parallel_executor.cc 44.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

Q
Qiao Longfei 已提交
24
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
25
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
26
#include "paddle/fluid/framework/details/multi_devices_helper.h"
27
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
28
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
29
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31 32
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
33
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
34
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
35
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
W
wangchaochaohu 已提交
36
#include "paddle/fluid/platform/event.h"
37
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
38

39 40 41 42
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

43 44
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
45
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
46
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
47
#endif
Y
Yu Yang 已提交
48
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
49 50
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
51
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
52
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
53

Y
Yang Yang 已提交
54
namespace paddle {
Y
Yu Yang 已提交
55 56
namespace framework {

Y
Yu Yang 已提交
57
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
58
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
static bool gProfileStarted = false;
Y
Yu Yang 已提交
60
#endif
61

62 63 64 65
#ifdef PADDLE_WITH_CUDA
std::once_flag p2p_init_flag;
#endif

66 67
using UseDevice = paddle::framework::details::ExecutionStrategy::UseDevice;

Y
Yu Yang 已提交
68 69
class ParallelExecutorPrivate {
 public:
70 71 72
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
73
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
74 75
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
76
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
77 78 79
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
80
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
81 82 83 84
#endif
      });
    }
  }
Y
Yu Yang 已提交
85

86 87 88 89 90 91 92 93 94 95 96
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
97

98 99
  bool IsUseCUDA(UseDevice use_device);

100 101 102 103
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

104
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
105 106 107

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

108
  /**
T
tianshuo78520a 已提交
109 110
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
111 112 113 114 115 116
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
117
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
118 119
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
120
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
121 122 123 124
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
125 126 127 128 129
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
130 131 132 133 134 135
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

136
#if defined(PADDLE_WITH_NCCL)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
153 154
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
155 156 157 158 159 160 161 162 163 164 165 166
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
167
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
168 169
      } else {
        nccl_id = new ncclUniqueId();
170 171 172
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
            platform::errors::PreconditionNotMet("Get NCCL unique ID failed."));
173 174
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
175 176 177 178
      }

      flat_nccl_ids.push_back(nccl_id);

179 180
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
181 182 183 184 185 186
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
187 188
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
189 190 191 192 193 194
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
195 196 197
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
198 199 200 201
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

202 203
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
204 205

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
206 207 208 209
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
210 211 212
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
213 214 215
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
216 217 218 219 220

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
221 222 223
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
224 225 226
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
227

228 229 230 231
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
232 233
    }
  }
234

235
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
236 237 238
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
239 240 241
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
242 243 244 245 246 247
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

248
    if (bst->use_hierarchical_allreduce_) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
264 265 266 267 268

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

269 270
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
271
    InitNCCLCtxs(scope, *bst);
272
  }
273 274
#endif

275 276 277 278 279
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
280
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
281 282
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
283
  std::vector<Scope *> local_exec_scopes_;
284
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
285
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
286

287 288
  std::unordered_map<std::string, bool> is_persistable_;

289
#if defined(PADDLE_WITH_NCCL)
290
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
291
#endif
C
chengduoZH 已提交
292
  bool own_local_scope_;
293
  UseDevice use_device_;
294
  bool use_all_reduce_;
295
  size_t nranks_;
S
sneaxiy 已提交
296

297
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
298
  ir::GarbageCollectorMap gcs_;
299 300

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
301 302
};

303 304 305 306
bool ParallelExecutorPrivate::IsUseCUDA(UseDevice use_device) {
  return use_device == UseDevice::kCUDA;
}

307 308 309 310 311 312 313 314 315 316
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

317
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
334
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
335 336 337 338
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

339 340 341 342 343 344 345 346
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

347 348 349 350
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
351
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == UseDevice::kCUDA));
352 353 354 355 356
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

357 358 359 360 361
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
362
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == UseDevice::kCUDA));
363 364 365
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
366 367
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
368 369
  }

