parallel_executor.cc 33.2 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
Q
qingqing01 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
19
#include <tuple>
Q
Qiao Longfei 已提交
20
#include <utility>
Q
qiaolongfei 已提交
21
#include <vector>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
Y
yuyang18 已提交
23
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
24
#include "paddle/fluid/framework/details/multi_devices_helper.h"
25
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
yuyang18 已提交
27
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
29 30
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
31
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
32
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
33
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
34

35 36
DECLARE_bool(use_ngraph);

37 38
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
39
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
40
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
41
#endif
Y
Yu Yang 已提交
42
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
43 44
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
45
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
46
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
47

Y
Yang Yang 已提交
48
namespace paddle {
Y
Yu Yang 已提交
49 50
namespace framework {

Y
Yu Yang 已提交
51
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
52
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
53
static bool gProfileStarted = false;
Y
Yu Yang 已提交
54
#endif
55

Y
Yu Yang 已提交
56 57 58
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
59
      : places_(places) {
Y
Yu Yang 已提交
60
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
61 62
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
63
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
64 65 66
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
67
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
68 69 70 71
#endif
      });
    }
  }
Y
Yu Yang 已提交
72

73 74 75 76 77 78 79 80 81 82 83
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
84

85
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
86 87 88

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  /**
   * NOTE(zengjinle): the feeded variables of users should not be reused,
   * because users may feed them into another network. Changing the feeded
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
   *  - FeedTensorsIntoLocalScopes: this method would share memory of feeded
   *                                variables, so we have to skip these.
   *
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of feeded
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
129 130
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
131 132 133 134 135 136 137 138 139 140 141 142
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
143
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
144 145 146
      } else {
        nccl_id = new ncclUniqueId();
        PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id));
147 148
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
149 150 151 152
      }

      flat_nccl_ids.push_back(nccl_id);

153 154
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
155 156 157 158 159 160
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
161 162
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
163 164 165 166 167 168 169 170 171 172 173
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

174 175
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
176 177

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
178 179 180 181 182 183 184 185
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
186 187 188 189 190 191 192 193 194

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
        PADDLE_ENFORCE(nccl_id_var, "can't find %s nccl_id_var", var_name);
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
195

196 197 198 199
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
200 201
    }
  }
202

203
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
204 205 206 207 208 209 210 211 212 213 214
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE(var->IsInitialized(),
                     "if %s exists, it must be initialized", var_name);
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    if (bst->use_hierarchical_allreduce_) {
      PADDLE_ENFORCE(bst->num_trainers_ > 1, "num_trainers:%llu < 1",
                     bst->num_trainers_);
      PADDLE_ENFORCE(bst->hierarchical_allreduce_inter_nranks_ > 1,
                     "inter_nranks:%d < 1",
                     bst->hierarchical_allreduce_inter_nranks_);
      PADDLE_ENFORCE(
          (bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_ == 0),
          "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
          bst->hierarchical_allreduce_inter_nranks_);

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

230 231
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
232
    InitNCCLCtxs(scope, *bst);
233
  }
234 235
#endif

236 237 238 239 240
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
241
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
242 243
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
244
  std::vector<Scope *> local_exec_scopes_;
245
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
246
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
247

248 249
  std::unordered_map<std::string, bool> is_persistable_;

P
peizhilin 已提交
250
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
251
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
Y
Yu Yang 已提交
252
#endif
C
chengduoZH 已提交
253 254
  bool own_local_scope_;
  bool use_cuda_;
255
  bool use_all_reduce_;
256
  size_t nranks_;
S
sneaxiy 已提交
257

258
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
259
  ir::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
260 261
};

262
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
263 264 265 266 267 268 269
  if (FLAGS_use_ngraph) {
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, memory optimization strategy is "
           "disabled in ParallelExecutor";
    return graph;
  }

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
    inplace_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
287 288
    LOG_FIRST_N(INFO, 1) << "Inplace strategy is enabled, when "
                            "build_strategy.enable_inplace = True";
289 290
  }

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  if (build_strategy_.memory_optimize_.get()) {
307 308 309 310 311 312 313 314 315 316
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kUseCuda, &use_cuda_);
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
317 318 319
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
320
  }
321

