Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
32d5a160
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
32d5a160
编写于
2月 22, 2019
作者:
X
Xin Pan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
resolve conflicts
test=develop
上级
26e32e09
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
47 addition
and
164 deletion
+47
-164
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+1
-2
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
...le/fluid/framework/details/parallel_ssa_graph_executor.cc
+3
-4
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
+2
-3
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+0
-10
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+27
-113
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+5
-6
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+2
-5
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+4
-18
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+3
-3
未找到文件。
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
32d5a160
...
...
@@ -206,8 +206,7 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
graph
->
Erase
(
kAllOpDescs
);
}
graph
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
&
all_ops
);
// take ownership
graph
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
&
all_ops
);
pass
->
Erase
(
kAllOpDescs
);
pass
->
SetNotOwned
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
&
all_ops
);
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.cc
浏览文件 @
32d5a160
...
...
@@ -20,7 +20,7 @@ namespace framework {
namespace
details
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
ParallelSSAGraphExecutor
::
SeparateMultiDevicesGraph
(
ir
::
Graph
*
graph
)
{
ParallelSSAGraphExecutor
::
SeparateMultiDevicesGraph
(
ir
::
Graph
*
graph
)
{
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
graphs
;
graphs
.
reserve
(
places_
.
size
());
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
...
...
@@ -76,13 +76,12 @@ ParallelSSAGraphExecutor::SeparateMultiDevicesGraph(ir::Graph* graph) {
ParallelSSAGraphExecutor
::
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
framework
::
ProgramDesc
&
main_prog
,
ir
::
Graph
*
graph
)
const
std
::
vector
<
platform
::
Place
>
&
places
,
ir
::
Graph
*
graph
)
:
strategy_
(
std
::
move
(
strategy
)),
local_scopes_
(
std
::
move
(
local_scopes
)),
pool_
(
places
.
size
()
>=
2
?
new
::
ThreadPool
(
places
.
size
())
:
nullptr
),
places_
(
std
::
move
(
places
)),
main_prog_
(
main_prog
),
main_prog_
(
graph
->
OriginProgram
()
),
// TODO(Yancey1989): Copying graphs is not safely since it deleted the
// attrs.
graphs_
(
SeparateMultiDevicesGraph
(
graph
))
{
...
...
paddle/fluid/framework/details/parallel_ssa_graph_executor.h
浏览文件 @
32d5a160
...
...
@@ -31,8 +31,7 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
ParallelSSAGraphExecutor
(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
framework
::
ProgramDesc
&
main_prog
,
ir
::
Graph
*
graph
);
ir
::
Graph
*
graph
);
~
ParallelSSAGraphExecutor
()
final
=
default
;
const
ir
::
Graph
&
Graph
()
const
override
{
return
*
graphs_
[
0
];
}
...
...
@@ -41,7 +40,7 @@ class ParallelSSAGraphExecutor : public SSAGraphExecutor {
private:
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
SeparateMultiDevicesGraph
(
ir
::
Graph
*
graph
);
ir
::
Graph
*
graph
);
ExecutionStrategy
strategy_
;
std
::
vector
<
Scope
*>
local_scopes_
;
...
...
paddle/fluid/framework/ir/graph.h
浏览文件 @
32d5a160
...
...
@@ -195,22 +195,12 @@ class Graph {
return
nullptr
;
}
<<<<<<<
HEAD
=======
// Returns reference to the original program.
// WARN: After a series of passes, the current graph can be quite
// different from OriginProgram. Caller shouldn't assume much from
// the returned OriginProgram.
const
ProgramDesc
&
OriginProgram
()
const
{
return
program_
;
}
void
ResolveHazard
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
&
var_nodes
);
private:
std
::
map
<
std
::
string
,
std
::
vector
<
ir
::
Node
*>>
InitFromProgram
(
const
ProgramDesc
&
program
);
>>>>>>>
polish
// This method takes ownership of `node`.
ir
::
Node
*
AddNode
(
ir
::
Node
*
node
)
{
PADDLE_ENFORCE
(
node_set_
.
find
(
node
)
==
node_set_
.
end
());
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
32d5a160
...
...
@@ -184,9 +184,10 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
ParallelExecutor
::
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
std
::
vector
<
ir
::
Graph
*>
&
graphs
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
,
ir
::
Graph
*
graph
)
:
member_
(
new
ParallelExecutorPrivate
(
places
))
{
member_
->
global_scope_
=
scope
;
member_
->
use_cuda_
=
exec_strategy
.
use_cuda_
;
...
