204 8205
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8206 8207


W
whs 已提交
8208 8209
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8210
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8234
    out = helper.create_variable_for_type_inference(dtype)
8235 8236 8237 8238 8239 8240 8241 8242 8243
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8244
    helper.append_op(
8245
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8246 8247 8248 8249

    return out


8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8262 8263 8264 8265 8266

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8267 8268
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8269 8270
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8271
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8292 8293 8294 8295 8296

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8297 8298
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8299 8300
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8301
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8322 8323 8324 8325 8326

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8327 8328
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8329 8330
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8331
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8353 8354 8355 8356 8357

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8358
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8359
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8360 8361
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8362
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8385 8386 8387 8388 8389

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8390 8391
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8392 8393
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8394
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8416 8417 8418 8419 8420

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8421 8422
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8423 8424
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8425
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8426 8427 8428 8429 8430 8431 8432 8433
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8434 8435 8436 8437
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8438 8439
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8440 8441 8442

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8443
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8444
          weight (alpha).
J
jerrywgz 已提交
8445
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8446 8447 8448
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8449
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8450
          will be named automatically.
J
jerrywgz 已提交
8451 8452 8453 8454 8455 8456 8457 8458

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8459
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8473
        attr=helper.param_attr,
J
jerrywgz 已提交
8474 8475 8476 8477
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8478
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8479 8480 8481 8482 8483 8484 8485 8486 8487
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8488 8489 8490 8491 8492 8493 8494 8495 8496 8497
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8498
    Returns:
8499
        output(${out_type}): ${out_comment}
8500 8501 8502

    Examples:

8503
    .. code-block:: python
8504

H
haowang101779990 已提交
8505 8506
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8507 8508
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8509
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8528
    Returns:
8529
        output(${out_type}): ${out_comment}
8530 8531 8532 8533 8534

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8535 8536
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8537 8538
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8539
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8557
    Returns:
8558
        output(${out_type}): ${out_comment}
8559 8560 8561 8562 8563

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8564 8565
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8566 8567
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8568
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8569 8570 8571 8572 8573 8574 8575 8576
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8577 8578 8579 8580
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8581

H
haowang101779990 已提交
8582
    For Example:
M
minqiyang 已提交
8583

H
haowang101779990 已提交
8584
    .. code-block:: text
8585

H
haowang101779990 已提交
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8607 8608 8609

    Args:
        x (Variable): A tensor of rank >= axis.
8610 8611
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8612 8613 8614 8615 8616 8617 8618 8619
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8620 8621 8622
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8623 8624 8625 8626
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8627
        ValueError: If axis is not in range [0, rank(x)].
8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8644 8645
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8646
    helper.append_op(
8647
        type='flatten2',
8648
        inputs={"X": x},
8649 8650
        outputs={'Out': out,
                 'XShape': x_shape},
8651 8652
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8653 8654


C
chenweihang 已提交
8655
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8656
    """
C
chenweihang 已提交
8657
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8658
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8659 8660
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8661

H
haowang101779990 已提交
8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8679 8680

    Args:
C
chenweihang 已提交
8681 8682 8683
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8695 8696
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8697 8698 8699 8700 8701 8702
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8703
    return out
8704

8705

S
sneaxiy 已提交
8706 8707 8708 8709 8710 8711 8712 8713 8714
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8715

S
sneaxiy 已提交
8716
    .. math::
8717

S
sneaxiy 已提交
8718 8719 8720
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8721
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8722 8723 8724 8725
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8726 8727 8728
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8729 8730
    Returns:
        Variable: The output sequence mask.
8731

S
sneaxiy 已提交
8732 8733
    """

Q
qingqing01 已提交
8734
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8735
    if name is None:
X
Xin Pan 已提交
8736
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8737
    else:
X
Xin Pan 已提交
8738
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8739

Q
qingqing01 已提交
8740 8741 8742
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8743 8744
        outputs={'Y': out},
        attrs={
8745
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8746 8747 8748
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8749 8750