322
  if (!is_gc_enabled) {
323 324 325 326
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
327 328 329 330 331
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
332
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
333
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
334 335
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
336 337
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
338
      } else {
S
sneaxiy 已提交
339 340
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
341 342
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
343
    } else {
S
sneaxiy 已提交
344
#endif
S
sneaxiy 已提交
345 346 347 348 349 350 351
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
352 353 354 355
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
356
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
357 358
  }

S
sneaxiy 已提交
359
  if (!gcs_.empty()) {
S
sneaxiy 已提交
360 361
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
362 363
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
364 365
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
366
                                     &last_live_ops_of_vars);
367
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
368
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
369
    VLOG(10) << "EagerDeletionPass Applied";
370 371 372
    LOG_FIRST_N(INFO, 1) << "Garbage collection strategy is enabled, when "
                         << "FLAGS_eager_delete_tensor_gb = "
                         << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
373 374 375 376
  }
  return graph;
}

377 378 379 380
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

Y
Yan Xu 已提交
395 396 397 398 399 400 401 402
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
Y
Yu Yang 已提交
403
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
404
  member_->global_scope_ = scope;
405
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
406
  member_->build_strategy_ = build_strategy;
C
chengduo 已提交
407 408
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
409
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
C
chengduo 已提交
410 411 412 413 414 415 416
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
417 418 419 420 421
#if defined(PADDLE_WITH_CUDA) && defined(_WIN32)
  if (member_->use_cuda_) {
    PADDLE_ENFORCE(places.size() == 1, "Windows can support Single GPU only.");
  }
#endif
Y
Yancey1989 已提交
422

423
  LOG(INFO) << string::Sprintf(
424 425 426
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      (member_->use_cuda_ ? "CUDA" : "CPU"), places.size(), places.size());
C
chengduo 已提交
427

428
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
429
  // Create local scopes
430
  if (local_scopes.empty()) {
C
chengduoZH 已提交
431
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
432 433
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
434
      member_->local_scopes_.emplace_back(&scope->NewScope());
435 436
    }
  } else {
C
chengduoZH 已提交
437
    member_->own_local_scope_ = false;
438 439
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
440
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
441
    }
Y
Yu Yang 已提交
442 443
  }

Q
Qiao Longfei 已提交
444
  std::vector<ir::Graph *> graphs;
C
chengduo 已提交
445
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
446 447
    PADDLE_ENFORCE(!member_->use_cuda_,
                   "gpu mode does not support async_mode_ now!");
Q
Qiao Longfei 已提交
448
    graphs.push_back(graph);
D
dongdaxiang 已提交
449
    for (size_t i = 1; i < places.size(); ++i) {
Q
Qiao Longfei 已提交
450 451 452 453
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
Q
Qiao Longfei 已提交
454
  }
Q
Qiao Longfei 已提交
455

Y
Yancey1989 已提交
456 457 458
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
C
chengduo 已提交
459 460 461 462
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(*graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
463 464 465 466
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
Y
Yancey1989 已提交
467

468
  if (member_->use_cuda_ && member_->nranks_ > 1) {
P
peizhilin 已提交
469
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
470
    member_->InitOrGetNCCLCommunicator(scope, &member_->build_strategy_);
Q
qingqing01 已提交
471

W
Wu Yi 已提交
472 473 474
    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
Q
qingqing01 已提交
475
    // be rewrite and there will be some problem.
W
Wu Yi 已提交
476 477 478
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
479 480
    auto *nccl_ctxs =
        member_->nccl_ctxs_->GetSyncBatchNormCtx(scope, member_->places_);
481
    auto &pool = platform::DeviceContextPool::Instance();
Q
qingqing01 已提交
482 483 484
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
485
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
486
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
Q
qingqing01 已提交
487
    }
Y
Yu Yang 已提交
488
#endif
C
chengduoZH 已提交
489
  }
Y
Yan Xu 已提交
490 491
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
492
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
493 494 495 496 497 498 499 500 501
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
502
  // Bcast Parameters to all GPUs
Y
Yan Xu 已提交
503
  if (need_broadcast()) {
C
chengduo 已提交
504
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
505
  }
506