370
  if (build_strategy_.memory_optimize_.get()) {
371 372 373 374 375 376
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
377 378
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
                                    new bool(use_device_ == UseDevice::kCUDA));
379 380 381
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
382 383 384
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
385
  }
386

387
  if (!is_gc_enabled) {
388 389 390 391
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
392 393 394 395 396
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
397
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
398
    if (platform::is_gpu_place(place)) {
399
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
400
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
401
        gc.reset(new UnsafeFastGPUGarbageCollector(
402
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
403
      } else {
S
sneaxiy 已提交
404
        gc.reset(new StreamGarbageCollector(
405
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
406 407
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
408 409 410 411
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
S
sneaxiy 已提交
412
#endif
413 414 415 416 417 418 419 420 421
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
      gc.reset(new XPUGarbageCollector(
          BOOST_GET_CONST(platform::XPUPlace, place), max_memory_size));
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
S
sneaxiy 已提交
422
#endif
423 424 425 426 427 428 429 430
    } else if (platform::is_cpu_place(place)) {
      gc.reset(new CPUGarbageCollector(
          BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
431
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
432 433
  }

S
sneaxiy 已提交
434
  if (!gcs_.empty()) {
S
sneaxiy 已提交
435 436
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
437 438
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
439 440
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
441
                                     &last_live_ops_of_vars);
442
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
443
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
444
    VLOG(10) << "EagerDeletionPass Applied";
445 446 447
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
448 449 450 451
  }
  return graph;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

467 468
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

469 470 471 472
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

473 474 475 476 477 478 479 480 481 482 483 484 485 486
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
void InitP2P(const std::vector<platform::Place> &places) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
      if (!is_gpu_place(places[i])) return;

      platform::CUDAPlace device =
          BOOST_GET_CONST(platform::CUDAPlace, places[i]);
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
522 523 524 525 526 527 528 529
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
530
    : member_(new ParallelExecutorPrivate(places, scope)) {
531
  InitP2P(places);
532 533
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
534
  member_->use_device_ = exec_strategy.use_device_;
D
dzhwinter 已提交
535
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
536 537
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
538
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
539 540 541 542 543 544 545
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
546
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
547
  if (member_->IsUseCUDA(member_->use_device_)) {
548 549 550
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
551 552
  }
#endif
Y
Yancey1989 已提交
553

554
#if defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_NCCL)
555
  if (member_->IsUseCUDA(member_->use_device_)) {
556 557 558 559 560 561 562 563
    PADDLE_ENFORCE_EQ(
        places.size(), 1,
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
564 565
#endif

566 567 568 569 570 571 572 573 574
  std::string device_name;
  if (member_->use_device_ == UseDevice::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == UseDevice::kCUDA) {
    device_name = "CUDA";
  } else {
    device_name = "XPU";
  }

575
  VLOG(1) << string::Sprintf(
576 577
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
578
      device_name, places.size(), places.size());
C
chengduo 已提交
579

580
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
581
  // Create local scopes
582
  if (local_scopes.empty()) {
C
chengduoZH 已提交
583
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
584 585
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
586
      member_->local_scopes_.emplace_back(&scope->NewScope());
587 588
    }
  } else {
C
chengduoZH 已提交
589
    member_->own_local_scope_ = false;
590 591 592 593 594
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
595
    for (size_t i = 0; i < member_->places_.size(); ++i) {
596
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
597
    }
Y
Yu Yang 已提交
598 599
  }

Q
Qiao Longfei 已提交
600
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
601
  if (member_->build_strategy_.async_mode_) {
602
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_), false,
603 604
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
Q
Qiao Longfei 已提交
605
    graphs.push_back(graph);
D
dongdaxiang 已提交
606
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
607 608 609 610
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
611
  }
Q
Qiao Longfei 已提交
612

Y
Yancey1989 已提交
613 614 615
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
616 617 618 619
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
620 621 622 623
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
624

625
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
626
#if defined(PADDLE_WITH_NCCL)
627
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
628