X
Xin Pan 已提交
8751
def stack(x, axis=0):
S
sneaxiy 已提交
8752 8753 8754 8755
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8756 8757 8758 8759 8760 8761 8762

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8763
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8764
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8765

C
chengduozh 已提交
8766 8767
    For Example:

C
chengduozh 已提交
8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8806
    Args:
8807
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8808
        axis (int|None): The axis along which all inputs are stacked.
8809

S
sneaxiy 已提交
8810 8811
    Returns:
        Variable: The stacked variable.
8812

S
sneaxiy 已提交
8813 8814
    """

X
Xin Pan 已提交
8815 8816 8817 8818 8819 8820
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8821
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8822
    helper.append_op(
S
sneaxiy 已提交
8823 8824
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8825

X
Xin Pan 已提交
8826
    return out
D
dzhwinter 已提交
8827 8828 8829 8830 8831 8832 8833


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8834

D
dzhwinter 已提交
8835 8836 8837
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8838
    raised.
D
dzhwinter 已提交
8839 8840

    Args:
M
minqiyang 已提交
8841
        x (Variable): Input variable.
D
dzhwinter 已提交
8842 8843
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8844

D
dzhwinter 已提交
8845 8846
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8847

D
dzhwinter 已提交
8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8858
    for _ in range(num):
X
Xin Pan 已提交
8859
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8860 8861 8862 8863 8864 8865 8866 8867

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8880

W
whs 已提交
8881 8882 8883 8884
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8885

W
whs 已提交
8886
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8887

W
whs 已提交
8888
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8889

W
whs 已提交
8890 8891 8892 8893
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8894

W
whs 已提交
8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8911
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8912 8913 8914 8915 8916 8917
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8918 8919


G
fix  
gongweibao 已提交
8920 8921 8922
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8923
@templatedoc()
G
fix  
gongweibao 已提交
8924 8925 8926 8927 8928 8929 8930 8931 8932
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8933
    ${comment}
G
fix  
gongweibao 已提交
8934 8935

    Args:
G
gongweibao 已提交
8936 8937 8938
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8939
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8940 8941 8942
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8943 8944
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8945
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8946

8947 8948 8949 8950 8951
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8952 8953 8954
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8955
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8972 8973


G
gongweibao 已提交
8974
@templatedoc()
X
Xin Pan 已提交
8975
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8976
    """
G
gongweibao 已提交
8977
    ${comment}
G
fix  
gongweibao 已提交
8978 8979

    Args:
G
gongweibao 已提交
8980 8981 8982 8983
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8984 8985 8986
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8987
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8988

8989 8990 8991 8992
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8993 8994 8995
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8996
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9007
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9008 9009 9010 9011 9012
        })

    return out


G
gongweibao 已提交
9013
@templatedoc()
G
fix  
gongweibao 已提交
9014
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9015
    """
G
gongweibao 已提交
9016
    ${comment}
G
fix  
gongweibao 已提交
9017 9018

    Args:
G
gongweibao 已提交
9019 9020 9021 9022
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9023
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9024 9025

    Returns:
G
gongweibao 已提交
9026
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9027

9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9038 9039 9040
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9041
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9053
@templatedoc()
G
fix  
gongweibao 已提交
9054 9055 9056 9057 9058 9059 9060 9061 9062
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9063
    ${comment}
G
fix  
gongweibao 已提交
9064 9065

    Args:
G
gongweibao 已提交
9066 9067
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9068
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9069 9070 9071 9072
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9073
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9074 9075

    Returns:
G
gongweibao 已提交
9076
        out (Variable): ${out_comment}
9077 9078 9079 9080 9081 9082 9083 9084

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9085 9086 9087
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9088
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9107
@templatedoc()
X
Xin Pan 已提交
9108
def sum(x):
G
fix  
gongweibao 已提交
9109
    """
G
gongweibao 已提交
9110
    ${comment}
G
fix  
gongweibao 已提交
9111 9112