...
@@ -216,34 +217,17 @@ ParallelExecutor::ParallelExecutor(
}
}
<<<<<<<
HEAD
std
::
unique_ptr
<
ir
::
Graph
>
temp_owned_graph
(
graph
);
// FIXME(Yancey1989): parallel graph mode get better performance
// in GPU allreduce distributed training. Need an elegant way to
// choice the execution strategy.
build_strategy
.
enable_parallel_graph_
=
EnableParallelGraphExecution
(
*
temp_owned_graph
,
exec_strategy
,
build_strategy
);
build_strategy
.
enable_parallel_graph_
=
EnableParallelGraphExecution
(
*
temp_owned_graph
,
exec_strategy
,
build_strategy
);
if
(
build_strategy
.
enable_parallel_graph_
)
VLOG
(
0
)
<<
"The Executor would execute the graph by ParallelGraph "
"Execution which can get better performance,"
<<
"you can force it off by env FLAGS_enable_parallel_graph=0"
;
=======
// TODO(panyx0718): Update pass interface so we don't need this here.
std
::
vector
<
std
::
unique_ptr
<
ir
::
Graph
>>
temp_owned_graphs
;
for
(
ir
::
Graph
*
g
:
graphs
)
{
temp_owned_graphs
.
emplace_back
(
g
);
}
<<<<<<<
HEAD
>>>>>>>
fix
parallel
graph
mode
program
=======
bool
parallel_graphs
=
(
temp_owned_graphs
.
size
()
>
1
);
if
(
parallel_graphs
)
{
PADDLE_ENFORCE_EQ
(
temp_owned_graphs
.
size
(),
places
.
size
());
}
VLOG
(
1
)
<<
"Enable ParallelGraph Execution: "
<<
parallel_graphs
;
>>>>>>>
polish
if
(
member_
->
use_cuda_
)
{
// Bcast Parameters to all GPUs
...
...
@@ -255,7 +239,7 @@ ParallelExecutor::ParallelExecutor(
if
(
nccl_id_var
!=
nullptr
)
{
nccl_id
=
nccl_id_var
->
GetMutable
<
ncclUniqueId
>
();
}
if
(
parallel_graphs
&&
member_
->
nranks_
>
1UL
)
{
if
(
build_strategy
.
enable_parallel_graph_
&&
member_
->
nranks_
>
1UL
)
{
if
(
nccl_id
==
nullptr
)
{
local_nccl_id_
.
reset
(
new
ncclUniqueId
());
platform
::
dynload
::
ncclGetUniqueId
(
local_nccl_id_
.
get
());
...
...
@@ -273,105 +257,54 @@ ParallelExecutor::ParallelExecutor(
if
(
member_
->
local_scopes_
.
size
()
!=
1
&&
local_scopes
.
empty
())
{
BCastParamsToDevices
(
bcast_vars
);
}
// Startup Program has been run. All local scopes has correct parameters.
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
<<<<<<<
HEAD
std
::
unique_ptr
<
ir
::
Graph
>
graph
;
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graph
),
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
#else
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graph
),
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
);
=======
std
::
vector
<
ir
::
Graph
*>
compiled_graphs
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if
(
parallel_graphs
)
{
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
auto
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graphs
[
i
]),
{
member_
->
places_
[
i
]},
loss_var_name
,
{
member_
->
local_scopes_
[
i
]},
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
compiled_graphs
.
push_back
(
temp_owned_graph
.
release
());
}
}
else
{
auto
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graphs
[
0
]),
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
compiled_graphs
.
push_back
(
temp_owned_graph
.
release
());
}
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graph
),
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
#else
auto
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graph
s
[
0
]
),
member_
->
places_
,
loss_var_name
,
temp_owned_graph
=
build_strategy
.
Apply
(
std
::
move
(
temp_owned_graph
),
member_
->
places_
,
loss_var_name
,
member_
->
local_scopes_
,
member_
->
nranks_
,
member_
->
use_cuda_
);
compiled_graphs
.
push_back
(
temp_owned_graph
.
release
());
>>>>>>>
fix
parallel
graph
mode
program
#endif
auto
max_memory_size
=
GetEagerDeletionThreshold
();
VLOG
(
10
)
<<
"Eager Deletion Threshold "
<<
static_cast
<
float
>
(
max_memory_size
)
/
(
1
<<
30
);
if
(
max_memory_size
>=
0
)
{
<<<<<<<
HEAD
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
graph
),
static_cast
<
size_t
>
(
max_memory_size
)).