W
Wu Yi 已提交
629 630 631
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
632
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
633 634 635
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
636 637
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
638
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
639 640 641
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
642
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
643
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
644
    }
Y
Yu Yang 已提交
645
#endif
C
chengduoZH 已提交
646
  }
Y
Yan Xu 已提交
647 648
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
649
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
650 651 652 653 654 655 656 657 658
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
659
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
660
  if (need_broadcast()) {
C
chengduo 已提交
661
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
662
  }
663

Q
Qiao Longfei 已提交
664
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
665

Q
Qiao Longfei 已提交
666 667 668
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
669
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
670
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
671
    VLOG(3) << "use local async mode";
C
chengduo 已提交
672 673
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
674 675
        {member_->local_scopes_[0]}, 1,
        member_->IsUseCUDA(member_->use_device_), member_->nccl_ctxs_);
D
dongdaxiang 已提交
676
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
677 678
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
679 680
          {member_->local_scopes_[i]}, 1,
          member_->IsUseCUDA(member_->use_device_), member_->nccl_ctxs_);
681
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
682
    }
Q
Qiao Longfei 已提交
683
  } else {
C
chengduo 已提交
684 685
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
686 687
        member_->nranks_, member_->IsUseCUDA(member_->use_device_),
        member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
688
  }
C
chengduoZH 已提交
689
#else
C
chengduo 已提交
690
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
691
    VLOG(3) << "use local async mode";
C
chengduo 已提交
692 693
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
694 695
        {member_->local_scopes_[0]}, 1,
        member_->IsUseCUDA(member_->use_device_));
696
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
697
      graphs[i] = member_->build_strategy_.Apply(
698
          graphs[i], {member_->places_[i]}, loss_var_name,
699 700
          {member_->local_scopes_[i]}, 1,
          member_->IsUseCUDA(member_->use_device_));
701
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
702
    }
Q
can run  
Qiao Longfei 已提交
703
  } else {
C
chengduo 已提交
704 705
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
706
        member_->nranks_, member_->IsUseCUDA(member_->use_device_));
Q
can run  
Qiao Longfei 已提交
707
  }
Y
Yu Yang 已提交
708
#endif
709

710
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
711

Q
Qiao Longfei 已提交
712 713
  async_graphs[0] = graph;

714 715
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
716
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
717 718 719 720 721 722
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
723 724 725

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
726 727
    }
  }
Y
Yancey1989 已提交
728

729 730 731 732 733 734 735
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

736 737 738 739 740 741
  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));
742 743 744

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
745
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
746 747
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
748 749 750
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
751
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
752
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
753
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
754 755
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
756 757 758
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

759 760 761 762 763
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
764 765 766 767 768 769 770 771

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
Y
Yancey1989 已提交
772
#else
773 774
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
Y
Yancey1989 已提交
775
#endif
Y
yuyang18 已提交
776
  } else {
777 778 779 780 781 782
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
783
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
784 785 786 787 788 789 790 791
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
Y
Yancey1989 已提交
792
    } else {
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
Y
Yancey1989 已提交
808
    }
C
chengduoZH 已提交
809
  }
Y
yuyang18 已提交
810

Q
can run  
Qiao Longfei 已提交
811
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
812
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
813
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
814 815 816 817 818 819 820 821 822
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
823
  }
824 825 826 827 828 829 830 831

  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
Y
Yu Yang 已提交
832 833
}

Y
Yancey1989 已提交
834
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
835
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
836
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
837
  // the initializing bcast, all vars would be bcast from device(0).
838
  for (auto &var : vars) {
X
Xin Pan 已提交
839
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
840
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
841 842 843 844
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
845
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
846
      VLOG(3) << "one in var not inited, return!";
847 848
      continue;
    }
849 850
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
851
#if defined(PADDLE_WITH_NCCL)
852
      std::vector<void *> buffers;
C
chengduo 已提交
853
      buffers.reserve(member_->places_.size());
854 855 856 857 858
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
859