Q
Qiao Longfei 已提交
507
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
508

Q
Qiao Longfei 已提交
509 510 511
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
  std::vector<ir::Graph *> async_graphs(places.size());
P
peizhilin 已提交
512
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
513
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
514
    VLOG(3) << "use local async mode";
C
chengduo 已提交
515 516 517 518
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_,
        member_->nccl_ctxs_);
D
dongdaxiang 已提交
519
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
520 521 522 523
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_cuda_,
          member_->nccl_ctxs_);
524
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
525
    }
Q
Qiao Longfei 已提交
526
  } else {
C
chengduo 已提交
527 528 529
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_, member_->nccl_ctxs_);
Q
Qiao Longfei 已提交
530
  }
C
chengduoZH 已提交
531
#else
C
chengduo 已提交
532
  if (member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
533
    VLOG(3) << "use local async mode";
C
chengduo 已提交
534 535 536
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_cuda_);
537
    for (size_t i = 1; i < member_->places_.size(); ++i) {
C
chengduo 已提交
538
      graphs[i] = member_->build_strategy_.Apply(
539
          graphs[i], {member_->places_[i]}, loss_var_name,
Q
Qiao Longfei 已提交
540
          {member_->local_scopes_[i]}, 1, member_->use_cuda_);
541
      async_graphs[i] = graphs[i];
Q
Qiao Longfei 已提交
542
    }
Q
can run  
Qiao Longfei 已提交
543
  } else {
C
chengduo 已提交
544 545 546
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_cuda_);
Q
can run  
Qiao Longfei 已提交
547
  }
Y
Yu Yang 已提交
548
#endif
549

550
  graph = member_->ApplyMemoryOptimizePass(graph);
Y
Yancey1989 已提交
551

Q
Qiao Longfei 已提交
552 553
  async_graphs[0] = graph;

554 555
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
556
  std::vector<details::VariableInfo> var_infos;
Q
Qiao Longfei 已提交
557 558 559 560 561 562
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
563 564 565

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
Y
Yancey1989 已提交
566 567
    }
  }
Y
Yancey1989 已提交
568

569 570 571 572 573 574 575 576 577 578 579 580
  std::unordered_map<Scope *, Scope *> scope_map;
  for (auto *scope : member_->local_scopes_) {
    auto &local_exec_scope = scope->NewScope();
    member_->local_exec_scopes_.emplace_back(&local_exec_scope);
    scope_map.emplace(scope, &local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(),
                    member_->local_exec_scopes_.size());

  std::vector<ir::Graph *> final_graphs;

C
chengduo 已提交
581
  if (member_->build_strategy_.async_mode_) {
Q
can run  
Qiao Longfei 已提交
582 583
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
584 585 586
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, async_graphs));
    final_graphs = async_graphs;
C
chengduo 已提交
587
  } else if (member_->build_strategy_.enable_parallel_graph_) {
Q
can run  
Qiao Longfei 已提交
588
    VLOG(3) << "use ParallelSSAGraphExecutor";
Y
Yancey1989 已提交
589
#ifdef PADDLE_WITH_CUDA
Y
Yancey1989 已提交
590 591
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
592 593 594 595 596
    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);
Y
Yancey1989 已提交
597 598 599 600
#else
    PADDLE_THROW(
        "Paddle should be compiled with CUDA for ParallelGraph Execution.");
#endif
Y
yuyang18 已提交
601
  } else {
Y
Yancey1989 已提交
602
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
Q
can run  
Qiao Longfei 已提交
603
      VLOG(3) << "use ThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
604
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
605 606
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
607
    } else {
Q
can run  
Qiao Longfei 已提交
608
      VLOG(3) << "use FastThreadedSSAGraphExecutor";
Y
Yancey1989 已提交
609
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
610 611
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, graph));
Y
Yancey1989 已提交
612
    }
613
    final_graphs.emplace_back(graph);
C
chengduoZH 已提交
614
  }
Y
yuyang18 已提交
615

Q
can run  
Qiao Longfei 已提交
616
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
C
chengduo 已提交
617
  if (!member_->build_strategy_.async_mode_) {
Q
Qiao Longfei 已提交
618
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
619 620 621 622 623 624 625 626 627
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
  }

  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
Q
Qiao Longfei 已提交
628
  }
Y
Yu Yang 已提交
629 630
}