release
();
=======
for
(
size_t
i
=
0
;
i
<
graphs
.
size
();
++
i
)
{
compiled_graphs
[
i
]
=
member_
->
PrepareGCAndRefCnts
(
std
::
unique_ptr
<
ir
::
Graph
>
(
compiled_graphs
[
i
]),
static_cast
<
size_t
>
(
max_memory_size
))
.
release
();
}
>>>>>>>
fix
parallel
graph
mode
program
graph
=
member_
->
PrepareGCAndRefCnts
(
std
::
move
(
temp_owned_graph
),
static_cast
<
size_t
>
(
max_memory_size
))
.
release
();
}
else
{
graph
=
temp_owned_graph
.
release
();
}
// Step 3. Create vars in each scope. Passes may also create new vars.
// skip control vars and empty vars
std
::
vector
<
details
::
VariableInfo
>
var_infos
;
<<<<<<<
HEAD
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
=======
for
(
auto
&
graph
:
compiled_graphs
)
{
for
(
auto
&
node
:
graph
->
Nodes
())
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Var
())
{
var_infos
.
emplace_back
();
var_infos
.
back
().
name_
=
node
->
Var
()
->
Name
();
var_infos
.
back
().
type_
=
node
->
Var
()
->
GetType
();
var_infos
.
back
().
persistable_
=
node
->
Var
()
->
Persistable
();
}
>>>>>>>
fix
parallel
graph
mode
program
}
}
// If the loss_var_name is given, the number of graph should be only one.
if
(
loss_var_name
.
size
())
{
<<<<<<<
HEAD
size_t
graph_num
=
ir
::
GraphNum
(
*
graph
);
=======
size_t
graph_num
=
ir
::
GraphNum
(
*
compiled_graphs
[
0
]);
>>>>>>>
fix
parallel
graph
mode
program
if
(
graph_num
>
1
)
{
LOG
(
WARNING
)
<<
"The number of graph should be only one, "
"but the current graph has "
<<<<<<<
HEAD
<<
ir
::
GraphNum
(
*
graph
)
=======
<<
ir
::
GraphNum
(
*
compiled_graphs
[
0
])
>>>>>>>
fix
parallel
graph
mode
program
<<
" sub_graphs. If you want to see the nodes of the "
"sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
"to specify the output dir. NOTES: if you not do training, "
...
...
@@ -379,18 +312,12 @@ ParallelExecutor::ParallelExecutor(
}
}
<<<<<<<
HEAD
if
(
build_strategy
.
enable_parallel_graph_
)
{
#ifdef PADDLE_WITH_CUDA
// TODO(Yancey1989): Remove passing in the main_program when
// allreduce_seq_pass doesn't need it as the attr.
=======
if
(
parallel_graphs
)
{
>>>>>>>
polish
member_
->
executor_
.
reset
(
new
details
::
ParallelSSAGraphExecutor
(
<<<<<<<
HEAD
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
main_program
,
graph
));
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
graph
));
#else
PADDLE_THROW
(
"Paddle should be compiled with CUDA for ParallelGraph Execution."
);
...
...
@@ -402,19 +329,6 @@ ParallelExecutor::ParallelExecutor(
}
else
{
member_
->
executor_
.
reset
(
new
details
::
FastThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
graph
));
=======
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
compiled_graphs
));
}
else
{
if
(
exec_strategy
.
type_
==
ExecutionStrategy
::
kDefault
)
{
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
compiled_graphs
[
0
]));
}
else
{
member_
->
executor_
.
reset
(
new
details
::
FastThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
member_
->
places_
,
compiled_graphs
[
0
]));
>>>>>>>
fix
parallel
graph
mode
program
}
}
...
...
@@ -551,9 +465,9 @@ ParallelExecutor::~ParallelExecutor() {
delete
member_
;
}
bool
EnableParallelGraphExecution
(
const
ir
::
Graph
&
graph
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
{
bool
ParallelExecutor
::
EnableParallelGraphExecution
(
const
ir
::
Graph
&
graph
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
{
if
(
!
FLAGS_enable_parallel_graph
)
return
false
;
bool
enable_parallel_graph
=
true
;
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
32d5a160
...
...
@@ -46,11 +46,11 @@ class ParallelExecutor {
public:
explicit
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
std
::
vector
<
ir
::
Graph
*>
&
graphs
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
);
const
BuildStrategy
&
build_strategy
,
ir
::
Graph
*
graph
);
~
ParallelExecutor
();
...
...