    Args:
G
gongweibao 已提交
9113
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9114 9115

    Returns:
G
gongweibao 已提交
9116
        out (Variable): ${out_comment}
9117 9118 9119 9120 9121 9122

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9123 9124 9125
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9126 9127
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9128 9129 9130 9131
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9132
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9133 9134 9135 9136

    return out


G
gongweibao 已提交
9137
@templatedoc()
G
fix  
gongweibao 已提交
9138 9139
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9140
    ${comment}
G
fix  
gongweibao 已提交
9141 9142

    Args:
G
gongweibao 已提交
9143 9144 9145 9146
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9147 9148

    Returns:
G
gongweibao 已提交
9149
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9150

9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9162 9163 9164
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9165 9166
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9180 9181
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9182
    Get the shape of the input.
G
fix  
gongweibao 已提交
9183 9184

    Args:
C
chengduozh 已提交
9185
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9186 9187

    Returns:
C
fix doc  
chengduozh 已提交
9188
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9189

9190 9191 9192 9193 9194 9195
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9196 9197 9198
    """

    helper = LayerHelper('shape', **locals())
9199
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9200
    helper.append_op(
G
fix  
gongweibao 已提交
9201
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9202 9203

    return out
G
merge  
gongweibao 已提交
9204 9205


S
sneaxiy 已提交
9206 9207 9208 9209
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9210
    if in_dygraph_mode():
X
Xin Pan 已提交
9211 9212 9213
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9214 9215 9216 9217
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9218 9219
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9220
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9221 9222 9223
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9224

S
sneaxiy 已提交
9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9236
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9237 9238 9239 9240 9241 9242 9243 9244
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9245
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9246
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9247 9248 9249 9250 9251 9252

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9253
    if name is None:
X
Xin Pan 已提交
9254
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9255 9256 9257
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9258 9259 9260 9261 9262 9263 9264 9265 9266 9267

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9268
    return helper.append_activation(out)
S
sneaxiy 已提交
9269 9270


X
Xin Pan 已提交
9271
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9272 9273 9274
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9275
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9276 9277 9278
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9279
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9280 9281 9282
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9283
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9284 9285 9286
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9287
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9288 9289 9290
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9291
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9292 9293 9294
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9295
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9296 9297 9298
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9299 9300 9301 9302 9303 9304 9305 9306
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9307
for func in [
9308 9309 9310 9311 9312 9313 9314 9315 9316
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9317 9318 9319 9320 9321
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9322 9323
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9324
        ])
M
minqiyang 已提交
9325 9326


9327
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9328 9329
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9330 9331
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9332 9333 9334

    if out is None:
        if name is None:
X
Xin Pan 已提交
9335
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9351
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9363 9364 9365 9366 9367 9368 9369 9370 9371

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9372 9373 9374 9375 9376 9377 9378
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9379
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9391 9392 9393 9394 9395 9396 9397 9398 9399

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9400 9401 9402 9403 9404 9405 9406
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9407
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9419 9420 9421 9422 9423 9424 9425 9426 9427

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9428 9429 9430 9431 9432 9433 9434
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9435
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9436 9437 9438 9439 9440 9441 9442 9443 9444 9445
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9446 9447 9448 9449 9450 9451 9452

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9453 9454 9455 9456
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9472 9473 9474 9475 9476 9477 9478

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9479 9480 9481 9482 9483
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9484 9485 9486 9487
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9511 9512 9513 9514 9515 9516 9517

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9518 9519 9520 9521 9522
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9523 9524 9525 9526
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9527 9528 9529 9530 9531 9532 9533 9534

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9553
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9554 9555 9556 9557 9558 9559 9560 9561 9562 9563
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9606
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9607 9608 9609 9610 9611 9612 9613 9614 9615
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9616 9617
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9618 9619 9620 9621 9622 9623
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9624 9625 9626
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9627 9628
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9629 9630 9631 9632 9633 9634
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9635
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9636
        name(basestring|None): Name of the output.
9637 9638
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9639 9640 9641