Y
Yan Xu 已提交
860
        if (i == 0 && trainer_id == 0) {
861 862
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
863
          auto local_scope = member_->local_scopes_[i];
864
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
865
          t->Resize(dims);
866
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
867
        }
868
        buffers.push_back(buffer);
869
      }
870

871
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
872 873 874 875
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
876
      {
877
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
878 879
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
880
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
881 882
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
883
        }
884
        nccl_ctxs->WaitAll();
885
      }
C
chengduoZH 已提交
886
#endif
887 888
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
889
      for (size_t i = 1; i < member_->places_.size(); ++i) {
890 891
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
892

Q
Qiao Longfei 已提交
893
        auto copy_memory = [&] {
894 895 896
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
897 898
        };

Q
Qiao Longfei 已提交
899
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
900 901 902 903

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
904 905
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
906 907
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
908
        } else {
Q
can run  
Qiao Longfei 已提交
909
          share_memory();
910
        }
Y
Yu Yang 已提交
911
      }
Y
Stash  
Yu Yang 已提交
912 913
    }
  }
Y
Yu Yang 已提交
914
}
Y
Yu Yang 已提交
915

Z
Zhen Wang 已提交
916 917
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
918
  VLOG(3) << "enter ParallelExecutor Run";
W
wangchaochaohu 已提交
919 920
  platform::RecordEvent parallel_executor_event(
      "ParallelExecutor::Run", paddle::platform::EventRole::kSpecial);
Y
Yu Yang 已提交
921 922 923
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
924 925
  }
#endif
Y
Yu Yang 已提交
926

X
Xin Pan 已提交
927
  platform::RecordBlock b(0);
928

929 930
  ResetHasFeedGuard reset_has_feed_guard(member_);

931 932
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
933 934

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
935
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
936
  return fetch_data;
Y
Yu Yang 已提交
937
}
Y
Yu Yang 已提交
938

Y
Yu Yang 已提交
939 940
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
956

957
  size_t feed_num = 0;
Y
Yu Yang 已提交
958 959
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
960 961 962 963 964 965
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
966
    for (auto &pair : map) {
967
      bool is_persistable = member_->IsPersistable(pair.first);
968 969 970
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
971 972 973 974 975
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
976 977 978 979
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
980 981 982 983 984 985 986 987 988 989 990 991

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
992 993 994 995
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
996
  size_t num_places = member_->places_.size();
997 998 999 1000 1001
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

1002
  for (auto &pair : tensors) {
1003 1004 1005 1006
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
1007
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
1008
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
1009 1010
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
1011
      auto error_info = string::Sprintf(
1012 1013 1014
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
1015 1016 1017 1018 1019 1020
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
1021
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1022 1023 1024 1025
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
1026 1027 1028 1029 1030 1031
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
1032 1033 1034 1035 1036 1037
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
1038
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
1039 1040 1041 1042 1043 1044 1045 1046 1047
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
1048
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
1049
      }
C
chengduo 已提交
1050
    }
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
1077 1078 1079 1080 1081
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
1082 1083
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
1084 1085
    }
  }
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1102 1103
}

X
Xin Pan 已提交
1104 1105 1106 1107 1108 1109 1110
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1111
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1112
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1113
    const BuildStrategy &build_strategy) const {
1114 1115 1116
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1117

Y
Yancey1989 已提交
1118
  bool enable_parallel_graph = true;
1119

X
Xin Pan 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1133 1134 1135
    }
  }

1136
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1137
    if (build_strategy.enable_sequential_execution_ ||
1138
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1139
      enable_parallel_graph = false;
1140 1141 1142 1143 1144 1145 1146 1147 1148
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1149
  return enable_parallel_graph;
1150 1151
}

1152 1153 1154 1155
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1156
}  // namespace framework
Y
Yang Yang 已提交
1157
}  // namespace paddle
S
sneaxiy 已提交
1158

S
sneaxiy 已提交
1159
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1160
USE_PASS(eager_deletion_pass);
1161
USE_PASS(buffer_shared_inplace_pass);
1162
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1163
USE_PASS(inplace_addto_op_pass);