@@ -71,6 +71,9 @@ class ParallelExecutor {
private:
void
BCastParamsToDevices
(
const
std
::
unordered_set
<
std
::
string
>
&
vars
)
const
;
bool
EnableParallelGraphExecution
(
const
ir
::
Graph
&
graph
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
)
const
;
ParallelExecutorPrivate
*
member_
;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
...
...
@@ -78,9 +81,5 @@ class ParallelExecutor {
#endif
};
bool
EnableParallelGraphExecution
(
const
ir
::
Graph
&
graph
,
const
ExecutionStrategy
&
exec_strategy
,
const
BuildStrategy
&
build_strategy
);
}
// namespace framework
}
// namespace paddle
paddle/fluid/pybind/pybind.cc
浏览文件 @
32d5a160
...
...
@@ -976,8 +976,6 @@ All parameter, weight, gradient are variables in Paddle.
[](
ir
::
PassBuilder
&
self
,
size_t
idx
)
{
self
.
RemovePass
(
idx
);
});
// -- python binds for parallel executor.
m
.
def
(
"_enable_parallel_graph_execution"
,
framework
::
EnableParallelGraphExecution
);
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ExecutionStrategy
>
exec_strategy
(
pe
,
"ExecutionStrategy"
,
R"DOC(
...
...
@@ -1216,10 +1214,9 @@ All parameter, weight, gradient are variables in Paddle.
cannot be updated after being finalized.)DOC"
);
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
std
::
vector
<
ir
::
Graph
*>
&
,
const
std
::
string
&
,
const
std
::
unordered_set
<
std
::
string
>
&
,
const
std
::
string
&
,
Scope
*
,
std
::
vector
<
Scope
*>
&
,
const
ExecutionStrategy
&
,
const
BuildStrategy
&>
())
const
BuildStrategy
&
,
ir
::
Graph
*
>
())
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element
// of vec<Scope*> will be freed by Python GC. We can only return Scope*
...
...
python/paddle/fluid/compiler.py
浏览文件 @
32d5a160
...
...
@@ -198,7 +198,6 @@ class CompiledProgram(object):
if
self
.
_build_strategy
.
enable_inplace
is
None
:
self
.
_build_strategy
.
enable_inplace
=
False
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
# TODO(wuyi): trainer endpoings should be passed in through
# build_strategy, not program.xxx.
if
self
.
_program
and
self
.
_build_strategy
.
num_trainers
>
1
and
\
...
...
@@ -219,26 +218,13 @@ class CompiledProgram(object):
places
=
list
(
map
(
_place_obj
,
self
.
_places
))
# FIXME(Yancey1989): parallel graph mode get better performance
# in GPU allreduce distributed training. Need an elegant way to
# choice the execution strategy.
enable_parallel_graph
=
\
core
.
_enable_parallel_graph_execution
(
self
.
_graph
,
self
.
_exec_strategy
,
self
.
_build_strategy
)
and
\
self
.
_program
# only supported if compile program not graph.
self
.
_pe_graphs
=
[
self
.
_graph
]
if
enable_parallel_graph
:
for
_
in
range
(
len
(
places
)
-
1
):
self
.
_pe_graphs
.
append
(
core
.
Graph
(
self
.
_program_desc
))
return
core
.
ParallelExecutor
(
pe
=
core
.
ParallelExecutor
(
places
,
set
(
self
.
_persistable_vars
),
self
.
_pe_graphs
,
set
(
self
.
_persistable_vars
),
cpt
.
to_text
(
self
.
_loss_name
)
if
self
.
_loss_name
else
six
.
u
(
''
),
self
.
_scope
,
self
.
_local_scopes
,
self
.
_exec_strategy
,
self
.
_build_strategy
)
self
.
_exec_strategy
,
self
.
_build_strategy
,
self
.
_graph
)
return
pe
def
_compile_inference
(
self
):
return
core
.
create_paddle_predictor
(
self
.
_infer_config
)
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
32d5a160
...
...
@@ -186,12 +186,12 @@ class ParallelExecutor(object):
# step7: init ParallelExecutor
# ParallelExecutor API will be deprecated, don't support parallel graph.
self
.
_graph
s
=
[
core
.
Graph
(
main
.
desc
)]
self
.
_graph
=
core
.
Graph
(
main
.
desc
)
self
.
executor
=
core
.
ParallelExecutor
(
places
,
persistable_vars
,
self
.
_graphs
,
places
,
persistable_vars
,
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
)
local_scopes
,
exec_strategy
,
build_strategy
,
self
.
_graph
)
self
.
scope
=
scope
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录