    Returns:
        out(${out_type}): ${out_comment}
9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9656 9657 9658 9659 9660
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9661
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9662 9663 9664 9665 9666 9667 9668 9669
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9670 9671
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9692
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9693 9694 9695 9696 9697 9698 9699 9700 9701 9702
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9703 9704


J
JiabinYang 已提交
9705
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9706
    """
J
JiabinYang 已提交
9707
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9708 9709 9710

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9711
    The attr blocksize indicates the input block size.
9712 9713

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9714
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9715 9716

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9717
    (but keeping all data)
J
JiabinYang 已提交
9718

J
JiabinYang 已提交
9719
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9720
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9721 9722 9723 9724 9725
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9726
    Args:
J
JiabinYang 已提交
9727
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9728
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9729 9730

    Returns:
J
JiabinYang 已提交
9731
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9732 9733

    Raises:
J
JiabinYang 已提交
9734
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9735 9736 9737 9738 9739

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9740
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9741
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9742
                x=data, blocksize=2)
9743 9744 9745 9746 9747 9748

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9749 9750
    """

J
JiabinYang 已提交
9751
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9752

J
JiabinYang 已提交
9753 9754
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9755 9756

    if name is None:
J
JiabinYang 已提交
9757 9758
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9759 9760 9761 9762 9763
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9764
        type="space_to_depth",
J
JiabinYang 已提交
9765
        inputs={"X": x},
J
JiabinYang 已提交
9766
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9767
        outputs={"Out": out})
J
JiabinYang 已提交
9768 9769
    return out

J
JiabinYang 已提交
9770

S
sneaxiy 已提交
9771 9772
@templatedoc()
def sequence_reverse(x, name=None):
9773
    """
S
sneaxiy 已提交
9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9785
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9786 9787 9788 9789 9790 9791 9792 9793 9794 9795
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9796 9797


9798 9799 9800 9801 9802 9803
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9804 9805 9806 9807 9808
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9809

9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9822
        act (str, default None): Activation to be applied to the output of this layer.
9823 9824 9825 9826 9827 9828 9829

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9830
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9842
    return helper.append_activation(out)
9843 9844


B
barrierye 已提交
9845
def similarity_focus(input, axis, indexes, name=None):
9846
    """
B
barrierye 已提交
9847
    SimilarityFocus Operator
B
barrierye 已提交
9848 9849

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9850

9851 9852 9853
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9854
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9855 9856 9857 9858 9859 9860 9861
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9862
       each index.
B
barrierye 已提交
9863 9864 9865 9866
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9916
    Args:
9917
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9918
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9919
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9920
            1, 2 or 3.
B
barrierye 已提交
9921
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9922 9923

    Returns:
H
haowang101779990 已提交
9924 9925
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9926

B
barrierye 已提交
9927 9928
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9929

B
barrierye 已提交
9930
            data = fluid.layers.data(
B
barrierye 已提交
9931 9932
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9933

B
barrierye 已提交
9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9946 9947 9948 9949 9950
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9951 9952 9953 9954 9955 9956 9957
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9958 9959


M
minqiyang 已提交
9960 9961
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9962 9963
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9964 9965
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10004
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10005
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10006 10007 10008 10009 10010 10011

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10012

M
minqiyang 已提交
10013 10014 10015
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10016 10017
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10018 10019
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10020 10021 10022 10023 10024 10025 10026
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10027 10028


D
dengkaipeng 已提交
10029
@templatedoc()
10030 10031
def grid_sampler(x, grid, name=None):
    """
10032
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10033
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10034 10035 10036 10037
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10038
    interpolation value of 4 nearest corner points.
10039

H
haowang101779990 已提交
10040
    .. code-block:: text
10041

H
haowang101779990 已提交
10042 10043
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10044