Y
Yancey1989 已提交
631
void ParallelExecutor::BCastParamsToDevices(
Y
Yan Xu 已提交
632
    const std::vector<std::string> &vars, int trainer_id) const {
Q
Qiao Longfei 已提交
633
  VLOG(3) << "BCastParamsToDevices";
X
Xin Pan 已提交
634
  // the initializing bcast, all vars would be bcast from device(0).
635
  for (auto &var : vars) {
X
Xin Pan 已提交
636
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
637
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
638 639 640 641
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
642
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
643
      VLOG(3) << "one in var not inited, return!";
644 645
      continue;
    }
646 647
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
648
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
649
      std::vector<void *> buffers;
C
chengduo 已提交
650
      buffers.reserve(member_->places_.size());
651 652 653 654 655
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
656

Y
Yan Xu 已提交
657
        if (i == 0 && trainer_id == 0) {
658 659
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
660
          auto local_scope = member_->local_scopes_[i];
661
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
662
          t->Resize(dims);
663
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
664
        }
665
        buffers.push_back(buffer);
666
      }
667

668 669 670
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
671
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
672 673
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
674
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
675 676
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
677
        }
678
        nccl_ctxs->WaitAll();
679
      }
C
chengduoZH 已提交
680
#endif
681 682
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
683
      for (size_t i = 1; i < member_->places_.size(); ++i) {
684 685
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
686

Q
Qiao Longfei 已提交
687
        auto copy_memory = [&] {
688 689 690
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
691 692
        };

Q
Qiao Longfei 已提交
693
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
694 695 696 697 698 699 700

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
        } else if (member_->use_all_reduce_ || member_->use_cuda_ ||
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
701
        } else {
Q
can run  
Qiao Longfei 已提交
702
          share_memory();
703
        }
Y
Yu Yang 已提交
704
      }
Y
Stash  
Yu Yang 已提交
705 706
    }
  }
Y
Yu Yang 已提交
707
}
Y
Yu Yang 已提交
708

709 710
FeedFetchList ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors) {
711
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
712 713 714
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
715 716
  }
#endif
Y
Yu Yang 已提交
717

X
Xin Pan 已提交
718
  platform::RecordBlock b(0);
719 720 721

  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
722 723

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
S
sneaxiy 已提交
724
  auto fetch_data = member_->executor_->Run(fetch_tensors);
725
  return fetch_data;
Y
Yu Yang 已提交
726
}
Y
Yu Yang 已提交
727

Y
Yu Yang 已提交
728 729 730 731 732 733 734
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    for (auto &pair : map) {
735
      bool is_persistable = member_->IsPersistable(pair.first);
736 737 738
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
739 740 741 742 743
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
744 745 746 747 748 749 750 751
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
752
  size_t num_places = member_->places_.size();
753
  for (auto &pair : tensors) {
754 755 756 757
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
758
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
759 760
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
    if (!is_persistable && num_places != lod_tensors.size()) {
C
chengduo 已提交
761
      auto error_info = string::Sprintf(
762 763 764
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
765 766 767 768 769 770 771
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
      PADDLE_THROW(error_info);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
        PADDLE_ENFORCE_EQ(tensor.dims(), pair.second.dims(),
                          "The dim doesn't match.");
        PADDLE_ENFORCE_EQ(tensor.place(), member_->places_.at(0),
                          "The place doesn't match.");
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
      if (lod_tensors.size() != num_places) {
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
        PADDLE_THROW(error_info);
      }
C
chengduo 已提交
798
    }
799

800
    for (size_t j = 0; j < num_places; ++j) {
801 802 803 804 805
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
806 807
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
808 809 810 811
    }
  }
}

X
Xin Pan 已提交
812 813 814 815 816 817 818
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

819
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
820
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
821
    const BuildStrategy &build_strategy) const {
822 823 824
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
825

Y
Yancey1989 已提交
826
  bool enable_parallel_graph = true;
827

X
Xin Pan 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
841 842 843
    }
  }

844
  if (!member_->use_all_reduce_ || !member_->use_cuda_) {
Y
Yancey1989 已提交
845
    if (build_strategy.enable_sequential_execution_ ||
846
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
847
      enable_parallel_graph = false;
848 849 850 851 852 853 854 855 856
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
857
  return enable_parallel_graph;
858 859
}

Y
Yu Yang 已提交
860
}  // namespace framework
Y
Yang Yang 已提交
861
}  // namespace paddle
S
sneaxiy 已提交
862

S
sneaxiy 已提交
863
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
864
USE_PASS(eager_deletion_pass);
865
USE_PASS(buffer_shared_inplace_pass);
866
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);