H
haowang101779990 已提交
10045 10046
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10047

H
haowang101779990 已提交
10048 10049 10050
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10051

H
haowang101779990 已提交
10052 10053 10054 10055 10056 10057 10058 10059 10060
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10061

H
haowang101779990 已提交
10062 10063 10064 10065
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10066

H
haowang101779990 已提交
10067 10068 10069 10070
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10071

H
haowang101779990 已提交
10072 10073 10074 10075
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10076

H
haowang101779990 已提交
10077 10078
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10079 10080

    Args:
10081 10082 10083
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10084 10085

    Returns:
H
haowang101779990 已提交
10086
        Variable: Output of shape [N, C, H, W] data samples input X
10087 10088
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10089 10090 10091 10092 10093 10094 10095 10096
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10097

D
dengkaipeng 已提交
10098 10099 10100 10101 10102 10103 10104 10105 10106
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10107
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10108 10109
    ipts = {'X': x, 'Grid': grid}

10110
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10111 10112 10113
    return out


G
gmcather 已提交
10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10180
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10181 10182 10183 10184 10185 10186 10187
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10188

H
heqiaozhi 已提交
10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10203 10204 10205 10206
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10207
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10208 10209
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10210
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10211 10212

    .. math::
H
haowang101779990 已提交
10213 10214 10215
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10216 10217

    Where:
H
haowang101779990 已提交
10218 10219
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10234

G
gmcather 已提交
10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10251 10252 10253 10254 10255 10256 10257 10258 10259 10260


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10261
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10262

Q
Qiao Longfei 已提交
10263
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10264 10265 10266
    For example:

    .. math::
H
haowang101779990 已提交
10267
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10268

Q
Qiao Longfei 已提交
10269
    In this formula:
10270 10271
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10272
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10273
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10274 10275 10276
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10277 10278
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10279 10280 10281
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10282
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10283
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10284
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10285 10286 10287 10288
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10289
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10290 10291 10292 10293

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10294
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10295 10296
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10297
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10298 10299 10300 10301

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10302
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10343 10344


S
shippingwang 已提交
10345
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10346 10347
    """
    **Shuffle Channel Operator**
10348

S
shippingwang 已提交
10349 10350 10351 10352 10353 10354
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10355
    
S
shippingwang 已提交
10356
    .. code-block:: text
10357

S
shippingwang 已提交
10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10386
    Args: 
S
shippingwang 已提交
10387 10388
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10389 10390

    Returns:
S
shippingwang 已提交
10391 10392
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10393 10394

    Raises:
S
shippingwang 已提交
10395
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10396 10397 10398

    Examples:
        .. code-block:: python
10399 10400

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10401
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10402 10403 10404
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10405
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10406 10407 10408 10409 10410 10411 10412 10413 10414

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10415
    return out
S
Add  
shippingwang 已提交
10416 10417


10418
@templatedoc()
D
dengkaipeng 已提交
10419
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10420 10421 10422 10423 10424 10425 10426 10427
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10428
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10429
        name (str, default None): The name of this layer.
10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10442
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10455 10456
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10457 10458 10459
    return out


S
sneaxiy 已提交
10460
class PyFuncRegistry(object):
S
sneaxiy 已提交
10461 10462 10463
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10464
        if func is None or not callable(func):
S
sneaxiy 已提交
10465 10466 10467
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10468
        # find named args using reflection
S
sneaxiy 已提交
10469 10470 10471 10472 10473 10474 10475
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10476 10477 10478
        '''
        Why record self here?

M
minqiyang 已提交
10479 10480
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10481
           to find the registered function corresponding
M
minqiyang 已提交
10482
           to :code:`idx`.
S
sneaxiy 已提交
10483

M
minqiyang 已提交
10484 10485
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10486
           whose reference count is 1 would cause
M
minqiyang 已提交
10487
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10488 10489
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10490
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10505 10506 10507 10508 10509 10510 10511 10512 10513
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10514

S
sneaxiy 已提交
10515 10516
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10517 10518

        ret = []
S
sneaxiy 已提交
10519 10520 10521
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10522 10523
                continue

S
sneaxiy 已提交
10524 10525
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10526

S
sneaxiy 已提交
10527 10528 10529
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10530

S
sneaxiy 已提交
10531
        return tuple(ret)
S
sneaxiy 已提交
10532 10533


S
sneaxiy 已提交
10534 10535 10536 10537
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10538

S
sneaxiy 已提交
10539 10540 10541 10542 10543 10544 10545 10546
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10547
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10548

S
sneaxiy 已提交
10549 10550
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10551 10552 10553 10554
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10555
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10556
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10557 10558
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10559 10560 10561 10562 10563
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10564
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10565
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10566
                                       None means no backward. Default None.
S
sneaxiy 已提交
10567
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10568
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10569 10570
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10571
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10572 10573 10574

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10575 10576

    Examples:
M
minqiyang 已提交
10577

S
sneaxiy 已提交
10578 10579 10580 10581 10582
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10583
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10584 10585
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10586
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10587 10588 10589
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10590
        >>>
S
sneaxiy 已提交
10591 10592 10593 10594 10595
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10596
        >>>     print(x)
S
sneaxiy 已提交
10597 10598 10599 10600 10601 10602
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10603
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10604 10605
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10606 10607
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10608 10609 10610 10611 10612 10613 10614 10615
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10616
    """
S
sneaxiy 已提交
10617
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10618 10619 10620
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10621
        x = [x]
S
sneaxiy 已提交
10622 10623
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10624

S
sneaxiy 已提交
10625 10626 10627
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10628
        out_list = [out]
S
sneaxiy 已提交
10629
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10630
        out_list = out
S
sneaxiy 已提交
10631 10632 10633
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10634

S
sneaxiy 已提交
10635 10636
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10637
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10638 10639

    for each_out in out_list:
S
sneaxiy 已提交
10640 10641
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10642 10643
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10644

S
sneaxiy 已提交
10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10660 10661 10662 10663

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10664 10665
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10666 10667 10668
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10669
        })
S
sneaxiy 已提交
10670
    return out
S
sneaxiy 已提交
10671 10672 10673


# For debug usage
S
sneaxiy 已提交
10674 10675 10676 10677
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10730

M
minqiyang 已提交
10731

M
minqiyang 已提交
10732
def huber_loss(input, label, delta):
10733
    """
M
minqiyang 已提交
10734 10735 10736
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10737 10738 10739 10740

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10741
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10742 10743 10744 10745

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10746
        huber\_loss = 0.5 * (label - input) * (label - input)
10747 10748 10749 10750 10751 10752 10753


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10754
        delta (float): The parameter of huber loss, which controls
10755 10756 10757
                       the range of outliers

    Returns:
M
minqiyang 已提交
10758
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10759 10760 10761 10762 10763

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10764
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10765
    """
M
minqiyang 已提交
10766
    helper = LayerHelper('huber_loss', **locals())
10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10778 10779


D
dengkaipeng 已提交
10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10880 10881


C
ceci3 已提交
10882
from .ops import square
C
ceci3 已提交
10883
from .control_flow import equal
C
ceci3 已提交
10884 10885


C
ceci3 已提交
10886 10887 10888
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10889

C
ceci3 已提交
10890
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10891 10892

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10893
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10894 10895 10896 10897 10898
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10899 10900
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10901 10902 10903 10904 10905 10906 10907

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10908 10909 10910 10911 10912 10913 10914 10915
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10916 10917 10918 10919 10920 10921 10922
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10923
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10924 10925
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10926 10927
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10928 10929 10930 10931
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10932 10933 10934
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10935 10936 10937
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
10938 10939


R
ruri 已提交
10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

        Out(Variable): Reshaped tensor according to the new dimension.

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

            input = fluid.layers.data(shape=[9,4,4])
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out